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Introduction 

During the past decade smartphones have evolved from simple communication 

devices to irreplaceable personal assistants with a variety of sophisticated sensors. The data 

collected from those devices is numerous and it can reveal a lot about user’s behavior, 

activities and habits. One possible application of data collected from the smartphones is 

inferring presence status which will be discussed in this thesis.  

In terms of computer and telecommunications networks, presence information is a 

status indicator that conveys the willingness and ability of a potential communication 

partner to communicate. The presence information is collected from the user (presentity) 

and it is stored and distributed via network service called the presence service to user’s 

subscribers called watchers. Reliable information about user’s availability is needed for 

many real-time communication services, mainly in instant messaging and VoIP services, 

and presence service is integrated into many of them. The most common presence states in 

IM services are “Available”, “Unavailable”, “Busy” etc.  

The problem of inferring presence status combines several trade-offs. The most 

accurate presence service would be the one where presence status is 1) explicitly changed 

by the user and 2) it is up-to-date after every single action. The first condition causes 

frequent and annoying user intervention, while the second condition causes too frequent 

changes of presence status. It can cause an overload on presence server and watchers 

which leads to both quality of real-time service impairment and draining out battery on 

watcher’s mobile devices. The ideal inferring method without user’s interaction should be 

accurate, energy efficient and it should be able to accommodate to a specific user.  

In first chapter, the related work, mainly from activity recognition, is described and 

some ideas applicable to the problem are highlighted. The second chapter gives the 

theoretical background of machine learning algorithms which were applied to the problem. 

The platform independent implementation of those algorithms is given in third chapter as 

well as the description of the used dataset and features. The last, fourth chapter, contains 

the accuracy and performance results for each algorithm and the results of feature 

selection. In the end, the possible application of each relevant algorithm is given together 

with plans for the future work and comments. 
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1. Related Work 

In this chapter the problem of inferring user status is classified to adequate research area 

and core concepts and issues are discussed. Some solutions that partly solve problems of 

energy consuming will be presented as well as related work solving more general problem 

of inferring user activities and behavior. Many ideas applied on different anticipatory 

mobile computing are also highly applicable to inferring user status problem and that many 

of them used the same data set mentioned in 3.1. Further on, some existing 

implementations in commercial Instant Messaging (IM) applications will be presented and 

analyzed. 

1.1. Pervasive and ubiquitous computing 

The problem of inferring presence status is classified as a mobile computing problem. 

Mobile computing is a subtype of ubiquitous (omnipresent) computing which is closely 

related to pervasive computing. There is a very thin line between those research areas but 

what is important is the common core concept in all of them. Ubiquitous and pervasive 

computing is not any more strictly attached to personal computer; it can appear in any 

location on all kinds of devices starting from smartphones and tablets all the way to fridges 

and glasses. Most of those devices have issue with battery capacity, hence energy 

efficiency is a very important aspect in those popular research fields.  

Smartphone is the most common mobile device that 1.4 billion people used at the end of 

year 2013 and its number is about to pass the number of PCs, based on [4]. They have 

evolved from simple communication devices to perceptive devices capable of inferring 

context around them. The research potential of personal data generated on smartphones is 

not yet achieved but it heading in a good way. Activity recognition, behavior prediction, 

location prediction are just some of the related problems. 

The problem of security is often mentioned in the context of pervasive computing. The loss 

of privacy and distribution of personal data is concerning many people. It is the most 

common objection to development of the services that are highly involved in people’s 

lives. The solution is a trade-off between the amount of information exposed and the needs 

of service. In the case of activity recognition, inferring user status is providing less 
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personal information than for instance location prediction. An accurate service that 

provides general presence information without many details is highly applicable in many 

other services and even in corporate environments among a bigger group of people, unlike 

services that reveal lots of private data. 

1.2. Inferring User Activities 

Inferring presence status can be considered as a very simple way of inferring user activities 

which has tried to involve into all the aspects of human lives. Some of the activity 

recognition topics mentioned in [7] are inferring whether the user is jogging, commuting to 

work or maybe sleeping. Further on, inferring the user emotions, for instance anger and 

happiness, has also been analyzed, as well as discovering the most important places in 

everyday life using only the cellular identification. All that becomes possible thanks to a 

rich source of sensors available on every modern smartphone and adequate use of machine 

learning algorithms that will briefly be mentioned in this chapter.  

1.2.1. Activity Recognition Systems 

Many modern research challenges related to anticipatory computing are presented in [7] 

are solved using interesting features and techniques and here will be given some of them. 

In [5] and [8] a boosted ensemble of classifiers is used. UbiFit Garden System [5] is based 

on gadgets that measure user activity during the day. The goal is to infer their activities and 

to encourage regular physical activity by showing personal messages on mobile display. It 

consists of a fitness device, an interactive application and a glanceable display. An extra 

effort was taken to collect the data from users. UbiFit Garden uses the Mobile Sensing 

Platform [6]. MSP is pager-sized battery powered computer with several sensors: 3D 

accelerometer, barometer, humidity, visible and infrared light, temperature, microphone 

and compass. It infers physical activities in real time using a set of boosted decision stump 

classifiers that have been trained to infer walking, running, cycling, using an elliptical 

trainer and using a stair machine. [5] Only 3D accelerometer and barometer are used to 

infer those actions.  

In [8] boosting algorithm AdaBoost is successfully applied to population scale activity 

recognition from a large amount of data.  

In [5], [6] and [8] more complex activities were inferred on more detailed datasets, but 

some ideas can be adopted for inferring presence status. Boosted ensemble of weak 
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learners is often proved to be an accurate and extremely fast classifier, not only in activity 

recognition, but also in pattern recognition. What should be avoided in an energy efficient 

solution on smartphones, and it was used in [5] and [8], is using the accelerometer which 

consumes lots of energy. 

Identifying frequently visited locations is also among common topics. The data collected in 

[9] is classified using online nearest neighbor classification. In feature extraction they were 

using light sensor and microphone which is not applicable in this thesis. However, k-NN 

remains an interesting option, and especially 1-NN that was used in [9] to assure very fast 

online classification. 

Predicting human interruptibility is highly related with predicting presence status because 

by predicting user presence we predict user interruptibilty, which is exactly the opposite 

term. While inferring usage context on a smartphone or any other mobile device remains 

difficult due to the sheer amount and quality of highly user-specific data, predicting is even 

more so. [7]  

Predicting user interruptibility with sensors described in [10] was approached from human-

computer interaction point of view using a priori social conventions of whether or not an 

interruption is appropriate in a given moment. Features were extracted from the video 

records of people working in their offices. Subjects were prompted for interruptibility self-

reports at random, but controlled, intervals, averaging two prompts per hour. Subject 

activities were recognized from video and counted. The position of the subject in the room, 

number of guests in the room, drinking, eating and writing are only some of the recorded 

actions that are later used as features. Estimator subjects were enrolled and they were 

supposed to evaluate the recordings as if they were walking into that situation and needed 

to decide how interruptible the video subject was prior to deciding whether to interrupt the 

video subject. After the experiments the results from video subjects were compared with an 

opinion of estimator subjects and data from recordings is labeled with a certain precision 

which is high if a subject on the video answered the same as estimator subjects. Machine 

learning models used in this work are decision trees and naïve Bayes. The results with 

decision trees were fulfilling the expectations and higher accuracy was achieved than with 

naïve Bayes. An interesting approach in this work, that can be applied later, is collecting 

prompts from two groups of users and using them for labeling the collected data with 

certain precision. Decision trees and naïve Bayes remain as potential techniques for 

inferring presence status. 
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In [12] Nokia Mobile Data Challenge dataset was analyzed for predicting human 

movement and detecting social groups like friends and acquaintances. They have shown 

that by means of multivariate nonlinear predictors it is possible to exploit mobility data of 

friends in order to improve user movement forecasting. [12] The dataset they were using is 

composed of information related to 39 users including GPS traces, telephone numbers, 

call, SMS and WLAN history and Bluetooth. GPS traces are used to analyze the movement 

of the users, while colocation and number of phone calls between individuals are used to 

determine social interactions.  

Other work based on Nokia MDC dataset and published on Nokia Mobile Data Challenge 

Workshop [13] is focused on semantic place prediction, location prediction, human 

behavior and interactions prediction etc.  

Cloud computing gives an additional opportunity for saving the energy on mobile devices. 

An interesting use of cloud computing is introduced in [14]. The amount of energy spent 

on processing GPS data is reduced by uploading raw signals to the cloud for processing, 

relieving a battery limited device from the burden of computation. The drawback is the 

increased communication which consumes both device and network resources, but the 

amount of energy spent on mobile devices is still decreased by a significant percentage. 

This principle can be applied whenever computational resources spend far more energy 

than uploading the necessary data to cloud, for instance to offline training of GP classifiers. 

Most of the related work mentioned until now was either using a set of features that is not 

applicable to inferring presence status either the processing and learning methods were far 

beyond our needs. However, some ideas and machine learning models are applicable to 

inferring presence status. Online inferring of user activities, light machine learning models, 

collecting direct information from users and the inclusion of cloud computing are some of 

them. 

1.3. Automatically Inferring Presence Status on 

Smartphones 

This thesis is supposed to continue the work from the paper [1] presented in this chapter. 

The same Nokia MDC dataset presented in chapter 3.1 was used. The main problem with 

inferring presence status was the lack of ground truth in the data since the given dataset 

does not contain the information about the presence statuses. The ground truth had to 

somehow be estimated and it was done with an automaton depicted in Fig. 1-1. 
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Figure 1-1 An automaton for user presence status assignment [1] 

The four states of an automaton are Available, Unavailable, Busy and Available for 

Texting and they correspond to four possible presence statuses. The automaton is pretty 

straightforward. The presence status is set to Available after answering a phone call or 

setting the ring tone to normal. State Unavailable is reached whenever user misses or 

rejects a phone call, has a private entry in a calendar or sets the ring tone to silent. Busy is 

a special state of being unavailable and it can be reached when a user sets the ring tone to 

beep or ring once. This arc is problematic because on today’s smartphones this special ring 

tone types as beep, ring once and ascending do not exist. Further on, Available for Texting 

is a special case of being Available and presence state is switched to it when a user sends a 

short message while the previous state is either Busy or Unavailable. This makes the 

previous user state as one of the most important features. 

The data for each of 38 users was accumulated inside five minutes time windows in order 

to save the battery on subscribed mobile devices and to reduce the messaging load on 

presence server as well as the network traffic. 

The initial set of features from MDC dataset is reduced to: call type (voice call or SMS), 

call direction (incoming, outgoing or missed), calendar event class (public or private), 

event type (appointment or event), event status (tentative or confirmed), ring type (normal, 
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ascending, ring once, beep or silent), accelerometer (slow, moving) and GSM cell 

identifier.  

For inferring the presence status (which has already been defined using the mentioned 

automaton) the logistic regression was chosen. It is not very clear why that model was 

chosen or would some other model outperform it. The best achieved average accuracy on 

five-fold cross validation is 85%. The important fact is that with only two features, ring 

tone and GSM cell identifier, the accuracy does not deviate too much except for a few 

users. It is important information because these features are not very energy consuming 

unlike accelerator or GPS. 

In this thesis the goal is to outperform the results presented in [1] and to compare different 

machine learning classification algorithms tested on the problem. Apart from accuracy, the 

time execution and energy consumption are also very important criteria if the final goal is 

to infer presence status directly on smartphones.  

1.4. Implementations in IM Applications 

Today, the most popular IM applications in the world still do not offer an automatic 

presence service without user intervention. The question whether that is necessary and 

among which group of users it is applicable, remains. For now, the only information 

available to user contacts are when he/she was last seen online (WhatsApp, Facebook 

Chat, Viber,…) or the last presence status explicitly  changed by user or by his/her absence 

(Skype, Google+ Hangouts,…). In the second case, user can choose between several 

statuses like Online/Available, Do Not Disturb/Busy or Away/Idle.  

On ex-Google Talk status is automatically changed from Available to Idle if user is away 

from the device for more than 10 minutes [15].  
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2. Applicable Machine Learning Methods 

In this chapter used machine learning methods, for both supervised and unsupervised 

learning will be presented.  Genetic programming and its application to classification will 

be given in details. Theoretical implementation independent explanations will be given as 

well as basic components for every algorithm that are used to make a systematic 

categorization of the existing algorithms.  

2.1. Categorization of Machine Learning Problems 

The main approaches distinguished in machine learning are supervised learning, 

unsupervised learning and reinforcement learning.  

In supervised learning, we have a training set with training examples in the form of (input, 

output) and the goal is to infer a relation between the set of inputs and the set of outputs. If 

output is a discrete value then the problem is a classification problem and if output is a 

continuous value it is a regression problem [18].  

In unsupervised learning, the data is unlabeled. The goal of unsupervised learning is to find 

the intrinsic structure, relations or affinities present in data. The most common 

unsupervised learning tasks are clustering and association discovery. 

Reinforcement learning is based on reasoning from a complete model of environment. The 

learner is not told which actions to take, but instead must discover which actions yield the 

most reward by trying them [29]. 

Semi-supervised learning is a technique that falls between supervised and unsupervised 

learning with a small completely labeled training data and a bigger unlabeled training data. 

The common assumption in semi-supervised learning is that following: the examples 

which are close to each other are more likely to share a label. It can easily be applied to 

clustering all labeled and unlabeled examples together and assigning the most frequent 

label in each cluster to unlabeled examples from the same cluster. 
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2.2. Genetic Programming 

Genetic programming (GP) is an evolutionary algorithm that was in the first place 

designed for creating a working computer program from a high-level statement of a 

problem, as its name implies. It was proposed by J.R. Koza in [20]. Like any other 

evolutionary algorithm it is a probabilistic search algorithm inspired by certain points in 

Darwinian theory of evolution for solving different NP-hard domain independent 

problems, not only creating the computer programs. [17] 

What makes GP to be an evolutionary algorithm is following: 1) a population of 

individuals, 2) a fitness-biased selection method which gives higher probability to better 

solution to be chosen for breeding and 3) general inheritance method where genetic 

operators of crossover and mutation are applied to chosen individuals, usually respectively 

[21]. 

The flowchart of genetic programming is designated in Fig. 2-1. In Fig. 2-1 gen is the 

current number of generations, N is the population size, pc is the crossover probability and 

pm is the mutation probability. 

 The flowchart is very similar to the flowchart of genetic algorithm (GA) which is also an 

evolutionary search algorithm used for solving NP-hard problems. The difference between 

GP and the original GA is in the representation of individuals. In GA solutions are always 

the same size and they are usually presented by a bit vector or a number array, although 

more complex structures are also possible if it is required by the nature of the problem. In 

GP the individuals can grow and grow if it is not controlled by any mechanism, while that 

could never happen in GA.  

Types of GP differ from each other in having different problem representation. In other 

words, different data structures are used to define an individual. The most commonly used 

type of GP is tree based GP and apart from representing the computer programs it can be 

used for representing different kinds of arithmetical and logical expressions. Every tree-

like structure representing an individual consists of two types of genes: functions and 

terminals. Terminals are the leaves of the tree (nodes without children) that can be actions, 

variables and constants, while functions are the nodes with children. The function’s 

children provide the arguments for the function. The set of terminals and functions is 

called the set of primitives [22] [23]. 

Other problem representations are also possible. Constrained Syntax GP is based on trees 

with more than two children and a set of constraints is used to maintain the validity of tree 
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after applying the genetic operators. Graph based GP uses graphs for representing 

individuals and it is the most complex representation structure among the given GP types. 

It is used for an evolution of parallel programs. Linear GP uses a list of machine language 

instructions as problem representation. The last common GP type is grammar based and its 

individuals are created using the production rules [23]. 
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Figure 2-1 Flowchart of genetic programming 
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2.2.1. Genetic Programming in Classification 

Genetic programming and other evolutionary techniques have been successfully applied to 

both supervised and unsupervised learning problems, but this thesis is mainly concentrated 

on the classification problems. GP is a flexible and powerful evolutionary technique that 

can be very suitable for training classifiers. It is easy to see the three components that make 

GP suitable for classification algorithm. As first, it easily adapts to different representation 

formalisms applicable to classification like decision trees, discriminant functions, 

classification rules etc. As second, GP itself is a search and optimization algorithm and as 

third, any preference criterion can be expressed as a fitness function that guides the search 

process. 

Different interesting applications of GP in classification tasks are depicted in Fig. 2-2. The 

feature selection is performed implicitly as the result of the evolutionary process, since 

only a subset of features, represented by variables that are more likely to be chosen, appear 

in the final list. 

Feature construction using GP can be performed in many different ways. Basically the 

principle remains the same in all of them – the new constructed features are codified by 

tree-like individuals with arithmetic operators and functions in the internal nodes while the 

original features and optionally constants are placed in the leaf nodes. The process of 

construction can be wrapped into classification algorithm or it can be executed separately 

before it. 

Model extraction is the most common use of GP in classification. The population consists 

of individuals that represent one classifier. Fitness function usually measures the quality of 

classification and sometimes the size of an individual. The most common methods are 

extracting decision trees, classification rules and discriminant functions. 

GP was also successfully used for ensemble learning. The idea behind ensemble classifiers 

is to use a group of base classifiers instead of only one classifier and combine them into a 

single classifier in a way that increases their accuracy. GP can play two roles in building 

the ensemble classifier. The first one is building the base classifiers and the second one is 

combining them. In both cases training data is separated into subsets and each base 

classifier is trained on only one subset. It can decrease the execution time for big training 

sets and there is no unused data. In the perfect scenario different base classifiers in an 

ensemble capture different patterns or aspects of pattern embedded in the data and through 

ensemble their decisions are incorporated into a final prediction. When GP is used for 
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building the base classifiers then they are usually combined using a simple voting 

mechanism. Some common base classifiers are naïve Bayes, C4.5, linear classifiers, 

decision stumps etc. They are translated into a mathematical expression and used as 

building blocks for GP.  

Many interesting parallel implementations of GP ensemble are referenced in [21]. There 

are two common methods for parallelization of evolving ensembles of GP classifiers: 

island approach and team approach. They are often used for parallel evaluation of any 

population-based evolutionary algorithm (for example GA). Island approaches usually 

produce a team of strong individuals that cooperate poorly, while team approaches produce 

a team of weak individuals that cooperate strongly [21]. 

 

 

Figure 2-2 Applications of GP in classification tasks [21] 

2.2.2. GP for Extracting Decision Trees 

Decision tree is an obvious choice for representing the GP individual since its population 

often consists of tree-like structures. It was the first GP approach for classification 

proposed by J.R. Koza [19]. Every decision tree contains zero or more internal nodes and 

one or more leaf nodes. The internal nodes have two or more children nodes and they 
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contain splits, which test the value of an expression of the attributes [21]. Depending on 

the result of outcome value one of the arcs from internal node to its children is chosen. 

Each leaf node is labeled with a certain class label.  

There are three main types of decision trees designated in Fig. 2-2 that differ from each 

other in how the feature space is partitioned.  

Univariate or axis-parallel decision trees can test only a single variable at each internal 

node. They split the feature space by hyper planes parallel with axis. An example of axis-

parallel decision tree and its division of two-dimensional feature space is shown in        

Fig. 2-3. 

 

Figure 2-3 Axis-parallel decision tree and its division of 2D feature space [28] 

Linear multivariate or oblique decision trees can test a linear combination of features at 

internal nodes. The tests are geometrically equivalent to hyper planes at an oblique 

orientation to the axis of the feature space. An example of oblique decision tree is 

designated in Fig. 2-4. 

 

Figure 2-4 Oblique decision tree and its division of 2D feature space [28] 
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The third type of decision trees mentioned in [21] are nonlinear multivariate decision trees. 

This type of decision tree can contain nonlinear combinations of features inside internal 

nodes and therefore a nonlinear partitioning of the feature space can be done. It can be 

used for more difficult problems with complex decision boundaries. 

2.2.3. GP for Learning Rule-Based Systems 

Genetic programming can also be used for creating classification rules. Every rule consists 

of antecedent and consequent. The antecedent contains a combination of attributes and 

logical operators, while the consequent contains the value predicted for the class. If a data 

instance satisfies the condition in antecedent it is assigned to the class from consequent. An 

individual can represent a single rule or a set of rules. In the first case some consolidation 

method has to be used to create the final classifier after the evolutionary process.  

An example of a GP individual representing a classification rule is designated in Fig. 2-5. 

The rule which is represented by the individual is following: 

IF     ((X1 < 3) 

OR    ((X1 >= 3) AND (X2 >= 25) AND (X3 < 31))) 

THEN Class 1. 

 

Figure 2-5 GP individual representing a classification rule 

 Some simple methods for creating rule-based classifiers are restricted to binary problems. 

It is always possible to create multiclass classifier for N classes with N-1 binary classifiers 

using one-against-all approach but the result of such classifier is often not well 
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interpretable. Methods for directly handling multiclass problems are generally more 

suitable because they can be applied more easily and it is easier to understand the rationale 

behind the classification that system outputs.  

2.2.4. GP for Learning Discriminant Functions 

Discriminant functions are mathematical expressions also represented as tree-like 

structures with functions as internal nodes and variables and constants as leaf nodes. The 

variables represent the attributes of a data instance that has to be classified. The output 

value is computed from the operations performed on the values of the given attributes and 

the output determinates the output class.  

Fig. 2-6 shows a discriminant function represented as a GP individual. The function in 

encoded form is: 

X1 * 0.26 + X2 * 0.23 + X3 * 1.07 + X4 * 12.5. 

 

Figure 2-6 GP individual representing a discriminant function 

Any mathematical function can be used in internal nodes, for instance: sine, cosine, 

logarithm etc.  

If the problem is binary classification then a single discriminant function is enough for the 

distinction of classes – if the output is greater than the given threshold then the instance is 

assigned to positive class, otherwise it is assigned to negative class. The threshold is 

usually set to zero.  

If the problem is multiclass classification then two approaches are possible. As first, N-1 

discriminant functions that behave like binary classifiers can be used and then combined, 
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like the classification rules, using the common one-against-all approach for combining 

binary classifiers. As second, it is possible to interpret one discriminant function as 

multiclass classifier, but then N-1 threshold values have to be defined.  

The obvious and the most common approach for integrating this representation into GP is 

to have a population of discriminant functions that use a subset of predefined functions in 

their internal nodes.  

The fitness function usually reflects the accuracy of the discriminant function, but like in 

every other tree-like structure information like the total number of nodes, the maximal 

depth or the generalization ability can be taken into calculations as well. In some related 

work, for instance in [26] and [27], the fitness function is composed of classification 

accuracy and generalization ability that was calculated on a small part of training set that 

was not used for training. 

2.3. Clustering 

Clustering is a classic unsupervised learning problem. The goal of clustering is to partition 

the unlabeled data set into previously determined number of clusters, K. Intuitively cluster 

is a comprising group of data points whose inter-point distances are small compared with 

the distances to points outside of the cluster [25]. 

2.3.1. K-means Algorithm 

K-means algorithm is the simplest and the most common clustering algorithm. Suppose we 

have a data set D = {x1,…, xN} and a fix number of clusters K. Every cluster is represented 

by its centroid k, k ϵ {1, …, K}. The quality of partitioning the data examples into clusters 

represented by k is determined by the cost function: 

   ∑ ∑   
( ) || ( )    ||

 
 
   

 
   .         

The value bk
(i)

  is a binary indicator variable describing which of the K clusters data point 

x
(i)

 is assigned to. If data point x
(i)

 is assigned to cluster k then bk
(i)

 = 1, and bj
(i)

 = 0 for j ≠ 

k. The cost function represents the sum of the squares of the distances of each data point to 

its assigned vector k. The final goal of the algorithm is to find values for { bk
(i)

 } and {k } 

so as to minimize J [25]. The function would be zero if all examples would perfectly 

overlap with their centroids and that is a trivial and not probable case. In order to minimize 

the cost function J every data point has to be assigned to the closest centroid. However, the 
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question how to find such centroids so that the function reaches its minimum remains. The 

answer is in an iterative algorithm because the solution cannot be found in a closed-form.  

The iterative algorithm starts with the random initialization of the centroids. After that in 

every iteration and for every training example x
(i)

 the value bk
(i)

  is calculated for every k ϵ 

{1, …, K} by assigning each training example to the closest centroid k. The cost function 

can be now be minimized with fix values of bk
(i)

 and by calculating gradient          and 

solving it by k. The final expression for k  is: 

   
∑   

( ) ( ) 

∑   
( )

 

   

 

The new value of centroid k corresponds to the mean of all the data points x
(i)

 assigned to 

cluster k. The two phases of re-assigning training examples to clusters and re-computing 

the cluster means are repeated in turn until there is no further change in assignments (or 

until a certain number of iterations is exceeded). 

Finding the global minimum of function J depends on the choice of initial centroids. There 

are several ways of initializing the centroids among which choosing random points in the 

feature space is the worst one. Choosing the positions of K random examples for the 

positions of centroids is a very common approach but it is still not resistant to local 

optimums. An interesting approach is to calculate the principal component using a method 

PCA and divide the feature space to K equal intervals which also divide examples into K 

groups. Centroids are then initialized as the means of examples in each group.  

The best approach for choosing centroids is given by the algorithm k-means++. The idea 

behind the algorithm is very simple, while the significant reduction of the cost function is 

proven. The first centroid is randomly chosen among one of the training examples. Every 

other centroid after it should be chosen as far as possible from the ones that have already 

been chosen. The probability of choosing the position of training example x
(i)

 for the next 

centroid is proportional to the square distance from x
(i)

 to the closest already existing 

centroid k as shown on following formula [18]: 

 (    
( )| )  

|| ( )    ||
 

∑ || ( )    ||
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2.4. Decision Trees 

Decision trees are very popular because they can easily be interpreted by humans and the 

extracted knowledge can be clearly presented and visualized. They can also be interpreted 

as a set of decision rules.  

In the simplest variant of induction of decision trees internal nodes are variables assigned 

to one attribute and every attribute is interpreted as nominal. For each possible value of the 

attribute one arc is leading from internal node to either another internal node either to a leaf 

node. The classification process starts from the root node and for every attribute its value is 

examined and the path on the tree is determined. All the leaf nodes are assigned to class 

labels. A simple example of such decision tree from the paper where they were introduced 

is designated in Fig. 2-7. 

 

Figure 2-7 A simple decision tree [24] 

The most common algorithms for decision trees learning are ID3 and C4.5. They are both 

greedy algorithms proposed by Quinlan [24]. The basic idea behind ID3 algorithm is to 

associate each internal node with an attribute which is the most informative among the 

attributes not yet considered in the path from the root. Information gain is used for 

measuring how “informative” the attribute is. Let D denote a set of training examples and 

let A denote an attribute in D with n possible values vi, i ϵ {1,…,n}. The information gain of 

attribute A on dataset D is the difference between entropy on dataset D, H(D),  and a sum 

of entropy values on a subset of dataset D, Dvi, that remains after dividing D using possible 

values vi of attribute A, as follows in [18]: 

 (   )   ( )  ∑
|   |

| |
  (   ) 
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The biggest possible information gain is equal to entropy and it is reached when for each 

attribute value v a unique classification can be made for the class attribute. 

C4.5 is an upgrade of ID3 with several extensions.  C4.5 can deal with training sets that 

have records with unknown attribute values by evaluating the gain for an attribute by 

considering only the records where that attribute is defined [35]. With C4.5 handling both 

discrete and continuous values is possible. Further on, the algorithm goes back through the 

tree once it has been created and attempts to remove branches that do not help by replacing 

them with leaf nodes. This procedure is called tree pruning.  

 

2.5. K-nearest neighbors 

K-nearest neighbors is a simple and lazy instance-based learning algorithm that can be 

used for both classification and regression. The idea is to classify a data instance by 

looking at its closest neighbors. The distance between n-dimensional data instances x
(i) 

= 

(x1, …, xn) is usually calculated using Euclidean metrics:  

 (     )  √∑ (  
    

 )
  

   
 

In k-NN classification, the output is a class membership. An object is classified by a 

majority vote of its neighbors, with the object being assigned to the class most common 

among its k nearest neighbors. Typically, k is a small integer value.  If k = 1, then the 

object is simply assigned to the class of that one single nearest neighbor. 

The training algorithm consists only of adding all the training instances to a list. The 

classification of unseen instance is more complex. For a given data instance xq with 

unknown classification its k closest neighbors have to be found: x1, x2, …, xk. This results 

in much bigger complexity of test than training procedure. The output of the algorithm is 

the most frequent class label among the nearest neighbors which is formally given as the 

value of the function h(xq). The help function δ(a,b) is equal to one if a=b, 0 otherwise. 

The equation for output function is: 

 (  )          *       +∑ (   ( ))

 

   

 

The advantages of the algorithm are its resistance to noise in the data and its simplicity. 

Determining the right parameter k is very important and problem specific. If k is too small, 
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the algorithm is very sensitive to noise in the data. If k is too big a borderline decision 

becomes too smooth and oversimplified. The ideal k is highly related with the number of 

examples. With a big number of examples even a smaller k can result in good 

generalization ability.  

2.6. Ensemble Learning 

Ensemble learning is a machine learning paradigm where multiple learners are trained to 

solve the same problem. In contrast to ordinary machine learning approaches which try to 

learn only one hypothesis from the training data, ensemble methods try to construct a set of 

hypotheses and then combine them [30]. Ideally, different base classifiers in an ensemble 

capture different patterns or aspects of a pattern embedded in the whole range of data and 

then, through ensemble learning, these different patterns or aspects are incorporated into a 

final prediction [21]. 

Two main issues have to be addressed for applying ensemble approach. As first, the basic 

classifier has to be chosen. Basic classifiers can belong to the same type, or to different 

types of classifiers, but diversity among them is very important for ensembles. Generally, 

to get a good ensemble, the base learners should be as accurate as possible, and as diverse 

as possible [30]. As second, combining base classifiers has to be solved. Two common 

ensemble methods are bagging and boosting. 

 

2.6.1. Bagging 

Bagging is a method for combining basic classifiers using a simple voting mechanism. The 

idea is following: we have N basic classifiers that produce N hypothesis hi. Each 

hypothesis is independent and makes error with probability p. Probability that the majority 

voting of N hypotheses will make an error, if k basic classifiers make an error, reduces 

significantly.  

Each basic learner is trained on its bootstrap sample. A bootstrap sample is obtained by 

subsampling the training dataset with replacement, where the size of a sample is as the 

same as that of the training data set. Thus, for a bootstrap sample, some training examples 

may appear, but some may not [30]. 

 

The pseudo code of bagging algorithm is following: 
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Input: 

Data set D = {(x1, y1), (x2, y2), …, (xm, ym)}; 

 Base learning algorithm L; 

Number of learning rounds T; 

Process: 

 for t = 1, …, T: 

     Generate a bootstrap sample Dt = Bootstrap(D) 

     Train a base learner ht from the sample Dt , ht = L(Dt) 

end. 

Output:  

 ( )                        (      ( )) where 1(a) is 1 if a is true and 

0 otherwise. 

 

2.6.2. Boosting 

Boosting is a whole family of algorithms among which the most popular one is AdaBoost 

(Adaptive Boosting). Boosting is in general referred to as the process of turning a weak 

learner into a strong learner.  

In practice the hypotheses from basic learners are rarely independent and some hypotheses 

have fewer errors than others, so all votes are not equal. The idea is to take the weighted 

majority.  

Most boosting algorithms consist of iteratively learning weak classifiers with respect to a 

distribution and adding them to a final classifier. When they are added, they are typically 

weighted in specific way usually related to the accuracy of the weak learners. After a weak 

learner is added, the data is reweighted so that misclassified examples gain weight and 

correctly classified examples lose weight. Thus, future weak learners focus more on the 

examples that previous weak learners misclassified [31]. 

2.6.2.1 AdaBoost 

The AdaBoost algorithm was the first practical boosting algorithm and still remains one of 

the most widely used and studied, with applications in numerous fields. The pseudo code 

of AdaBoost from [32] is given as follows: 

 

Input: 

 Data set S = {(x1, y1), (x2, y2), …, (xm, ym)} with labels yi ϵ 

Y={1,…,C} drawn from a distribution D 

 Base learning algorithm WeakLearn 

 Number of learning rounds T 

 Initialization: 

 D1(i) = 1/m for i=1, …, m 
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Process: 

 for t = 1, …, T: 

 Call WeakLearn, providing it with the distribution Dt 

 Get back a hypothesis ht : X  Y 

 Calculate the error of ht :    ∑   ( )    (  )    
 

 If     
 

 
, then set T:=t-1 and abort loop. 

 Set       (    ) 
 Update distribution   : 

     ( )   
  ( )

  
 {

 
           (  )    
                   

 

where    ∑   ( )  is a normalization constant chosen so that Dt+1 

becomes a distribution function 

end. 

Output:  

 The final hypothesis: 

      ( )        
   

∑    
 

  
    ( )  

 

 

AdaBoost is a serious candidate for applying to the problem of real-time inferring presence 

status on mobile devices because of its speed and accuracy. 

2.7. Naïve Bayes 

Naïve Bayes is a simple probabilistic classifier based on Bayes’ theorem and a naïve 

assumption that features are independent random variables. The basic idea is to find out the 

probability of the previously unseen instance belonging to each class and then to pick the 

most probable one.  

Bayes’ theorem, well known in probability theory and statistics, enables mathematical 

manipulation of conditional probabilities:  

 (  |  )  
 ( |  )  (  )

 ( )
   

We try to maximize p(cj|d) which is the probability of instance d being in class cj. Other 

parts of formula are the probability of generating instance d given class cj, p(d|cj), the 

probability of occurrence of class cj, p(cj) and the probability of instance d occurring, p(d). 

The last component can be ignored since it is the same for all classes. 

Naïve Bayesian classifier assumes that features have independent distributions and it 

simplifies calculating p(d|cj) which becomes equal to the multiplication of the probabilities 

of class cj generating the observed value for every feature separately. 
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Naïve Bayes faces some difficulties when the initial naïve assumption is very incorrect. It 

is often applied to text classification problems but is has also been successfully applied to 

inferring interruptions on mobile phones in [33] and therefore it is an interesting method 

for the problem in this thesis. 

2.8. Feature selection 

In machine learning, feature selection is the process of selecting a subset of relevant 

features for use in model construction.  

It is an obligational part of the data analysis process especially when the number of 

features is very big which is common for problems like text classification or gene 

selection. In the mentioned problems hundreds to tens of thousands features have to be 

handled in an efficient and accurate way.  

Feature selection techniques are used even if the number of features is relatively small in 

order to improve the model interpretability, to reduce the training time and to enhance the 

generalization ability by reducing over fitting. They differ from techniques used for the 

large number of features. The most common criterion for eliminating features is accuracy, 

although it can be combined with for instance energy efficiency, especially in mobile 

computing. 

The simplest feature selection algorithm is to test all possible subsets of features finding 

the one for which the best value of criterion is achieved. The best subset contains the least 

number of features that most contribute to accuracy. This kind of exhaustive search is in 

generally impractical, except for a small number of features. 

The most common feature selection methods are divided into complete, heuristic and 

random methods. 

The main feature selection heuristic methods are forward and backward selection. Forward 

selection starts with no features and then adds them one by one choosing always the one 

that decreases the error the most. The process stops when any further addition stops 

decreasing the error significantly. Backward selection starts with all the features and then 

removing them one by one if removing the chosen feature decreases the error. The process 

stops when any further removal increases the error significantly. Forward and backward 

selections exist in many different variants.  

The most common random techniques for feature selection are genetic algorithm and 

simulated annealing. Minimum Redundancy Maximum Relevance (mRMR) which was 
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proposed in [36] uses mutual information, correlation or distance measures to select the 

features which remain relevant in the presence of other selected features.  

The summary of feature selection techniques from [34] is designated in Figure 2-8. 

 

 

Figure 2-8 Summary of feature selection methods 

2.9. Incremental learning 

Incremental learning, also sometimes called adaptive, online or transfer learning, is a 

machine learning paradigm used when all training examples are not available at the 

beginning of the learning process, but they appear in small batches over time. A typical 

approach for learning new information involves discarding the existing classifier, and 

retraining the classifier using all of the data that has been accumulated thus far [38]. The 

incremental learning assumes adjusting what has already been learned according to the 

new examples without completely relearning the model on the whole training set, but 

without forgetting the previous knowledge. It is very useful in many different problems 

including inferring presence status because a logical approach for implementing such 

application on mobile phones would require adapting to user’s habits over time without 

keeping all the previously collected data in memory of mobile device and without 

repeating the whole learning process. 

Incremental learning can be both supervised and unsupervised. Formally defined, an 

incremental learning algorithm has to meet the following criteria [39]: 

 it is able to learn and update with every new labeled or unlabeled data, 

 it preserves previously acquired knowledge, 
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 it should not require access to the original data, 

 it generates new class or cluster when required, even divides or merges clusters 

when needed and 

 it is dynamic in nature with the changing environment. 

Some of the incremental learning algorithms are Learn++ [38], incremental induction of 

decision trees [41] etc. 

2.9.1. Learn++ 

The most popular supervised incremental learning algorithm is Learn++ which adapts 

AdaBoost algorithm. Learn++ has been improved several times to meet all incremental 

learning criteria. Like AdaBoost, Learn++ is based on the ensemble of weak classifiers, for 

instance decision stumps, and weighted voting mechanism. Each new classifier added to 

the ensemble is trained using a set of examples drawn according to a distribution, which 

ensures that examples that are misclassified by the current ensemble have a high 

probability of being sampled. In an incremental learning setting, the examples that have a 

high probability of error are precisely those that are unknown, or that have not yet been 

used to train the classifier [39]. 

Learn++.NC was later developed for learning New Classes (NC) with new data from 

existing classes assumed to remain stationary. A dynamically weighted consult-and-vote 

mechanism was applied. Looking at the decisions of each classifier, each classifier decides 

whether its decision is in line with the prediction of other classifiers and the classes on 

which it was trained and if the result is negative it reduces its voting weight. [39] 

None of the mentioned algorithms can be employed to incremental learning in non-

stationary environment. In other words, they assume that existing class boundaries remain 

constant over time, which does not have to be true. For enabling to correctly learn classes 

even if the underlying generation function f changes the new algorithm Learn++.NSE 

(Nonstationary Environment) was developed.  

The pseudo code of Learn++ algorithm is following: 

 

 

Input: For each database drawn from Dk = 1,…,K 

 Sequence of m training examples Sk = {(x1k, y1k), (x2k, y2k), …, (xmk, ymk)} 

 Base learning algorithm WeakLearn 

 Number of learning rounds Tk 
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 for k=1,2,…, K: 

  Initialization: 

   
   ( )  

 

  
   , unless there is prior knowledge to select 

otherwise 

Process: 

  for t = 1, …, Tk: 

 Set       ∑   ( )
 
    so that    is a distribution 

 Randomly choose training data subset TRt according to Dt 

 Call WeakLearn, providing it with TRt 

 Get back a hypothesis ht : X  Y 

 Calculate the error of ht :    ∑   ( )    (  )   
 on Sk 

If     
 

 
, then set t:=t-1, discard ht and go to randomly 

choosing another training set 

 Set       (    ) 
 Call weighted majority, obtain the overall hypothesis 

  ( )           ∑    
 

  
    ( )    and compute the 

overall error 

    ∑   ( )  ∑   ( ),|  (  )    |-
 
       (  )   

  

If Et > ½, set t = t – 1, discard Ht and go to to randomly 

choosing another training set 

 Set Bt = Et (1-Et) and update the weights of the instances: 

    ( )    ( )  {
        ( )    
           

 

   end. 

 end. 

Output: 

Call weighted majority on combined hypothesis Ht and output: 

      ( )        ∑ ∑    
 

  
        ( )  

 

   
   

  

 

Learn++ could be applied to inferring presence status on mobile devices so that the 

algorithm learns the individual behavior of a certain user and periodically adjusts the 

model with small batches of collected data. 
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3. Inferring Presence Status 

In this chapter the used dataset will be introduced and programming-environment 

independent implementation description of used algorithms and their parameters will be 

given. Every algorithm was validated using stratified 5 fold cross validation. 

3.1. Adaptation of the Mobile Data Challenge Dataset 

Mobile Data Challenge (MDC) data set was collected during Lausanne Data Collection 

Campaign from October 2009 until March 2011 from around 200 individuals over more 

than a year [11]. The logs contain information related to GPS, WiFi, Bluetooth and 

accelerometer traces, but also call and SMS logs, multimedia and application usage. 

 

Figure 3-1 LDCC data flow, progressing from mobile data from volunteers to anonymized data for 

research [11] 

The subset of the data used for the purpose of this work contains 17,861,168 actions from 

38 users collected over 8154 days. The actions are following: call log, calendar, system 

log, accelerometer log, GPS sensor log and GSM cell identifier log. The figure       3-1 

shows how the data was collected during LDCC. 
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Not all the actions were separately used for status inferring because one of the goals is to 

reduce the number of status changes, but retain the acceptable accuracy. As suggested in 

[1], the actions were aggregated every 5 minutes into one record used for learning and 

evaluation of the chosen models. 

Data was aggregated on two different ways depending on preferences and needs of the 

used classifiers. For instance, it is known that discriminant function based GP performs 

better on numerical than nominal features, unlike the decision trees for which it is exactly 

the opposite.  

In the numerical dataset call log and calendar were used as numerical features. The 

features were number of missed calls, number of incoming calls, total call duration in 

minutes, number of confirmed events etc.  

In the nominal dataset all of the features were turned to nominal using the value with 

maximal frequency in the given time window. For instance, instead of using one feature for 

every call type, it becomes only one feature. If in the observed 5 minutes  window there are 

more outgoing calls then missed or incoming calls then in the generated example the single 

feature “call type” is set to value “missed”.  

Some other adaptations have been made too. Since the phones have also changed since the 

year 2009 and most of the smartphones do not have “beep”, “ring-once” nor “ascending”, 

those ring types are reduced to two remaining ring types - “beep” to “silent” and others to 

“normal”. 

All the features in nominal and arithmetic dataset are enumerated in Table 3-1. 
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Nominal dataset Arithmetical dataset Energy 

consumption Name Values Name Values 

Calendar 

status 

tentative, 

confirmed, 

none 

Calendar 

status 

confirmed 

numeric 

Low 
Calendar 

status 

tentative 

numeric 

Calendar class 
public, 

private, none 

Calendar class 

public 
numeric 

Low 
Calendar class 

private 
numeric 

Call voice voice, none 

Number of 

calls 
numeric 

Low 

Call duration numeric 

Call SMS SMS, none 
Number of 

SMSes 
numeric Low 

Call direction 

incoming, 

outgoing, 

missed, 

empty 

Number of 

incoming calls 
numeric 

Low 
Number of 

outgoing calls 
numeric 

Number of 

missed calls 
numeric 

Ringtone 
normal, 

silent, empty 
Ringtone 

normal, ascending, 

once, beep, silent, 

empty (as numeric) 

Low 

GSM cell nominal GSM cell numerical Low 

Previous 

status 
Available, Unavailable, Busy, Texting Low 

Time period 
early morning, mid-morning, late morning, around 

noon, afternoon, late afternoon, evening, night 
Low 

Accelerometer slow, moving, empty High 

Table 3-1 Features 

3.2. Implementation of GP algorithms 

In this chapter for the chosen GP algorithms the used parameters will be given together 

with designated performance of the best individuals on training and test set where it is 

applicable. For Bagging GP and GP 1-against-all it is not possible to present the training 
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and test error through generations since discriminant functions were trained sequentially, 

one after another.  

3.2.1. Implementation of GP for Learning Discriminant Functions 

For the purpose of this classifier the arithmetical dataset from chapter 3.1 was used. 

Nominal features like ringtone and time period were turned to numerical, while numerical 

features stayed numerical. 

Discriminant functions were trained in two ways: 

1. For each run only one discriminant function was trained - multiple threshold values 

were determining the final output of the classifiers. 

2. For each run N discriminant functions were trained as binary classifiers, one for 

each class. Functions were combined using 1-against-all method where every 

binary classifier is trained to tell apart data instances of the belonging class from all 

other data instances.  

For inner nodes two subsets of functions were used: 

1. +, -, /, *, If, >, <, Pow, &, |, Max, Min, Exp, Log 

2. +, -, /, *, Sq, Sqrt, If, If3, >, <, !, Pow, &, |, Xor, Max, Min, Exp, Log, Sin, Cos 

 

It is visible that the sets of functions contain both mathematical and logical functions. 

Thus, this specific implementation is a hybrid between learning rule-based systems and 

learning discriminant functions. Leaf nodes contain variables (attributes) and real 

constants. For population initialization ramped half-half method was used. 

Two different fitness functions were applied: 

 simple classification accuracy on a training set – the number of correctly classified 

instances divided by a total number of instances, 

 fitness function combined of training accuracy, validation accuracy and a 

parameter validation proportion (0.5) as follows: 

 valProp * validationFitness + ((1-valProp) * trainingFitness). 

The validation fitness is not calculated on real validation set from the cross validation. One 

subset of training data is left aside for this purpose. 

Genetic operators that were used are: crossover (switching random subtrees from two 

individuals), mutation of the node (the value of a single node is changed in one individual), 

mutation of the subtree (replacing the subtree by a random one) and creating a brand new 
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random program (the new program replaces the whole individual). 4-tournament selection 

was used. The ramped half-half method was used for initializing the population. The 

elitism is used in every GP variant so the best individual cannot be lost. 

The algorithm finishes when it reaches 200 generations or when an individual with fitness 

bigger than a certain number is found. At first the fitness threshold was set to 0.9 and then 

to 0.99. The population size is 100 individuals. The maximal depth of the tree is 7 and the 

population size is 100. The relation between training and test error through first 100 

generations is designated in Fig. 3-2. Test error is constantly slightly bigger than training 

error, but the difference between them is very small. An example of the final solution is 

designated in Fig. 3-3.  

 

 

Figure 3-2 Training and test error on GP Discriminant Function Multiclass 
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Figure 3-3 An example of discriminant function 

3.2.2. Implementation of GP for Learning Decision Trees 

For applying GP to learning decision trees the nominal data set mentioned in 3.1 was used. 

All the features are turned to nominal and used as nominal. GSM cell identifier is also used 

as nominal feature after determining all the possible values during the preprocessing.  

For leaf nodes, only the nodes with class labels were used, while the nodes assigned to 

other attributes are placed as internal. Classification error is used as fitness function. 

Tournament selection is applied as selection operator. The algorithm stops after 50 

generations because after 50 generations in most of the cases there is no significant 

progress in training or test fitness. An example of training and generalization error on a 

random user during the first 100 generations is designated in Figure 3-4. It is visible that 

even after 40 generations the fitness remains the same because the local optimum was 

reached. It is obvious that the algorithm is stuck in the local optimum because the 

generalization error also remains the same for more than 50 generations. This is not an 

isolated case of such behavior. 

One decision tree created by GP is designated in Figure 3-5. 
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Figure 3-4 GP decision trees - training and test error on one random user 

 

 

Figure 3-5 The best GP-made decision tree for a random dataset 
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3.2.3. Implementation of Bagging Using GP 

Bagging was implemented using the discriminative functions trained by GP as the weak 

classifiers. The number of generations used for training them was reduced to 50 

generations (4 times less than the number of generations used for non-ensemble GP 

discriminative function classifiers). A simple voting mechanism is implemented with 5 

weak learners and a bootstrap sample big as 60% of available instances. The numerical 

dataset was used. 

3.2.4. The Comparison of Different GP Variants 

By comparing decision-tree-based GP with discriminant-function-based GP the superiority 

of the first one is obvious on both training and test set. It was expected since the nature of 

the problem is more adequate to be solved with decision tree as the representation model. 

Discriminant function, although combined with logical operators, is more appropriate for 

regression problems. In Fig. 3-6 and 3-7 it can be noticed how discriminant functions 

suddenly finds better solution while decision tree reaches the best solution gradually. Later 

will be shown that the execution of one discriminant function based GP for every class was 

much faster than only one execution of decision tree-based GP. 

 

Figure 3-6 Classification error on the training set 
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Figure 3-7 Classification error on the test set 

3.3. Implementation of AdaBoost 

The implementation of AdaBoost is based on its original idea from [37]. The maximal 

number of iterations tried to find classifier with non-zero error is 10. 100% of weight mass 

was used in training because there was no need for additional speeding-up. For the base 

classifier a simple one-level decision tree was used, so called decision stump. 

3.4. Implementation of K-means Clustering 

The most important parameter in clustering is the number of clusters. Since the number of 

classes is known in advance it was automatically assumed that four cluster will fit every 

user. However, in some user data classes Available for Texting or Busy, or both of them, 

do not appear at all. After the data was divided into clusters, the match between the labels 

on each instance and a corresponding cluster had to be made. The chosen match between 

clusters and labels achieves the best possible accuracy. For some datasets, there were more 

or less labels on data than clusters so the matching procedure failed. Dividing the dataset to 

five folds probably increased the chance that rare classes will be missing. The numerical 

data set was used. The ideal number of cluster for some datasets is given in Table 3-2. 
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Dataset 2 5 7 9 10 17 26 34 42 50 51 

k 4 3 3 4 4 4 3 3 3 4 4 

Dataset 60 63 68 75 82 83 109 120 139 141 160 

k 4 2 4 3 3 3 4 4 4 2 3 

Table 3-2 Values for parameter k in k-means 

 

3.5. Implementation of Decision Trees 

For the purpose of inferring user status the algorithm very similar to C4.5 was applied on 

both nominal and arithmetic dataset since it works well with both types. For internal nodes 

that represent nominal attributes there is one outgoing edge per every possible attribute 

value. For numerical attributes the outgoing edges are labeled with disjoint edges. The 

difference between the decision tree built only of nominal attributes and the decision tree 

that also contains numerical attributes is designated in Figure 3-8. The trees are built using 

the nominal and the arithmetical dataset from the same random user. 

The tree induction algorithm used in this case creates nodes from the root to leaves so that 

whenever a new node is created it assigns an attribute to that node to maximize the 

discriminative power of that node measured by a selected criterion. For this specific 

implementation the sum of information gain and gain ratio was used. The algorithm stops 

on one of the following conditions: when no attribute reaches certain threshold 

(minimum_gain = 0.1), when the maximal depth is reached or there are less than a certain 

number of examples in the current subtree (minimal_size_for_split = 4). For the parameter 

maximal_depth the optimal value for every dataset is separately determined from the 

values {5, 9, 13, 16, 20} using another nested 5-fold cross validation. In the end the tree is 

pruned and leaves that do not bring any discriminative power are removed. 
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Figure 3-8 Decision trees for nominal and arithmetical dataset
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3.6. Implementation of K-Nearest Neighbors 

Parameter k was optimized through six iterations from 1 to 100. The optimization of 

parameter k is in fact the only task of the training phase in k-NN. Once the best k is 

determined the training time becomes negligible, but the classification of an unseen 

example is more demanding and it depends on the number of training examples. The 

algorithm requires a lot of memory for a large number of training examples because all the 

training examples are necessary for the classification. The numeric dataset and Euclidean 

distance were used. When the parameter k is set to 1, the 1-NN algorithm can be applied 

for classifying the unseen instance in short time until the number of training examples 

surpasses certain value. Therefore, this case was separately observed in order to compare 

its accuracy with the accuracy of k-NN with optimal k. 

3.7. Implementation of Naïve Bayes 

Naïve Bayes learner is optimized by only on one parameter, whether to use Laplace 

correction to prevent high influence of zero probabilities or not. The model with better 

accuracy is chosen. 
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4. Results and Comments 

In this chapter the final results and conclusions will be given. Here are some questions to 

be answered: 

 Which algorithms reach the highest accuracy on the given dataset? 

 Which algorithms are applicable given their training and test time? 

 How accuracy behaves on merged datasets? 

 What are the consequences of removing the energy inefficient features? 

 Which subset of features is the best for certain algorithms? 

 Where and how is each algorithm applicable? 

Algorithms are grouped into GP and non-GP algorithms and compared among each group. 

The duration of training phase is measured as the duration of the whole training process 

with 5 validation iterations while the accuracy is calculated as the average value of 

accuracies achieved in different iterations. 

4.1. Accuracy and Performance 

4.1.1. GP algorithms 

The accuracy results of tested GP algorithms are shown in Table 4-1. Among GP 

algorithms the highest accuracy was reached for GP based on decision trees. It is followed 

by GP based on discriminative functions (1-against all) with stopping criteria of fitness 

bigger than 0.99 or the number of generations bigger than 200. GP ensemble consisted of 

undertrained discriminative multiclass functions outperformed the less trained 1-against-all 

discriminative functions and multiclass discriminative functions. Ensemble of weak 

learners justified the expectations and the simple voting of the worst GP-based classifiers 

improved its average accuracy by 15%.  

The difference between GP variants is even more visible on box plots designated in       

Fig. 4-1 and Fig. 4-2. In Fig. 4-1 the population of each box consists of 10 accuracy results, 

one for each run of GP on that specific user. In Fig. 4-2 the population of each box consists 

of 38 average accuracy results, one for each user and each one representing the average of 

10 executions on one user. 
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Genetic programming has many advantages, but real-time training is definitely not one of 

them. Table 4-2 shows the duration of training process for each of the first four GP 

algorithms. GP decision tree reached the best accuracy and the worst duration of the 

training process. Once trained, the best individuals can easily be applied to the 

classification of the unseen individuals even in real-time. 

 

Algorithm 
GP Decision 

Trees 

GP 1-

against-all 

Discrim. 

Func. (max 

fitness 0.99) 

GP Ensemble 

Bagging 

GP 1-against-

all Discrim. 

Func. (max 

fitness 0.9) 

GP 

Multiclass 

Discrim. 

Func. 

AVG 0.988695 0.983017891 0.976407318 0.975467426 0.848965 

MEDIAN 0.992321 0.99147385 0.988776255 0.988376924 0.945528 

MAX 0.99981 0.999784 0.999784 0.999775 0.999607 

MIN 0.944881 0.869200116 0.869481336 0.869129935 0.494651 

Table 4-1 Accuracy results for different GP types 

 

 

 

Figure 4-1 Box plot of GP accuracy on one random user 
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Figure 4-2 Box plot of GP accuracy on the average of every user 

 

Algorithm 

GP 1-against-all 

Discrim. Func. 

(max fitness 0.9) 

GP 1-against-all 

Discrim. Func. 

(max fitness 0.99) 

GP Ensemble 

Bagging 

GP Decision 

Trees 

AVG 0 01:30:06 0 03:15:58 0 02:07:17 0 19:34:56 

MEDIAN 0 00:37:22 0 02:25:26 0 00:47:59 0 19:15:30 

MAX 0 14:21:32 0 14:07:23 0 23:39:10 2 08:25:00 

MIN 0 00:01:00 0 00:03:01 0 00:03:02 0 02:31:00 

Category >1 hour >1 hour >1 hour >>1 hour 

Table 4-2 Training execution time for different GP types (d hh:mm:ss) 

4.1.2. Non-GP Algorithms 

The best non-GP algorithms considering the accuracy are C4.5, AdaBoost based on 

decision stumps and k-nearest neighbors. C4.5 is slightly better when applied to nominal 

dataset than arithmetical dataset (Table 4-3). Regarding the great success of AdaBoost, the 

incremental learning algorithm Learn++ from the chapter 2.9.1, that is based on the very 

same principle as AdaBoost, is expected to be equally accurate, but it was not 

implemented. 

Although in some relative work naïve Bayes was successfully applied, in this case its 

accuracy is very bad, around 50%. Some features from the arithmetical dataset that were 
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used for naïve Bayes classifier are dependent, for instance the number of calls is 

proportional with call duration, and this is partly the reason of such lousy performance of 

naïve Bayes because its naïve assumption of independent variables is not correct. K-means 

was tried just to get the impression about the data itself when the labels are unknown at 

first. The number of distinct labels M differs from user to users and each dataset was 

clustered to M clusters. The accuracy of 65% shows that the decision boundaries between 

datasets overlap. It could be improved by another feature subset or by changing the way of 

data labeling. The box plot designated in Fig. 4-3 shows how worse naïve Bayes is than the 

rest of the classification algorithms. In order to better compare the top three classifiers their 

accuracy is designated in Fig. 4-4. Each box represents the population of 38 accuracy 

results, one for each user. C4.5, AdaBoost, 1-NN and k-NN with optimal k are more-less 

equally successful if accuracy is the only criteria.  

When compared by training time, AdaBoost outperforms all the other algorithms (which 

require training). When AdaBoost and C4.5 are compared as the two best candidates for 

real-time presence status inferring, AdaBoost is about 14 times faster than C4.5, although 

every algorithm whose median is less than 10 minutes is the candidate for applying to 

mobile devices (Table 4-4).  

Note that the training time of k-nearest neighbors is in fact the time spent on optimizing the 

parameter k. Apart from optimizing the parameter k k-NN does not actually require any 

training. The problematic part with k-NN is the duration of classifying the unseen instance 

which depends on the number of training instances. Classifying the new instance is linear 

in the size of the training set as we need to compute the distance of each training instance 

from the test instance. However the test time decreases for small k and therefore the 1-NN 

was compared with k-NN with optimal k. The accuracy of 1-NN does not lag behind 

optimal k-NN very much which is very good news because we have another candidate for 

applying to inferring presence status directly on mobile devices. 

 

Algorithm 
C4.5 

Nom. 

C4.5 

Arith. 

AdaBoost 

Arith. 

k-NN 

Arith. 

1-NN 

Arith 

k-means 

Arith. 

Naïve 

Bayes 

Arith. 

AVG 0.9892 0.9862 0.9857 0.9826 0.9794 0.6650 0.5510 

MEDIAN 0.9977 0.9947 0.9912 0.9944 0.9957 0.6501 0.4877 

MAX 0.9998 0.9997 0.9999 0.9997 0.9999 0.9705 0.9954 

MIN 0.8912 0.8665 0.9076 0.8195 0.7304 0.3905 0.0914 

Table 4-3 Accuracy for non-GP algorithms on arithmetic dataset 
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Algorithm 
AdaBoost 

Arith. 

Naïve 

Bayes 

Arith. 

C4.5 

Nom. 

k-means 

Arith. 

C4.5 

Arith. 

k-NN 

Arith. 

AVG 00:00:21 0:02:32 0:07:22 0:06:03 0:24:45 1:45:28 

MEDIAN 00:00:17 0:00:25 0:04:00 0:04:00 0:16:30 0:59:30 

MAX 00:01:08 0:28:00 0:44:00 0:10:00 1:32:00 6:10:00 

MIN 00:00:05 0:01:00 0:01:00 0:02:00 0:02:00 0:14:00 

Category <10 min <10 min <10 min <10 min 
>10 min 

<1 hour 
>1 hour 

Table 4-4 Training execution time for non-GP algorithms (hh:mm:ss) 

 

Figure 4-3 Box plot of classification accuracy of non-GP algorithms 



 

45 

 

Figure 4-4 Box plot of classification accuracy of the best non-GP algorithms 

4.1.3. Results on Merged Datasets 

An interesting remaining question is how accuracy behaves on datasets consisted of many 

users’ datasets. It was tested with the best GP based on discriminative functions and with 

AdaBoost. The median was decreased by 5% with GP and by 6% with AdaBoost when 

tested on merged datasets. The execution time of GP is terrifying, but AdaBoost’s average 

training time is still under 10 minutes (Table 4.5). Therefore, to further examine 

AdaBoost’s behavior it was tested on different merged datasets. The comparison of results 

starting from the best user up to 20 best users it designated in Fig. 4-5. Accuracy on 

merged dataset is lower than the average accuracy on separated datasets, but still very high 

(> 99%). To try a more realistic ensemble of users, 20 random users were chosen and the 

same procedure was repeated but this time the order of users was not anyhow sorted. The 

accuracy on merged dataset significantly reduced compared with average accuracies. 

However, the accuracy above 94% is still very good and it opens up an opportunity to use 

the accumulated data from multiple users for building the classifier. 

To clarify Figures 4-5 and 4-6 an additional explanation is provided. In Fig. 4-5 the top 20 

results sorted by accuracy were taken. The first column is the same because the dataset is 
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equal and it consists of the data from only one user. The second column in the graph is in 

the first case the result of the algorithm on one data set consisted of the datasets from the 

two first users, while in the second case the value is calculated as the average value of two 

separate executions of AdaBoost, each one on separate dataset. The last column contains 

the accuracy on the accumulated dataset that contains the data of 20 different users and the 

average value of 20 different executions of AdaBoost on the separate datasets. 

The difference between Fig. 4-6 and Fig. 4-5 is only in the order and choice of datasets, the 

procedure remains the same. 

 

Algorithm GP Discrim. Func. AdaBoost 

Average Accuracy 0.943327462 0.92785842 

Median Accuracy 0.941023552 0.92781306 

Average Execution 

Time  

(dd hh:mm:ss) 

15 09:32:00 00 00:09:53 

Table 4-5 Results on merged dataset of 15 random users 

 

 

Figure 4-5 The comparison of AdaBoost’s average accuracy on separate datasets with accuracy on 

the merged dataset (top 20 users) 
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Figure 4-6 The comparison of AdaBoost’s average accuracy on separate datasets with accuracy on 

the merged dataset (random 20 users) 

4.2. Feature Selection and Energy Efficiency 

The most energy consuming features available in MDC Dataset are GPS, GSM (but not 

GSM cell identifier), accelerator and WiFi. In this thesis only accelerator was used among 

them. The best accuracy was noticed on decision-tree-based GP among GP algorithms and 

on C4.5 and AdaBoost among non-GP algorithms. 

By comparing the values from Table 4-7 with all the features included with Table 4-6 

which is calculated without using the accelerator as a feature it shows that after removing 

the accelerator there is no significant change. In some aspects removing the accelerator 

even increases the accuracy.  

To investigate such behavior and possibly to increase the accuracy and reduce the training 

time further feature selection was made. Since there are only 10 features in nominal 

dataset, even the exhaustive search feature selection is applicable. It selects the best 

features for an example set by trying all possible combinations of features. The aggregated 

results are shown in Table 4-8. For every feature the percentage and a number of users 

which use it after feature selection is given (the total number of users is 38). The results 

explain why the accuracy did not change after removing the accelerator – it is the least 

frequently used feature used by only 23.68% of users. Call direction, ringtone and previous 

status are all used by around 90% of the users. For two users only the call direction is 

relevant and the best accuracy is achieved by that single feature and this is the reason why 
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call direction is the most frequently used (97.37%). In average the perfect feature set 

contains approximately 6 features, but the ideal feature set differs a lot from users to user. 

The complete result of exhaustive search for every user can be found in addition to this 

thesis.  

A result achieved on the optimal feature set optimized separately on each dataset is given 

in Table 4-9. It is the best accuracy that has been achieved so far, and the training time is 

reduced together with the number of features. 

 

Algorithm GP Decision Trees C4.5 AdaBoost 

AVG 0.989335 0.987869 
 

0.982108968 

MEDIAN 0.992707 0.997423 0.985077443 

MAX 0.999916 0.999814 0.999460656 

MIN 0.948193 0.891289 0.907560541 

Table 4-6 Accuracy of on the subset of 19 users without accelerator 

 

Algorithm GP Decision Trees C4.5 AdaBoost 

AVG 0.988695 0.987193 0.974815 

MEDIAN 0.992321 0.997423 0.986346 

MAX 0.99981 0.999814 0.999654 

MIN 0.944881 0.891188 0.866526 

Table 4-7 Accuracy of on the subset of 19 users with all features 

 

Call Direction Ringtone Previous Status Voice SMS 

97.37% (37) 92.11% (35) 89.47% (34) 76.31% (29) 60.53% (23) 

Calend. Status Calend. Class Time of Day GSM cell ID Accelerator 

55.26% (21) 47.37% (18) 44.74% (17) 42.11% (16) 23.68% (9) 

Table 4-8 Results of exhaustive search feature selection – percentage of users that contain the 

feature in their ideal feature set 

 

AVG MEDIAN MAX MIN 

0.994032016 0.998541588 0.999969779 0.891715266 

Table 4-9 The accuracy of C4.5 on optimized feature sets 
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4.3. Comments 

Table 4-10 shows where can training phase be performed for each algorithm considering 

the training and test time for each algorithm. Algorithms who can be trained on devices are 

the ones executed in less than 10 minutes which do not require too much memory 

resources. Based on the results from the previous chapter, AdaBoost based on decision 

stumps fits the best in that category, but C4.5 is also a good candidate. Since AdaBoost 

showed extraordinary performance and accuracy, Learn++ has a great potential to be even 

more successful but the possibility of incremental learning. GP has some extensions for 

incremental evolution but its implementation on mobile device is not a way to go because 

it requires too many resources. Some k-NN incremental methods have been applied to 

activity recognition problems but it still faces some issues with accuracy, it depends on the 

order of the training instances and k-NN in general requires too much memory for saving 

the training set if it is large.  Other incremental learning algorithms exceed the subject of 

this thesis. 

Regarding the test phase, as shown in Table 4-11, all the algorithms except k-NN have a 

good predisposition to easily classify unseen instances on the device. It opens up an 

opportunity to train any model in the cloud and then to transfer it to mobile device where it 

can be applied to new instances. Note that such approach requires extra network traffic 

which can also drain out the battery. 

 

TRAINING PHASE Device  

Incremental 

Learning on a 

Device 

Cloud  

Genetic 

Programming  

(all types) 

Not applicable Not applicable Applicable 

Decision Tree 

C4.5 
Applicable 

Possible with major 

changes [41] 
Applicable 

K-NN 
Not applicable for 

big datasets 
Not (yet) applicable Applicable 

AdaBoost Applicable Possible (Learn++) Applicable 

Table 4-10 Characteristics of training phase 
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TEST PHASE Device  Cloud  

Genetic 

Programming  

(all types) 

Applicable Applicable 

Decision Tree 

C4.5 
Applicable Applicable 

K-NN 
Not applicable for 

big datasets 
Applicable 

AdaBoost Applicable Applicable 

Table 4-11 Characteristics of test phase 

 

In the end what was achieved and concluded in this thesis is following: 

 The most appropriate machine learning algorithms for inferring presence status 

were examined and tested. AdaBoost, C4.5 and 1-NN showed to be the top three 

algorithms with the best combination of accuracy and execution time of training 

and testing, respectively. Learn++ is the incremental learning variant of AdaBoost 

and if only one algorithm has to be chosen, Learning++ is suggested for use in real 

applications on mobile devices. 

 Different genetic programming approaches where tested including the ensemble of 

weak discriminative functions trained on relatively small number of generations. 

The most accurate and the slowest one was decision-tree-based GP.  

 The problem of the small representation of classes Texting and Busy exists in some 

datasets. 

 While labeling the data, Busy was determined as the state which occurs if the user 

sets its ringtone to beep or ring once. Those are specific ringtone types on old 

Nokia’s smartphones from 2011 when the dataset was collected. It is not applicable 

to the majority of today’s smartphones. The automaton for labeling should 

therefore be updated. 

 The best feature subset was identified. The most discriminative features in 90% of 

datasets are 1) call direction, 2) ringtone and 3) previous status. That is not 

surprising when the way of labeling the data is observed (chapter 1.3). What is 
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surprising is that further feature removing in order to achieve energy efficiency did 

not have to be made because exhaustive feature selection algorithm has already 

marked the accelerator as unnecessary feature in almost 80% of datasets, so it 

would be removed anyways. Accelerator and GSM are used on three transitions on 

the automaton for labeling the data and yet their contribution was not significant. 

The reason might be aggregating the data into 5 minute windows.  

 To get the real-life impression of the most common user behavior further testing on 

real users with their interaction should be made. If the decisions of classifier 

previously trained on the data labeled by automaton agree with real user 

interventions then the final conclusions about the success of this approach can be 

brought. When a small amount of real data is collected, it can be used for labeling 

the examples from the Mobile Data Challenge dataset by clustering the union of 

labeled and unlabeled examples and afterwards labeling the unlabeled exampled by 

the majority in their cluster. It is a common semi-supervised learning approach. 

 The accuracy on merged datasets remains satisfying for chosen algorithms. It 

possibly offers an opportunity to train the classifier on a prepared dataset before 

deploying it to devices. It solves the problem of the lack of training data at the 

beginning of the learning process.  

 What is completely new in the dataset used in this thesis, compared to the one from 

[1], is adding the time of day as one of the features. Its inclusion was beneficial in 

44.74% of datasets which is better than both accelerator and GSM (23.68% and 

42.11%). 
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Conclusion 

Inferring presence status has yet unused potential to a variety of different communication 

services. Its inferring could be used within a closed social network or an organization and 

it could make the communication between presentities more efficient. With this application 

as the final goal, different machine learning algorithms were tried on the dataset from the 

Mobile Data Challenge dataset. The data was aggregated in 5 minute windows to reduce 

the status change and it was labeled using the approach in [1]. Genetic programming 

algorithms intended only for offline learning showed the best accuracy with the decision 

tree as representation of the individual, but the training time is too long even for offline 

learning. The other used GP types are a single discriminative function used as multiclass 

classifier, a combination of discriminative functions in ensemble with simple voting 

mechanism, and combination led by 1-against-all approach. Non-GP algorithms tried are 

decision tree induction (C4.5), k-means which revealed the problem of missing classes in 

some datasets, k-nearest neighbors, naïve Bayes and AdaBoost. Although naïve Bayes was 

successfully applied to some related activity recognition problems, it failed on inferring 

presence status by showing almost random behavior. AdaBoost, C4.5 and k-NN (or 1-NN) 

showed high accuracy and execution time acceptable even for mobile devices. An 

incremental learning algorithm proposed for future application is Learning++.  

Accelerometer was detected as almost unnecessary feature which is great news because it 

is at the same time the most energy consuming feature. The exhaustive feature selection 

based on decision trees was performed and call direction, ringtone, and previous status are 

detected as the most discriminative features. Although datasets differ a lot from each other, 

some general rules can be applied to a union of datasets from different users. The question 

whether that happens because the datasets were labeled using the very same automaton 

which implies certain rules remains. Since the rules for labeling the data were known from 

the very beginning, to justify the results further examination of the approach should be 

made on real users. The suggested approach is to implement decision stump Learn++ to 

mobile devices, with the possibility of prompting the users for presence status self-reports 

at random, and to previously train it on the preprocessed nominal dataset consisted of 

several datasets from Mobile Data Collection. 

_________________________________ 
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Summary 

Inferring Presence Status on Mobile Devices 

Keywords: 

presence status, mobile computing, machine learning, ensemble learning, genetic 

programming 

 

Automatically inferring presence status on smartphones without user intervention is 

applicable in many IM and VoIP communication services, but it has not yet been 

implemented in any of them.  

It is a problem that requires accurate and energy efficient machine learning methods and a 

well-chosen subset of features. The objective of this thesis was to test several classification 

algorithms and to compare them by different criteria: accuracy, training time, test time and 

the possibility of incremental learning on the given dataset. All the given criteria meet in 

boosting algorithm AdaBoost based on decision stumps, in fact in its incremental edition 

called Learn++. C4.5 and 1-NN are also possible candidates, with some necessary 

adjustments. Several GP variants were tried for a potential use after offline training phase 

and decision tree based GP showed the highest accuracy, but the slowest training time. 

The accuracy on accumulated datasets from different users does not decrease significantly. 

The exhaustive feature selection method was performed and within more than 80% of 

users only the energy efficient features are necessary to achieve the best possible accuracy. 
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Sažetak 

Određivanje statusa korisnika mobilnih uređaja 

Ključne riječi: 

status prisutnosti, računarstvo u pokretu, strojno učenje, učenje ansamblom, genetsko 

programiranje 

 

Automatsko određivanje statusa korisnika mobilnih uređaja bez interakcije sa samim 

korisnikom primjenjivo je u brojnim komunikacijskim VoIP uslugama i uslugama 

trenutnog poručivanja, ali u praksi nije još zaţivjelo. 

Radi se o problemu koji zahtijeva točne i energetski učinkovite metode strojnog učenja te 

ispravno odabran podskup značajki. Cilj rada bio je isprobane klasifikacijske algoritme 

usporediti po sljedećim kriterijima: točnost, trajanje učenja, trajanje testiranja te mogućnost 

nadoučavanja na zadanom skupu podataka. Za najpogodniji  algoritam s obzirom na 

zadane kriterije odabran je algoritam AdaBoost temeljen na stablima odluke sa samo 

jednom razinom, odnosno njegova inačica koja nudi mogućnost postupnog učenja, 

Learn++. C4.5 i 1-NN također su mogući kandidati, ali uz određene prilagodbe. Isprobano 

je nekoliko varijanti genetskog programiranja te su stabla ostvarila najveću točnost, ali i 

najduţe učenje, stoga je GP pogodan isključivo za primjenu na mobilnim uređajima nakon 

završenog proces učenja. 

Točnost na agregiranom skupu podataka od različitih korisnika ne smanjuje značajno. 

Iscrpnom pretragom podskupova značajki kod više od 80% testiranih korisnika jedino su 

energetski učinkovite značajke bile potrebne kako bi se ostvarila najbolja moguća točnost. 
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Abbreviations 

IM  Instant Messaging   trenutno poručivanje 

AdaBoost Adaptive Boosting 

k-NN  k-Nearest Neighbors   k-najbližih susjeda 

MDC  Mobile Data Challenge 

SMS  Short Message Service  kratka poruka 

WLAN Wireless Local Area Network  lokalna mreža koja se zasniva 

na bežičnim tehnologijama 

 GPS  Global Positioning System  globalni navigacijski sustav 

 GSM  Global System for Mobile  

Communications 

 GP  Genetic Programming   genetsko programiranje 

 GA  Genetic Algorithm   genetski algoritam 

 mRMR Minimum Redundancy  minimalna zalihost 

   Maximum Relevance   maksimalna redundantnost 

 LDCC  Lausanne Data Collection  

Campaign 


