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ABSTRACT
A filter family with minimum product of the impulse response
duration and the frequency bandwidth is considered. The impulse
response spread is characterized by the higher order moments.
For the frequency spread measure, the second order moment is
used. Minimizing products of the moments, causal systems with
the largest energy concentration in time for a given bandwidth
are obtained. The resulting impulse response is quasi Gaussian
with small and short ringing. The transfer function poles suitable
for the filter design up to the eighth order are given.

1 INTRODUCTION
In many applications, the systems with small time spread of the
impulse response for a given bandwidth are required. The real
systems of the finite order typically have ringing. The general
requirement is to make the ringing small and short. In the
optimization procedure all these aspects should be present in the
goal function. To have them all in an integral criterion, the use of
higher order moments for characterization of the response spread
is proposed. The moments have simple relations to the system
function parameters. Therefore, the optimization can be carried
out in the complex domain by varying zero-pole locations.

The frequency occupation of the band is determined by the signal
shape and its time duration. To obtain the best shape realized as
response of a finite order system, an optimization of the product

mnnmP βα= (1)

of the time αn and the frequency βm spread should be carried out.

For the spread αn and βm various measures might be used [1].
The n-th central moment around delay td of the squared impulse
response h(t) normalized to the impulse response energy
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has been used here for the time spread. The m-th moment of the
squared amplitude response normalized to the energy
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has been used for the frequency spread measure.

As it is well known, the second order moments n=2 and m=2,
have been used in the uncertainty principle for noncausal [1] and
causal signals [2]. Here we use higher order moments n=2, 4, 6
and 8 for the impulse response characterization αn and the second
order moment β2 for frequency response characterization.
Motivation for such a decision is based on the fact that parabola
(t-td)n is a weighting function in (2). In this way the contribution
of the impulse response ringing in the spread measure αn will be
increased by n. Minimizing the product (1) with such a measure,
one can expect small and short ringing.

Systems with minimum spread of the impulse response given by
higher order moments have already been analyzed [3]. There
were no requirements given in the frequency domain. Here we
use the product where the frequency domain is also taken into
account. speed

The frequency response spread can be expressed by the second
and higher order moments. The speed in which the frequency
response of a real system approaches to zero is determined by
number of poles and zeros. Therefore, higher order moments will
not be able to modify significantly the frequency response form
in the stopband. Thus, for the measure of the frequency response
spread, the second moment will be sufficient. Also, the use of the
second order moment has another important consequence.
Namely, the integral (3) will converge for all system orders N≥2.
The integral (2) will converge regardless of used moment order.

2 MOMENTS AND TRANSFER FUNCTIONS
Time spread and bandwidth definitions (2) and (3), are suitable
for causal functions too, only the integral limits have to be
changed. Thus, we define a measure of impulse response spread
by the n-th order central moment, and bandwidth as the second
order moment, both normalized to the impulse response energy.

For optimization procedure in the complex domain, the criterion
(1) should be expressed by the transfer function poles pi, and
zeros, zi. The impulse response of the N-th order filter with
simple poles, and M<N zeros, is given by
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where Kr, r=1,2,...,N are the pole residues. Now, the n-th order
moment of the impulse response can be expressed as a function
of poles and residues:
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Impulse response energy can be obtained from (5) with n=0.

The second order moment of the frequency response can be
expressed by the impulse response derivative, using Parseval's
relation
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Expression (6) can also be computed from (5) using Krpr that are
residua of the impulse response derivative i. e.
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Thus, the second order moment of the amplitude response (6) is
equal to zeroth moment of the impulse response derivative (7)
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To ensure convergence of the moment integral (3), the number of
zeros and poles should satisfy inequality

2N22M2 −≤+  or 2MN +≥  . (9)

3 OPTIMIZATION PROCEDURE
Pole and zero positions of causal filters with minimum time-
bandwidth product can be found by solving the problem
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We have carried out the optimization procedure for all-pole
transfer functions. The frequency ωp and quality factor Qp have
been used, instead of the poles pj. This variable set enables us to
locate the pole pairs on the real axis, if necessary. Using ωp and
Qp, a rational transfer function can be written in the form
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for odd N. When N is even, the linear factor in denominator is
missing.

In a stable system ωp and Qp are positive. Square values of goal
function variables were applied to avoid constrained optimization
procedure. Finally, optimum system poles and zeros were found
as
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Optimization will force impulse response to concentrate around
td and practically extend to 2td. The parameter td is chosen to be
1. This will not change the generality of the solution.

For searching minimum Quasi-Newton method with BFGS
formula for Hessian matrix update [4] was used.

To get causal all pole filters with minimum time-bandwidth
product, the optimization is carried out for moment orders
n=2, 4, 6 and 8.

Table I. Transfer function parameters for td=1. Table II. Transfer function parameters for td=1.



4 OPTIMIZATION RESULTS

The numerical values of the pole parameters ωp and Qp, are given
in Table I and Table II for systems from the second up to the
eighth order.

For all-pole transfer functions with td=1, the examples of pole
position are shown in Figure 1. It is interesting to note that poles
are very nearly placed on ellipses with ellipses center located at
the complex plane origin. The imaginary parts of poles are
equidistant. Such properties are typical for linear phase and
symmetric impulse response systems [5].

4.1 The sixth moment system

To illustrate behavior of the considered class of systems, the
complete diagrams are given for the system with minimum
product of sixth order moment in the time domain and second

order moment in the frequency domain. Impulse response is
shown in Figure 2. It is a quasi Gaussian response, with small
time spread. Undershoots are small (<0.6%) and with short
ringing. The step response overshoots are below 0.2 % for N≥3.

Amplitude and group delay responses are shown in Figure 3 and
Figure 4, respectively, in a form suitable for comparison with
classic filter approximations, given, for example, in [6]. The
amplitude response is quasi Gaussian. The group delay curves
illustrate an approximation of constant and they decrease
monotonically as frequency decreases.

4.2 Effects of moment order

The optimization results for all moment orders are similar in
character to the systems of sixth moment described above. The
improvement in the impulse response i.e. shorter ringing has
been obtained for the higher order moments, as it can be seen in

Figure 1. Pole positions of the optimum systems with
n=4 and n=8, normalized to td=1.

Figure 2. Impulse response of the optimum systems
based on sixth moment, td=1.

Figure 3. Amplitude response of the optimum systems
based on sixth moment, ω3dB=1.

Figure 4. Group delay of the optimum systems based on
sixth moment, ω3dB=1.



Figure 5. The higher order moments with weighting function
(t-td)n of higher power n apparently "punish" more the "tail" of
the response. As a consequence, the ringing is shorter.

Undershoot of the impulse response is smaller than 2 % for all
considered moment orders and N≥3, as shown in Figure 6. The
data for Bessel filter are also given. The overshoot of the step
response is smaller than 0.7 % for all moment orders and N≥3,
Figure 7. Thus, the step response is very nearly monotonic.

The obtained product Pn2 is a measure of the optimization
performance. The conventional and more practical values for the
time and frequency spread is, for example, the rise time tr
(10% - 90%) and bandwidth ω3dB or f3dB. The product is
practically constant for N>3 and it is trf3dB=0.347-0.342.

Amplitude attenuation in stop band is higher for lower moments,
and it is generally higher than at the Bessel filter [6]. Group delay
approximate constants with curves which are getting more
monotonic for higher order moments.

5 CONCLUSION
By the minimization of the time-bandwidth product using higher
order moments, a new class of finite order systems has been
obtained. Systems have the largest energy concentration in time
for a given bandwidth. The impulse response has small and short
ringing. Ringing duration is smaller for the higher system orders.
Properties of obtained filter families can be favorable compared
to similar filters with linear phase.
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Figure 5. Impulse response of the optimum systems for
various moment orders, N=4, td=1.

Figure 7. Step response overshoots of the systems for
various moment orders and Bessel filters.

Figure 6. Impulse response undershoots of the systems
for various moment orders and Bessel filters.


