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PRIMJENSKIH PROGRAMA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Siniša Srbljić
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magistarski rad (1985.).





Acknowledgments

It has been quite a journey getting here, and this is a good time to reflect and thank some of

the people that have helped me along the way—and there sure have been many.

I’d like to start from the beginning and thank Predgrag Brod̄anac and Tomislav Gracin who

taught me the first nontrivial algorithms while I was in high school, and introduced me to the

magical world of computer science. There are a few other educators I’d also like to thank for

significantly influencing my interests and my life, though I suspect they are not aware of this
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Abstract

Component Recommendation for Development of Composite Consumer Applications

Consumer computing is a research area that focuses on methodologies and tools that enable

consumers—the most general class of users of technology, typically with no special software

engineering skills—to create their own applications. Consumers create applications by com-

posing existing applications through intuitive actions on their graphical user interfaces. Support

for component discovery has been identified as a key challenge in various forms of composite

application development, and is especially important in consumer computing. This dissertation

introduces a general method for component recommendation based on structural similarity of

compositions which dynamically ranks and recommends components as a composite consumer

application is being incrementally developed by structurally comparing the partial composition

with a database of previously completed compositions. Using this method, four component

recommender algorithms are defined: two based on feature vector models and cosine similarity,

one based on sequence edit distance and one based on a directed graph model and a proba-

bilistic graph edit distance algorithm. Accuracy, coverage and response time of the presented

algorithms are evaluated in detail on a Yahoo Pipes dataset and a synthetic dataset that models

more complex composite consumer applications. The results show that the presented approach

is effective in addressing the component discovery challenge in consumer computing.

Keywords: consumer computing, component-based systems, component discovery, recom-

mender systems, structural similarity.





Sažetak

Predlaganje komponenata za razvoj kompozitnih potrošačkih primjenskih programa

Potrošačko računarstvo je istraživačko područje usmjereno prema metodologijama i alatima

koji omogućuju potrošačima—najširoj klasi korisnika tehnologije, tipično bez znanja i vještina

iz područja programskog inženjerstva—da stvaraju vlastite primjenske programe. Potrošači

stvaraju primjenske programe povezujući postojeće primjenske programe koristeći intuitivne

akcije na njihovim grafičkim korisničkim sučeljima. Podrška za otkrivanje komponenata je

ključan izazov u raznim okruženjima za razvoj kompozitnih primjenskih programa i posebno

je važna u potrošačkom računarstvu. Ova disertacija uvodi općenitu metodu za predlaganje

komponenata zasnovano na strukturnoj sličnosti kompozicija koja dinamički rangira i pred-

laže komponente tijekom postupnog razvoja potrošačkog primjenskog programa uspored̄ujući

djelomičnu kompoziciju s bazom prethodno izgrad̄enih kompozicija. Koristeći navedenu metodu,

definirana su četiri algoritma za predlaganje komponenata: dva zasnovana na modelima svo-

jstvenih vektora i kosinusnoj sličnosti, jedan zasnovan na udaljenosti promjene nad slijednim

modelom i jedan zasnovan na modelu usmjerenog grafa s označenim vrhovima i vjerojatnos-

nom algoritmu za udaljenost promjene nad grafovima. Točnost, pokrivenost kataloga i vrijeme

odziva predloženih algoritama vrednovani su na skupu Yahoo Pipes kompozicija i sintetičkom

skupu kompozicija koji modelira složenije potrošačke primjenske programe. Rezultati pokazuju

da je predloženi pristup prikladan i učinkovit za rješavanje problema otkrivanja komponenata u

potrošačkom računarstvu.

Prvo poglavlje (1 "Introduction") predstavlja motivaciju za provedeno istraživanje i uvodi

glavnu hipotezu istraživanja da je problem predlaganja komponenata moguće riješiti koristeći

strukturnu sličnost kompozitnih primjenskih programa. Poglavlje je zaključeno kratkim pregle-

dom svih preostalih poglavlja rada.

U drugom poglavlju (2 "Introduction to Consumer Computing") dan je uvod u istraživačko

područje potrošaču usmjerenog računarstva. Ukratko je opisana povijest područja i motivacija

za daljnje istraživanje. Poglavlje nastavlja detaljnim opisom metodologije za razvoj aplikacija

razvijene unutar područja i zaključuje pregledom prototipa okoline za gradnju potrošačkih kom-

pozitnih aplikacija Geppeto, razvijenog u Laboratoriju za potrošaču usmjereno računarstvo. Na

primjeru Geppeta, prikazane su osnovne značajke takve okoline.



U trećem poglavlju (3 "Review of Related Research") prikazan je pregled istraživačkih

rezultata iz nekoliko područja povezanih s problemom predlaganja komponenata. Poglavlje

započinje analizom sustava za predlaganje, pri čemu su opisani sustavi zasnovani na analizi

sadržaja, suradničko filtriranje i hibridni pristupi, a za svaki pristup je navedeno i nekoliko

primjera stvarnih sustava. Nadalje, poglavlje opisuje veći broj sustava i pristupa za potpo-

mognuti razvoj usloženih primjenskih programa (engl. mashup) s posebnim naglaskom na sus-

tav Yahoo Pipes, kao i u području programskog inženjerstva.

Četvrto poglavlje (4 "Component Recommendation in Consumer Computing") opisuje pro-

ces predlaganja komponenata zasnovanog na strukturnoj sličnosti kompozicija koji se sastoji od

četiri ključna koraka: pretprocesiranju reprezentacije, ocjeni sličnosti, izračunavanju korisnosti

komponenata i predlaganju komponenata. Definirani su osnovni pristupi u sva četiri koraka, u

općenitom kontekstu kompozicijskih sustava. U nastavku poglavlja opisan je potrošački po-

moćnik za predlaganje komponenata. Pomoćnik je osmišljen u skladu s osnovnim principima

potrošaču usmjerenog računarstva i zasniva se na nekoliko koncepata s kojima su potrošači

dobro upoznati kroz svakodnevno korištenje Weba i prijenosnih ured̄aja.

U petom poglavlju (5 "Modeling Composite Applications") formalno su opisana četiri mod-

ela strukture kompozitnih aplikacija. Najopćenitiji model zasnovan je na usmjerenom grafu s

označenim vrhovima. Uz njega, opisan je model poredanog niza komponenata zasnovan na

poopćenom topološkom poretku vrhova grafa. Konačno, definirana su i dva modela svojstvenih

vektora koji sadrže najnižu razinu opisa strukture kompozicije. Sva četiri modela su prikazana

na primjerima kompozicija iz Geppeta i iz sustava Yahoo Pipes.

Šesto poglavlje (6 "A Framework for Component Recommendation Based on Composi-

tion Structural Similarity") prikazuje radni okvir za predlaganje komponenata. Definirana je

općenita metoda na osnovi koje je moguće definirati svaki algoritam za predlaganje kompone-

nata zasnovan na sličnosti kompozicija. Spomenuta metoda prati proces predlaganja kompone-

nata definiran u poglavlju 4. Nadalje, koristeći navedenu metodu, definirana su četiri algoritma

za predlaganje komponenta: algoritam zasnovan na vjerojatnosnoj udaljenosti promjene med̄u

grafovima, algoritam temeljen na udaljenosti promjene poredanih nizova komponenata i dva

algoritma zasnovana na kosinusnoj sličnosti vektorskih modela strukture kompozicije. Nakon

formalne definicije, osnovna svojstva algoritama su sažeta na kraju poglavlja i rad algoritama

je prikazan na primjeru.

U semdmom poglavlju (7 "Evaluation Methodology") je opisana metodologija vrednovanja



predloženih algoritama korištena u doktorskom radu. Poglavlje počinje analizom dva skupa

kompozicija koji su korišteni za vrednovanje (skup pravih kompozicija iz sustava Yahoo Pipes

i sintetički skup strukturno složenijih kompozicija koji je stvoren u skladu s nekim svojstvima

potrošačkih primjenskih sustava koji se grade koristeći Geppeto). U nastavku su definirane

mjere uspješnosti algoritama. Točnost preporuka ocjenjuje se kroz preciznost, odziv i F1 vri-

jednost, koje su uobičajene mjere za točnost iz područja pretraživanja informacija, uz dodatnu

intiutivinu mjeru po kojoj se prijedlog smatra točnim ako je barem jedna predložena kompo-

nenta korisna. Uz točnost se ocjenjuju pokrivenost kataloga komponenata i vrijeme izvod̄enja

sustava. U nastavku poglavlja opisana su tri jednostavna statistička algoritma za predlaganje

komponenata s kojima sa predloženi strukturni algoritmi uspored̄uju i koji daju jasniji uvid u

relativnu složenost problema predlaganja komponenata na dva skupa kompozicija. Poglavlje

je zaključeno detaljima vezanim uz opis vrednovanja vjerojatnosnih algoritama i odabir vrijed-

nosti parametara algoritama.

U osmom poglavlju (8 “Snapshot Evaluation”) dan je pregled rezultata prvog scenarija

vrednovanja koji je zasnovan na primjerima djelomičnih kompozicija. Za primjere se odabiru

dijelovi postojećih kompozicija, a izlaz sustava za predlaganje se uspored̄uje sa sakrivenim di-

jelom kompozicije koji nije bio dio primjera. Ključni rezultati su prikazani u sažetku na kraju

poglavlja.

Deveto poglavlje (9 "Simulated Composition Evaluation") prikazuje drugačiji pristup vred-

novanju algoritama zasnovan na simulaciji postupka gradnje kompozicije. Kako bi se pokrili

različiti načini na koje potrošači dodaju funkcionalnost u svoje kompozicije i kako koriste sus-

tav za predlaganje, definirane su četiri različite strategije gradnje. Osnovni cilj ovog načina

vrednovanja je ograničavanje utjecaja popularnih komponenti na točnost sustava koji je uočen

u vrednovajnu zasnovanom na primjerima. Poglavlje je završeno pregledom najvažnijih rezul-

tata koji su dodatno uspored̄eni s rezultatima vrednovanja iz prethodnog poglavlja. Zaključeno

je da je pristup predlaganju komponenata predložen u doktorskom radu prikladan i za skup

kompozicija iz sustava Yahoo Pipes i za sintetički skup.

Deseto poglavlje (10 "Conclusion") zaključuje rad pregledom osnovnih rezultata vredno-

vanja i ostvarenih izvornih znanstvenih doprinosa.

Ključne riječi: potrošačko računarstvo, sustavi zasnovani na komponentama, otkrivanje kom-

ponenata, sustavi za predlaganje, strukturna sličnost.





Contents

1 Introduction 1

2 Introduction to Consumer Computing 7

2.1 Motivation for Consumer Computing . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Consumer Computing Application Development Methodology . . . . . . . . . 10

2.2.1 Programming Elements in Consumer Computing . . . . . . . . . . . . 10

2.2.2 Programming Language in Consumer Computing . . . . . . . . . . . . 12

2.2.3 Programming Technique in Consumer Computing . . . . . . . . . . . 12

2.3 Introduction to Geppeto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Review of Related Research 17

3.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Content-Based Filtering Recommender Systems . . . . . . . . . . . . 19

3.1.2 Collaborative Filtering Recommender Systems . . . . . . . . . . . . . 21

3.1.3 Hybrid Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Related Approaches to Assisted Application Development . . . . . . . . . . . 26

3.2.1 Assisted Mashup Development . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Tools for Yahoo Pipes Development . . . . . . . . . . . . . . . . . . . 32

3.2.3 Assisted Software Engineering . . . . . . . . . . . . . . . . . . . . . . 34

4 Component Recommendation in Consumer Computing 39

4.1 Component Recommendation Process . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Application to Consumer Computing and Geppeto . . . . . . . . . . . . . . . . 41

5 Modeling Composite Applications 46

5.1 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

i



Contents

5.2 Component Sequence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Feature Vector Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 A Framework for Component Recommendation Based on Composition Structural

Similarity 54

6.1 Component Recommendation Method . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Cosine Similarity for Feature Vectors . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Component Sequence Edit Distance . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Probabilistic Graph Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Summary of the Defined Structural Recommender Algorithms . . . . . . . . . 66

6.6 Choosing Algorithm Parameter Values . . . . . . . . . . . . . . . . . . . . . . 69

6.7 An Example of Algorithm Operation . . . . . . . . . . . . . . . . . . . . . . . 71

7 Evaluation Methodology 75

7.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.1 The Yahoo Pipes Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.2 The Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Summary and Comparison of Evaluation Dataset Properties . . . . . . . . . . . 85

7.3 Measures of Recommender Quality . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Baseline Recommender Algorithms . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Evaluating Probabilistic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 Chosen Algorithm Parameter Values . . . . . . . . . . . . . . . . . . . . . . . 92

8 Snapshot Evaluation 94

8.1 Snapshot Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Snapshot Evaluation Results on Yahoo Pipes . . . . . . . . . . . . . . . . . . . 98

8.2.1 Effects of Similarity Filtering in Computing Component Scores . . . . 98

8.2.2 Effects of the Number of Recommended Components Per Query R . . 103

8.2.3 Effects of Composition Database Size N . . . . . . . . . . . . . . . . 106

8.2.4 Effects of Arcs in the Input Partial Composition . . . . . . . . . . . . . 110

8.2.5 Evaluation Results Under the Adjacent-Useful Definition of Useful Rec-

ommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Snapshot Evaluation Results on the Synthetic Dataset . . . . . . . . . . . . . . 116

8.3.1 Effects of Similarity Filtering in Computing Component Scores . . . . 117

ii



Contents

8.3.2 Effects of the Number of Recommended Components Per Query R . . 121

8.3.3 Effects of Composition Database Size N . . . . . . . . . . . . . . . . 122

8.3.4 Effects of Arcs in the Input Partial Composition . . . . . . . . . . . . . 125

8.3.5 Evaluation Results Under the Adjacent-Useful Definition of Useful Rec-

ommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4 Snapshot Evaluation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4.2 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4.3 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.4 Effects of Similarity Filtering in Computing Component Scores . . . . 134

8.4.5 Effects of the Number of Recommended Components Per Query R . . 136

8.4.6 Effects of Composition Database Size N . . . . . . . . . . . . . . . . 136

8.4.7 Effects of Arcs in the Input Partial Composition . . . . . . . . . . . . . 137

8.4.8 Evaluation Results Under the Adjacent-Useful Definition of Useful Rec-

ommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9 Simulated Composition Evaluation 139

9.1 Simulation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.2 Simulated Composition Evaluation Results on Yahoo Pipes . . . . . . . . . . . 145

9.2.1 Effects of Simulation Strategy and the Number of Recommended Com-

ponents per Query R . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2.2 Effects of the Composition Database Size N . . . . . . . . . . . . . . 147

9.3 Simulated Composition Evaluation Results on the Synthetic Dataset . . . . . . 149

9.3.1 Effects of Simulation Strategy and the Number of Recommended Com-

ponents per Query R . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.3.2 Effects of the Composition Database Size N . . . . . . . . . . . . . . 150

9.4 Simulated Composition Evaluation Summary . . . . . . . . . . . . . . . . . . 152

10 Conclusion 155

Bibliography 160

List of Figures 178

List of Tables 183

iii



Contents

List of Algorithms 184

Biography 185

Životopis 187

iv



Chapter 1

Introduction

Consumer computing is a research area focused on methodologies and tools that enable

consumers, which are users of the Web and modern mobile technology like smartphones and

tablets with no additional education or experience in application development, to create their

own applications. The guiding principle in consumer computing is the equality of consuming

and programming [1], which states that consumers should create applications in the same way

in which they use them in everyday life. In line with this principle, consumer applications are

created by composing existing applications to create new functionality.

Composite applications are defined in [2] as business applications constructed by connecting

disparate software components, thus providing new functionality to an end user, ideally without

the requirement to write any new code. Several different types of components are mentioned,

including web applications, web services and native widgets. Consumer computing extends

this definition beyond business applications to social, scientific, news, entertainment and other

kinds of applications1.

Components have been a vehicle of reuse and interoperability in software engineering for

decades, with a large number of component models in use today [5]. The World Wide Web Con-

sortium has recently started work on Web Components which promise to bring many benefits in

this area to mainstream web development [6].

Composite applications are created in composition systems which consist of a composition

workspace that is the interface of the system for composing applications, and a composition

engine, which provides support for both the composition process and also executes compos-

ite applications. The core ideas of consumer computing are embodied in the prototype con-

1Composite applications are closely related to mashups, in that mashups are composite web applications that
are primarily created through programming to APIs [3, 4].
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sumer computing composition system Geppeto2 that allows consumers to compose web wid-

gets, which are web applications with a small graphical user interface (GUI) [7].

Another example of a consumer computing composition system is Yahoo Pipes3 which en-

ables feed aggregation and manipulation through point-and-click wiring of feed sources through

various processing modules, finally producing an output feed. While Yahoo Pipes is restricted

to data flow manipulation in a constrained domain, Geppeto is geared towards more general ap-

plications, allowing consumers to define both data and control flow of the composition over the

widgets’ GUIs, as well as control the widgets through time, location and other events. Examples

of compositions created in both of these systems are given in section 5.1.

A lack of good support for component discovery has been identified by researchers as a

common shortcoming of composition systems, both for the web [8–10], and for the enterprise

[2], as well as in component-based software engineering [11–13]. If any component discovery

support is available, it is typically restricted to textual search based on keywords in component

names and descriptions or fairly general tags, or a complex query language. Textual search

has two significant limitations. First, searching by keywords and tags has low resolution if a

large number of components satisfy a particular query. As the search process is contextually

independent of the problem the user is trying to solve, result ranking can only be based on

component usage statistics, user ratings or similar measures which are not necessarily good

indicators that a particular component will be useful for that problem. Furthermore, when

choosing between several components that seem to provide similar functionality, users are faced

with a lack of relevant information to make the right choice.

Second, searching for components is a separate activity to composition development. There-

fore, before searching for a component, the user has to be aware that a component with a specific

functionality might exist.

In consumer computing, the challenge of component discovery is even more significant for

three reasons. First, as general-purpose applications are reused as components, the potential

number of components is much larger than in other composition system domains. Second, ap-

plications that are used as components are mostly not designed particularly for that purpose and

are not annotated with any special metadata that could make discovery easier. Third, benefits

of consumer computing would be lost if consumers were expected to learn a complex query

language just to find useful components. Therefore, textual search approaches in consumer

2geppeto.fer.hr
3pipes.yahoo.com

2
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computing are limited to simple keyword queries which are not effective, as described above.

The aim of this dissertation is to analyze this component discovery challenge, and describe

how it can be alleviated by providing consumers with a component recommender that dynam-

ically suggests potentially useful components during the composition process. The recom-

mender takes as input the partial composition the consumer is working on and compares its

structure to finished compositions that have been previously created in the composition system

and are stored in a composition database. Components found in compositions that are in some

sense similar to the input partial composition are then recommended to the consumer. This ap-

proach is based on the premise that other consumers might have solved similar problems before

and that the structures of the compositions that these consumers have created implicitly encode

their knowledge about the used components, e.g. which components are useful together and

how they should be connected. This knowledge is sometimes called composition knowledge in

the research literature [14, 15].

The proposed recommender addresses the mentioned limitations of textual search. First, the

problem context as represented by the partial composition is the input to the recommender, and

only components that have proved useful in a similar context will be recommended. Second,

recommendations can be embedded inside the composition workspace, and new recommenda-

tions provided after each step of composition with no additional user action. Therefore, the

recommender becomes an integral part of the composition workspace, and using it a part of the

composition process.

When recommendations are inadequate, for example because the consumer is trying to solve

a completely new problem that shares little similarity with previously solved problems, other

discovery mechanisms such as text search will still have to be employed. On the other hand,

recommendations are made available even when the consumer has a specific component in

mind and would not engage in any form of component discovery otherwise. This provides an

opportunity for new ideas to emerge if some of the recommended components provide useful

functionality that the consumer was unaware of.

The primary goal of the presented research was to test the hypothesis that structural simi-

larity between compositions can be used to provide useful component recommendations. Fur-

thermore, several different approaches within this framework are compared and evaluated in

different scenarios to provide better understanding of the component recommendation problem,

especially within consumer computing.
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The remainder of the dissertation is organized in the following way. An introduction to

consumer computing is given in chapter 2. The motivation for research in consumer computing

is discussed first, followed by a description of the consumer computing application develop-

ment methodology. The generally described programming elements, language and technique of

consumer computing are then illustrated on the example of Geppeto.

Chapter 3 provides an overview of related research with two major focus points. First,

general recommender system technology developed in the last two decades is presented, and

examples of both content-based and collaborative filtering recommender systems are discussed.

Second, many systems that have been developed to assist people in mashup development in

general, Yahoo Pipes development and classical software engineering are analyzed.

Chapter 4 describes the component recommendation process based on composition struc-

tural similarity in detail. Four key steps in the process are identified: representation prepro-

cessing, similarity evaluation, component scores computation and component recommendation.

The process is analyzed in a general composition system setting. Then, the chapter focuses on

the interaction between consumers and the component recommender system through a proposed

machine assistant widget NextComponent designed for use in Geppeto.

Chapter 5 defines the structural models used for representing composite applications. Four

models with different levels of structural information are considered: a directed graph model

with labeled vertices, a component sequence model and two feature vector models. These four

models are used as composition representations in the four structural recommender algorithms

presented later in the dissertation.

Chapter 6 introduces the framework for component recommendation based on structural

similarity of compositions. First, a general method for component recommendation that fol-

lows from the component recommendation process is described. Four structural recommender

algorithms are defined using this method—two based on cosine similarity of feature vector rep-

resentations, and two based on edit distance over the component sequence and graph represen-

tations. Multiple algorithms are defined with the primary goal of analyzing how different levels

of structural abstraction perform in the component recommendation problem. After detailed

formal definitions, the main properties of the four algorithms are summarized and considera-

tions for choosing their parameter values are discussed. Finally, the chapter is concluded with

an example of algorithm operation.

Chapter 7 presents the evaluation methodology used in the dissertation. Evaluation is based
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on using parts of existing compositions as queries to the recommender, whose output is then

compared to the hidden part of the composition. Two datasets are used—a Yahoo Pipes dataset

and a synthetic dataset that aims to model some of the properties of compositions that can be

created with Geppeto, specifically that compositions can be structurally more complex and di-

verse than in the Pipes dataset. The properties of these datasets that are important for component

recommendation like composition size and component frequency distributions are described in

detail, and a summary of these properties with a focus on comparing the two datasets is pro-

vided. Recommender quality is measured through accuracy, coverage and response time. Three

simple baseline algorithms based on statistical analysis of the composition database are intro-

duced with the goal of providing further understanding of the used datasets through comparison

with the structural algorithms. The chapter is concluded with an explanation of how probabilis-

tic algorithms were evaluated and which algorithm parameter values were used.

Chapter 8 presents the results of the first evaluation scenario that is based on composition

snapshots which are example queries to the recommender generated from existing composi-

tions. There are two key focus points in snapshot evaluation. First, it aims to find the optimal

fraction of the compositions most similar to the input snapshot that should be considered by the

recommender when making recommendations. This process of using only some of the most

similar compositions as the basis for component recommendation is called similarity filtering.

Second, recommender quality is evaluated with different numbers of components recommended

per query to provide guidelines for choosing this important recommender parameter. Addition-

ally, effects of different database sizes, the presence of connections in input partial compositions

and two different definitions of useful recommendations on recommender quality are also eval-

uated. A summary of all the main results of snapshot evaluation is given at the end of the

chapter.

Chapter 9 analyzes the results of the second evaluation scenario. Instead of taking snapshots

of compositions, their creation is simulated using four different simulation strategies that model

different user intents and the interaction between the user and the component recommender

system. The main goal of simulated composition evaluation is to further constrain the definition

of what makes a component a useful recommendation in order to limit the effect of popular

components on recommender accuracy results. After a detailed look at accuracy and response

times in this evaluation scenario, the chapter is concluded with a summary of the key results

that are also compared to results obtained in snapshot evaluation.

5



Chapter 10 concludes the dissertation with an overview of main results and original scientific

contributions.
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Chapter 2

Introduction to Consumer Computing

Consumer computing [1] is a research area introduced by the Consumer Computing Lab-

oratory (CCL)1 at the University of Zagreb, Faculty of Electrical Engineering and Computing

(FER-CCL) that focuses on tools and methodologies for including consumers—the most gen-

eral class of users of the Web and mobile devices, with no specific education in computer science

or software engineering—in not only using digital systems, but also helping create them and im-

prove them. In this way, an unprecedented innovation potential of people with very diverse sets

of interests and domain knowledge is unlocked. This chapter briefly introduces consumer com-

puting, with the goal of providing better context for the component recommendation problem

that is the topic of this dissertation.

The remainder of the chapter is organized as follows. First, section 2.1 further describes

the motivation for research in consumer computing. Then, section 2.2 describes the applica-

tion development methodology that was defined within the consumer computing research area.

Finally, the chapter is concluded in section 2.3 with an introduction to the prototype consumer

computing composition system Geppeto, where all the key concepts from this application de-

velopment methodology are further illustrated with examples.

2.1 Motivation for Consumer Computing

Research of consumer computing began with end-user languages for service composition—

first with Coopetition Language [16], which is an extension of WS-BPEL, then with PIEthon

[17], a Python-based DSL for service composition, the service coordination language Simple

1ccl.fer.hr
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2.1. Motivation for Consumer Computing

Service Composition Language [16], and the service composition spreadsheet-like language

HUSKY [17, 18]. Through this research, it became clear that consumers could create service

compositions, and thus their own applications, if they were given appropriate tools and an intu-

itive representation of services, and furthermore, that this concept could be applied to applica-

tions in general, and not only service compositions.

Two closely related factors are the main motivation for research in consumer computing.

First, it is clear that all the applications people want can’t be created by professional developers

only. With the recent rise of mobile smartphones and tablets, application development has

increased dramatically. For example, Google Play and Apple’s App Store, which are two of

the largest application markets in the world, currently offer more than a combined two million

applications [19, 20], with an increase of 60% in the last year. This growth of application

markets follows an increase of app usage by consumers—a smartphone user in the US had 32

apps installed in 2011 and 42 apps in 2012, on average [21]. To put this increase in context,

several striking statistics about the mobile market need to be considered [22].

First, 56% of people in the world own a smartphone, and 50% of mobile phone users use

their mobile devices at their primary means of access to the Internet. 80% of the time spent using

a mobile phone is spent in apps. Furthermore, mobile phones and tablets outsold desktop and

notebook computers by a factor of four with over two billion mobile devices shipped globally in

2013. Fueled by this fact, mobile Web adoption is growing eight times faster than Web adoption

had in the last two decades.

A clear connection can be drawn between this rise of mobile app markets and interest in

computer science and engineering education. In the US, the number of bachelor degrees in

these fields had been decreasing rapidly since 2004 up to 2009 [23]. However, a reverse effect

can be observed since 2009. Similar trends are visible in master degrees and PhDs as well.

Regardless of this fact, there is still a shortage of workers for computer science related jobs

in the United States [24]. With a projected 144500 average annual job openings in IT and

computer engineering, only 88161 degrees are earned. This trend is expected to continue for

the foreseeable future.

However, an even more significant problem exists. While professional developers are trying

their best to create various applications for consumers, it is simply impossible to create per-

sonalized situational applications that consumers sometimes need and want. Tim Berners-Lee,

the inventor of the World Wide Web, identified the lack of programming ability as the second
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2.1. Motivation for Consumer Computing

digital divide, along with the more well-known divide between those who have access to tech-

nology and the Internet and those that don’t [25]. The key consequence of this divide is that

consumers depend on “a bunch of companies who would love to be able to lock it down, so you

can only run the applications that they allow; the ones you can get from their app-store”.

One popular attempt to address this divide is code.org which is trying to get programming

into schools all over the world, and is supported by famous programmers like Mark Zuckerberg

and Bill Gates and many music, movie, and sport stars alike. In a recent Hour of Code event, al-

most 20 million US school kids tried computer programming for an hour, writing an astounding

664 million lines of code [26].

A similar democratization already happened once on the Web in the context of content

creation with the rise of the so called Web 2.0 [27]. In the early Web, creating your personal

page required you to know some HTML and buy and manage a domain name and page hosting.

All of these things require some level of technical proficiency which was a major barrier to

entry for a large group of people who didn’t specialize in computers. However, this changed

when easy to use tools for blogging and web-content management became available, and even

more so with the rise of social network sites like MySpace and Facebook.

Consumer computing aims to apply the same approach to the divide in programming ability—

rather than teach everyone the complexities of programming in general, the premise of con-

sumer computing is that consumers can develop their applications with what they already know,

provided they are given the right tools for the task.

The second motivating factor for consumer computing which enables such tools for applica-

tion development is the very fact that app numbers and consumption are on the rise. Specifically,

consumers know how to use existing applications and can reuse their functionality by compos-

ing them to create new applications through automation of consumption knowledge. These

compositions are based on interactions between existing applications that can be carried out

by hand by moving data between applications, clicking on buttons and so forth. However, in-

stead of repeating this menial and error prone process many times, the consumer can define it

only once after which it becomes automated into a new consumer application. This concept is

examined in more detail in the next section.
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Composition Workspace

x

x x

widgets

Figure 2.1: Three widgets tiled in a composition workspace.

2.2 Consumer Computing Application Development Method-

ology

The key guiding principle in the design of the application development methodology for

consumer computing is the principle of equality of consuming and programming [1] which

states that consumers should be given tools to create applications in the same way in which

they use them. The methodology is defined through its programming elements, programming

language, and programming technique which are described in the following subsections.

2.2.1 Programming Elements in Consumer Computing

In classical software engineering, applications are built using diverse functions, classes and

services which are then orchestrated through program code to achieve some desired function-

ality. This process is inherently complex and typically requires that developers have years of

education and training.

In consumer computing, applications are built by composing existing applications, at a much

higher level of abstraction. To be usable as a component for a consumer application, an applica-

tion has to communicate with its users through a graphical user interface (GUI), although more

advanced interfaces like voice communication could also be supported in principle.

Ideal examples of consumer computing programming elements include software widgets

and mobile applications. These two form factors are specifically suited for consumer computing

because their GUIs are mostly small and uniform in size, which makes it easy to tile them in a

composition workspace, as shown conceptually in figure 2.1. In that way, multiple applications

can be used and observed at the same time, without changing views such as browser tabs.
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Users are also very familiar with these application formats and special care is taken to design

their interfaces to be usable and intuitive. It is important to note that most web applications can

be converted to this form factor [28]. Furthermore, services that are typically accessible only

through APIs can also be packaged as widgets by creating a suitable graphical interface that

exposes their functionality [7]. In fact, most existing widgets and some mobile applications

have been created in exactly this way as they execute by communicating with a backing service

over the Internet.

Three distinct categories of programming elements are used in consumer computing. Application-

specific components provide consumers with functionality from different domains that can then

be used as the basis of the functionality of the composition. Application-specific components

are typically created by professional developers using either web or mobile technologies. How-

ever, a once created consumer application can itself become a component in another consumer

application. This concept of hierarchical composition is a key enabler of sustainable consumer

application development as the set of available functionality continually increases in size.

Generic programmable components allow consumers to define their composition logic through

control and data flow, and to specify interactions with other applications and the environment

using communication mechanisms as well as processing time-based, location-based and other

events. The key challenge in designing these components is defining interfaces and interactions

that are intuitive to consumers and not overly technical, while still providing support for creating

high quality applications that have satisfactory functional and nonfunctional properties.

Even though application development in consumer computing tries to leverage existing con-

sumer knowledge, several significant challenges arise in practice which stem from the inherent

complexity of application development. The challenge that is central to this dissertation is com-

ponent discovery, which is a recurring theme in almost all composition systems, even those

designed for professional software developers that are motivated to learn complex query lan-

guages [2, 8, 9, 11–13].

With a large and rapidly increasing catalog of components, consumers need help finding

the best match for what they need in their application. When choosing components, consumers

should be provided with relevant information about the components’ functional properties, but

also nonfunctional properties such as reliability, security, and privacy that can have a significant

effect on the quality of their application. Furthermore, it should be possible to preserve good

nonfunctional properties in the entire composition, which is a highly technical problem that
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needs to be presented to consumers in a simplified but effective form.

To address these challenges, the third category of programming elements in consumer com-

puting are consumer assistants which provide various types of help during application devel-

opment. Two types of consumer assistants are identified based on the origin of assistance.

Machine assistants are components that rely on machine learning and recommender system

technologies and analyze the database of consumer applications to provide real-time assistance

while consumers create applications. On the other hand, human-based assistants include fellow

consumers in the assistance process and are based on social computing and human computation.

Examples of both types of assistants have been developed for Geppeto and are briefly described

in section 2.3.

2.2.2 Programming Language in Consumer Computing

In traditional software engineering, many different programming languages with vastly dif-

ferent feature sets and properties are employed. For example, systems programming is typically

done in low-level compiled languages that excel in memory and time efficiency and provide the

programmer with near-direct access to the hardware. On the other hand, in some areas of web

development and scientific computing where developer efficiency is much more important than

the efficiency of the actual software, scripting languages that provide a higher level of abstrac-

tion and typically require less code to do the same task are employed.

In line with the principle of equality of consuming and programming, the programming lan-

guage used in consumer computing is equated with the “language” consumers use to interact

with components anyway—the language of actions on graphical user interfaces. Example com-

mands in this language include actions like click, copy, paste, and type in which are all well

known to consumers.

2.2.3 Programming Technique in Consumer Computing

Software typically gets created through the process of writing code, which entails entering

program instructions into a text file using some sort of text editor or an integrated development

environment (IDE). Even if consumers were very familiar with the language used to define com-

posite consumer applications, that alone would not be sufficient to enable them to create these

applications without significant instruction and education using such a classical programming
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Figure 2.2: The initial state of the Geppeto TouchMe programmable widget titled TranslateMessage.

technique. For example, the key challenge of identifying various elements of component GUIs

in code would not be alleviated.

To overcome this and other challenges, consumer applications are created using program-

ming by demonstration [29]. Early examples of programming by demonstration were various

macro recorders, and the concept was extended to end-user programming in the 1980s and

1990s [30–33], and has found widespread use in robotics in recent years [34–37].

In its application to consumer computing, instead of writing code into a text file, the con-

sumer demonstrates what the composite application should do and the composition system uses

that demonstration to create the application. By reusing both the language and technique of

application consumption for application development, consumers don’t need to be specially

trained before they can start composing applications.

2.3 Introduction to Geppeto

Geppeto is the prototype implementation of a consumer computing composition system

developed at FER-CCL that applies the ideas discussed in the previous section. Geppeto uses

web widgets as its programming elements, i.e. components, and is built on top of the Apache

Shindig2 widget rendering server.

Examples of application-specific components usable in Geppeto are the Google Maps wid-

get, which provides a powerful mapping service with route planning, the Deterministic Finite

Automaton widget which allows users to specify and simulate DFAs through point-and-click

actions, and a set of widgets for overview of unmanned submarine missions [38, 39].

The central generic programmable component is the Geppeto TouchMe widget—an initially

2shindig.apache.org
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Figure 2.3: An example of the right-click context menu in Geppeto.

Figure 2.4: A simple Geppeto application for translating incoming chat messages from English to Ger-
man.

GUI-less widget with no functionality as shown in figure 2.2. The consumer sets the title of this

widget when it is being added to the composition workspace. In the figure, the TouchMe widget

is titled TranslateMessage indicating the intended functionality of the widget.

Consumers build the GUI of the Geppeto TouchMe widget by reusing existing GUI elements

of other components that are being composed into the new application using the right-click

context menu shown in figure 2.3. Specifically, the Add action in the menu is used to add GUI

elements, while actions like Click, Copy, and Paste are used to define the logic of the TouchMe

widget, as well as other generic programmable components in Geppeto.

An example application created in Geppeto using the TouchMe widget is shown in figure

2.4. The goal of this application is to translate received chat messages from English to Ger-
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Figure 2.5: The two dimensional table storing the actions recorded in the TouchMe widget.

man3. For communication purposes, the Receive Message widget is used, which is another

generic programmable widget available in Geppeto. The On Message button on the Receive

Message widget is programmable and makes it possible to create message-driven applications.

Specifically, the consumer can specify which other button is to be clicked whenever a message

is received.

The dotted arrow in the figure represents this connection between the Receive Message

widget and the Geppeto TouchMe widget that organizes message translation using the Google

Translate widget shown on the right. This connection fires whenever a new message is received,

and the GO button on the TouchMe widget is clicked. This button was taken from the GUI of the

translation widget via an Add action in the context menu. The dashed arrow represents control

flow between the Geppeto TouchMe widget and the Google Translate widget which was defined

using a Click action from the context menu, and the two full arrows represent data flow of the

original and the translated message, both of which were defined using Copy and Paste actions.

All the actions defined in the TouchMe widget are stored in a two dimensional table, as

shown in figure 2.5. In this table, time flows from top to bottom and from left to right. This table

allows more advanced consumers to reorder independent actions and organize them for parallel

execution. While the shown example application is inherently sequential and no meaningful

reordering can be done, this can sometimes provide significant improvements in performance

as many actions on widgets are executed by communicating with services over the Internet

which can be a time consuming process.

Many other programmable widgets can be used in Geppeto, some of which are briefly de-

scribed below. The TickMe widget allows consumers to schedule parts of an application to

certain moments in time and to repeat actions periodically. The LocateMe widget generates

events based on the user’s GPS location using HTML geolocation APIs found in modern web

browsers. A more general concept of events is supported by the TriggerMe widget that allows

3The presented example application can be reused and extended with message sending logic using the Send
Message widget also available in Geppeto to create a complete chat application that allows two consumers to
communicate in different languages using a machine translation service.
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consumer applications to interact with applications created by professional software develop-

ers by exchanging messages through events. Widgets supporting redirection of control flow

based on conditions, synchronized execution of consumer applications [40], and introducing

redundancy to increase the application’s reliability [41] are also available.

Several consumer assistant widgets have recently been proposed for Geppeto. The Relia-

bilityOptimizeMe machine assistant provides consumers with easy to understand information

about the reliability of individual widgets [42]. The ReliabilityAssistant machine assistant al-

lows consumers to easily identify the weak points in the reliability of their composition and

replace them with a more reliable alternative [41]. The TutorMe human-based assistant ana-

lyzes the procedural knowledge encoded in the partial composition the consumer is working on

and in all the completed consumer applications to identify and recommend peer-tutors from the

consumer community that can potentially help the consumer solve a particular problem [43].

Finally, the NextComponent machine assistant that is proposed in section 4.2 of this dissertation

aims to alleviate the component discovery challenge in consumer computing by recommending

components during the composition process by comparing the partial composition the consumer

is currently working on with previously defined consumer applications.
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Chapter 3

Review of Related Research

This chapter provides an overview of related research in several topics of interest for the

problem of component recommendation in development of composite consumer applications.

An overview of recommender systems technology is given in section 3.1. The chapter con-

cludes with a look at related approaches in assisted application development across mashups

and software engineering in section 3.2.

3.1 Recommender Systems

The two key concepts in recommender systems are users to which recommendations are

made and items, which are the object of the recommendation process. There are many reasons

to include a recommender system in a product such as a web site [44]. For example, quality

recommenders tend to increase the number and diversity of items sold because users are exposed

to items they possibly like based on their previous purchases or interactions with the system.

Furthermore, a well-designed recommender that provides useful information to users is likely

to increase overall user satisfaction and user loyalty as it increases the perceived value of the

entire product.

Recommender systems are typically based on ratings—a value that represents a user’s opin-

ion of an item. Ratings can be either implicit, in which case they are generated from the user’s

interaction with the system (for example, buying an item or adding it to a wish list), or explicit

in which case users are asked to express their opinion about certain items [44]. Explicit ratings

are most commonly collected using a 5-star scale where one star indicates a strong dislike for

the item and five stars indicate the user considers the item to be excellent in some sense [45].
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In recent years, binary ratings where users just indicate if an item is good or bad (like with

YouTube videos), and even unary ratings where users simply either like an item or assign no

rating to it (like in Facebook) have risen in popularity.

Users are motivated to provide ratings for several possible reasons [46]. First, by rating

items, users update their profile and can expect to get better recommendations in return. Second,

some users may simply wish to express their opinion about an item or contribute ratings in the

interest of helping others. This particular motivation is most evident when there is a social

component to a web site that uses a recommender system. Finally, users might maliciously try

to influence the rating of certain items that they want to succeed or fail. This is called a shilling

attack.

In his seminal paper [46], Herlocker identified six distinct tasks that recommenders can be

used for. Out of these six, two tasks are by far the most common. Annotation in context, often

called the prediction task [47–49], aims to help users reason about items in an existing context,

for example by adding relevancy annotations to existing links or messages. The find good items

task, often called recommendation, is designed to find items that would be of interest to the user

and might normally not be visible. Note that these tasks are closely related as it is often possible

to generate recommendations if a system can make accurate predictions of item ratings.

Other tasks, which can be viewed as specializations of prediction and recommendation,

include recommending new items, recommending items for a group of users (for example, a

movie that a group of friends might like), recommending items in an ordered sequence, finding

all good items, finding good items in a restricted context (for example, a movie that the user

might like within a certain genre), helping users browse with no intent to buy, etc.

Recommender systems rose to prominence in the mid 1990s, closely following the growth

of the World Wide Web [50]. Nowadays, all major e-commerce web sites like Amazon1 [51]

and eBay2 [52, 53] use recommender systems extensively [54]. Recommender systems are also

ubiquitous in other domains, including music (e.g. Pandora3), movie (e.g. Netflix4), reading

(e.g. GoodReads5) and video clip (e.g. YouTube6 [55–57]) recommendations. Recommender

systems technology has also found important uses in online and mobile advertising [58, 59].

The most common categorization of recommender systems [48, 60–64] identifies content-

1amazon.com
2ebay.com
3pandora.com
4netflix.com
5goodreads.com
6youtube.com
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3.1. Recommender Systems

based filtering (CBF) and collaborative filtering (CF) as the two overarching themes in rec-

ommender system techniques, while systems combining these two ideas or several approaches

from each are categorized as hybrid recommenders. These three approaches are described in

the remainder of the section.

3.1.1 Content-Based Filtering Recommender Systems

Content-based filtering is centered around describing items with metadata which makes it

possible to compare items for similarity. For example, in a movie recommender, the metadata

might include the movie’s genre, its leading actors, the director, etc.

The content-based approach to recommender systems has roots in the information retrieval

research area which predates recommender systems. However, the key difference between CBF

and traditional information retrieval is the concept of a user profile [65]. User profiles model

the user’s tastes and interests and are used extensively together with item descriptions when

making recommendations.

Balabanović [66] identifies four central concerns of a CBF recommender system. The first

two concerns are item description and user profile representations. Third, the designed needs

to define a function predict(i, u) which determines the relevance of item i to user u. Fourth,

a function update(i, u, f) which updates the user profile u given the user’s feedback f on the

item i should also be defined.

Due to its roots in information retrieval, CBF is often applied to documents, such as e-mail

or Usenet messages [67–69]. Therefore, the most common representation for both user profiles

and item descriptions are vectors containing the term frequency-inverse document frequency

(TF-IDF) weight [70] of the most informative words that describe a user’s profile or a document.

The term frequency TFi,j of keyword ki in document dj is defined as

TFi,j =
fi,j

maxx fx,j
, (3.1)

where fi,j is the absolute frequency of the keyword in the document, and the maximum in the

denominator is taken over all keywords appearing in the document. This normalization ensures

that the measure is more resilient to different document sizes.

To measure a keyword’s overall discriminative value in a corpus of documents, the inverse
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document frequency of keyword ki IDFi is computed as

IDFi = log
N

ni
, (3.2)

where N is the total number of documents in the system, and ni is the number of documents

that contain keyword ki.

Finally, the weight in the vector coordinate corresponding to keyword ki and document dj

is computed as

wi,j = TFi,j × IDFi. (3.3)

User profile vectors can start out as null-vectors to which relevance feedback is applied as

the user starts rating documents [71]. The simplest form of relevance feedback is a linear update

rule [66] with7

update(i,u, f) = u + fi. (3.4)

In words, the user profile vector is simply extended by the document vector that the user rated

with a rating f , which is scaled so that it can be either positive or negative. Later ratings can be

given higher importance in the user profile by continuously decaying old values, for example

by multiplying them on a daily basis with a real constant slightly below one.

Finally, the predicted relevance of a document i for a user u is then defined with a vector

dot-product as

predict(i,u) = i · u. (3.5)

The Fab recommender of web pages [64] is often cited as an example of early CBF recom-

mender systems, although the authors clearly state that it is a hybrid system, and it does in fact

rely heavily on collaborative filtering as well. Its content-based filtering component is based on

the framework described above.

InfoFinder [67, 68] is a CBF recommender for Lotus Notes that uses a somewhat different

approach. Document metadata is generated by heuristic extraction of significant phrases from

text, relying on the tendency of users to somehow highlight important parts of the text. User

profiles are built by explicitly asking users to select several sample documents that they consider

interesting. In this process, a decision tree representing the user’s profile is built, and recom-

mendations for new documents are made using a variant of the ID3 decision tree algorithm [72].

7Here, i and u are typeset in bold as they are vectors.
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Figure 3.1: The user-item rating matrix used in collaborative filtering recommender systems.

Another approach based on TF-IDF can be seen in NewsWeeder, which is a Usenet CBF

recommender system [69]. This system is interesting because it uses the minimum description

length (MDP) principle [73] to make recommendations, which is a probabilistic framework

based on Bayesian inference.

Despite its relative simplicity, pure CBF is not widely used in state-of-the-art recommender

systems as it has three well-known limitations [60–62, 64, 65]. First, content analysis is natu-

rally limited in scope. While techniques adopted from information retrieval typically work well

for text documents, automatic feature extraction is significantly more difficult for other domains

such as music and video. Furthermore, it is challenging to construct an item representation that

captures most of the interesting concepts related to the item. Second, CBF systems overspecial-

ize in the sense that an item is never recommended to users who haven’t rated a similar item.

Due to this fact, the recommendations have low novelty and especially serendipity, which are

both becoming increasingly important characteristics of recommender systems. Finally, CBF

recommenders suffer from the new user problem. For a new user that has rated few items, good

recommendations can’t be made as the user’s profile is very incomplete. This can cause users

to give up on using a system before it can actually start performing well.

3.1.2 Collaborative Filtering Recommender Systems

Unlike content-based filtering, collaborative filtering does not analyze items beyond their

identifier. Instead, collaborative filtering centers around the user-item rating matrix R, shown

conceptually in figure 3.1. The rating matrix has m rows corresponding to the users of the

system, and n columns corresponding to items. The set of users is denoted by U and the set

of items by I. The value in the jth column of the ith row is denoted by ri,j and represents the

rating that the ith user has given to the jth item, or is left blank if this user hasn’t yet rated the
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item.

Domains in which collaborative filtering can provide good results should have the following

sets of properties [47]. First, there should be many ratings per item. Rating matrix sparsity

is one of the most significant challenges in collaborative filtering. For the same reason, there

should be more users than items to be recommended. As most users tend to rate only a small

fraction of all the available items, many users are required to gather a sufficient number of

ratings. Furthermore, items should be interesting for a longer period of time so that ratings can

accumulate.

Second, groups of users should have similar tastes pertaining to the item set in question.

Specifically, users with very unique interests may find collaborative filtering algorithms less

useful, which is known as the grey sheep problem. Collaborative filtering algorithms assume

that user tastes persist. Therefore, users whose taste changes can expect to get bad recommen-

dations, at least for a period of time.

Collaborative filtering recommender systems are further classified as memory-based or model-

based depending on how they use the rating matrix [74]. Memory-based CF systems, sometimes

also called neighborhood-based systems [62], use the rating matrix to find similar users or sim-

ilar items and use the ratings that are present in the matrix to predict ratings that are not. When

predicting a rating ri,j , two distinct approaches are possible. In the user-based or user-user

approach, the recommender computes similarities between user i and all other users that have

rated item j, and then combines the ratings that other users have given to item j using these

similarities. Conversely, in the item-based or item-item approach, the recommender computes

similarities between item j and all other items that have been rated by user i, and uses these

similarities to combine the ratings that user i has given to these other items. These approaches

are often combined, for example by taking a linear combination of their predicted rating as the

final prediction.

In both approaches, two key decisions need to be made—the definition of similarity, and

the method of combining ratings based on computed similarities. Note that similarities are

computed solely on the basis of ratings present in the rating matrix, and no additional properties

of neither users nor items are considered.

Perhaps the simplest measure of similarity between users or items is the cosine of the angle

between their corresponding row or column vectors from the rating matrix. In general, the
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cosine between two vectors can be computed easily using the dot product of the vectors

cos(a, b) =
a · b
‖a‖‖b‖

. (3.6)

When applied to item-based collaborative filtering, the similarity of two items x and y is

then

sim(x, y) = cos(r∗x, r∗y) =

∑
u∈U ru,xru,y√∑

u∈U r
2
u,x

√∑
u∈U r

2
u,y

, (3.7)

where r∗x is used to denote the column vector of the rating matrix associated with item x.

A limitation of simple cosine similarity as presented above is that it doesn’t take into account

that different users use the range of the rating scale differently—for example, some users might

never rate items with less than two stars, and some might give five-star ratings more liberally

than others. Several modifications exist that eliminate this limitation. When using adjusted

cosine similarity, the rating vectors are normalized by subtracting the mean rating the user has

given to items from each rating of that user. With this change, similarity of items x and y is

defined as

sim(x, y) =

∑
u∈U(ru,x − r̄u)(ru,y − r̄u)√∑

u∈U(ru,x − r̄u)2
√∑

u∈U(ru,y − r̄u)2
, (3.8)

where r̄u is the mean rating user u has given to his rated items.

Alternatively, the Pearson correlation coefficient (PCC) can be used instead of the cosine,

using the formula

sim(x, y) =

∑
u∈U(ru,x − r̄∗x)(ru,y − r̄∗y)√∑

u∈U(ru,x − r̄∗x)2
√∑

u∈U(ru,y − r̄∗y)2
, (3.9)

where r̄∗x denotes the mean of the vector r∗x, i.e. the mean rating of item x. PCC measures the

linear correlation between two vectors and its value is between negative one, which indicates

that the vectors are facing in exactly opposite directions, and positive one which indicates that

the vectors are parallel. When the vectors are orthogonal, PCC is zero.

When applied to user-based CF, adjusted cosine similarity and PCC are the same measure.

Many other definitions of similarity between feature vectors exist [75], but are rarely used in

recommender systems. In a recent comparison of six different similarity measures on a use-case

in the social network Orkut8 [76], adjusted cosine similarity performed the best.

Having determined the required similarities, a prediction for the rating user a might assign

8orkut.com
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to item i can be computed using the formula

ˆpa,i = r̄a +

∑
u∈U(ru,i − r̄u) · sim(a, u)∑

u∈U sim(a, u)
. (3.10)

It is assumed that all similarities are nonnegative, i.e. that neighbors with negative correlations

are removed from the computation.

Several challenges in memory-based CF are described in the literature [49, 74]. Primarily,

this approach is particularly sensitive to rating matrix sparsity. Along with the fact that sparsity

may make it impossible to make recommendations for some users or to recommend some items,

sparsity can also cause unreliable recommendations, for example when the user has only a few

rated items in common with all neighbor users. The second significant challenge is scalability—

the ability of the recommender to provide recommendations with many users and items in the

system. Model-based collaborative filtering algorithms aim to address these challenges.

Instead of directly using the whole rating matrix for each query, model-based CF recom-

mender systems learn predictive models from the matrix, and then use these models to respond

to queries more quickly. Some of the most frequently used approaches in model-based CF are

Bayesian inference [77], which is a probabilistic framework whose parameters are estimated

from the rating matrix, and clustering [51, 78], where users or items are clustered into groups

by similarity so that neighbor identification can be done efficiently. More advanced approaches

include Markov decision processes and dimensionality reduction techniques like singular value

decomposition [79].

Tapestry [80], developed at Xerox PARC, is often cited as the first collaborative filtering

recommender system, although it did not actually use any of the techniques that are considered

collaborative filtering in the modern sense. The system was designed to process streams of elec-

tronic documents and allowed users to annotate these documents. Based on these annotations,

users could then filter documents by typing in queries in a specially designed query language.

What made Tapestry “collaborative filtering” is the fact that annotations were shared between

users within the system. Therefore, a user could filter for documents that his friend considered

worthwhile reads by naming that friend in the query.

One of the first true CF recommender systems was GroupLens [81, 82] which predicted the

level of interest each user might have for a Usenet newsgroup article. Contemporary systems of

GroupLens include Ringo [83] in the music domain and Video Recommender [84] which was

an e-mail based movie recommender system.
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In 2006, Netflix, which was at the time just a web-based DVD-rental company, started an

open competition for improving their movie recommender algorithm Cinematch [85]. Cin-

ematch was a PCC-based collaborative filtering recommender that was used to predict user

ratings of movies which were then recommended for rental. When insufficient data was avail-

able to make a prediction, the average rating of a move was used instead. Cinematch was able

to achieve around 10% lower root mean squared error (RMSE) [46] in rating prediction than

an algorithm that simply used average ratings for all predictions would have. The goal of the

competition was to reduce the RMSE by a further 10%.

The key initial contribution of this competition to the general science of recommender sys-

tems was the provided dataset. Netflix gave researchers 100 million timestamped ratings on a

5-star scale given by 480 thousand users over 18 thousand movies that were collected between

1998 and 2005. This dataset was orders of magnitude larger than anything researchers previ-

ously had access to. Furthermore, the prize for achieving the final goal was one million dollars,

with 50 thousand dollar prizes awarded yearly to the leading system until the goal was achieved.

Both factors created a lot of interest in the competition.

Three years later, in 2009, the team that also won both yearly progress awards just crossed

the 10% benchmark to win the competition. The algorithm they created was called Bell-Kor’s

Pragmatic Chaos, and was, in fact, based on contributions of several teams that joined forces

during the competition. The stunning fact about this algorithm is that it uses over a hundred

individual results that are then blended together to produce the final prediction [86]. To get

these individual results, many different approaches to the prediction problem are used, including

neighborhood-based models, regression models, matrix factorization and many more. It is this

blending of multiple predictors that allows the algorithm to achieve great predictive accuracy.

However, the authors state that many fewer predictors might actually be necessary, and with

just the blend of 11 different results, an 8% improvement over Cinematch can be achieved.

Interestingly, Netflix never used this winning algorithm in production [87]. The practical

benefit of the algorithm was not sufficiently high to warrant the engineering cost to deploy it.

The largest contributor to that fact was that both Netflix and its recommenders had evolved

significantly in the three years of the competition and moved towards video streaming, which

is significantly different than DVD-rentals. The most important take-away from this is that

recommender systems need to evolve with their use-case. Even spending three years of im-

mense research and engineering effort on solving the “wrong problem” might not provide any
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economic benefit. However, although Netflix might not have directly profited from the win-

ning algorithm, by releasing a large industry dataset and organizing this competition, they have

helped significantly advance the state-of-the-art of recommender systems.

3.1.3 Hybrid Recommender Systems

Hybrid recommender systems combine collaborative and content-based methods with the

goal of avoiding some of the limitations of either of those approaches individually [64, 88–93].

The simplest type of hybrid recommender system uses several separate approaches whose re-

sults are then combined. For example, the Daily Learner system [94], which provides per-

sonalized news access, selects predictions with the highest confidence from several employed

approaches.

A more common approach is to add content-based characteristics to a CF recommender. A

classical example of such a system is Fab [64, 66], which is a web page recommender. Recom-

mending web pages clearly doesn’t satisfy the domain property requirement for collaborative

filtering that there are more users than items, and is thus significantly impacted by rating spar-

sity problems. To overcome these challenges, Fab combines the standard CF approach with a

content-based approach that has been described in subsection 3.1.1.

3.2 Related Approaches to Assisted Application Development

The aim of this section is to introduce and discuss several tools and approaches to compo-

nent recommendation and related problems in mashup development, Yahoo Pipes and software

engineering described in the literature. Specifically, approaches in assisted mashup develop-

ment are described in subsection 3.2.1. Then, subsection 3.2.2 discusses several tools proposed

by researchers to ease development of Yahoo Pipes. Finally, similar approaches in the larger

field of assisted software engineering are presented in subsection 3.2.3.

3.2.1 Assisted Mashup Development

Over the past decade, as mashups rose in popularity, a significant number of mashup tools

have been developed [95–98]. In addition to Yahoo Pipes, some of the most significant mashup

tools that have been discussed in the literature are Google Mashup Editor, IBM’s three related

products QEDWiki, Damia [99, 100] and Mashup Center, Microsoft Popfly, Intel’s MashMaker
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[101], Apache Rave9 [102], Apatar10, Exhibit [103], Deri Pipes11 [104–107], Vegemite [4],

Marmite [108], Karma [109], d.mix [110], and C3W [111].

With the notable exception of Yahoo Pipes, all of the mashup tools created by large IT

companies and some of the smaller tools have since been discontinued. While most of these

tools were graphical and often based on programming by demonstration12 [29], more recently,

mashups are mostly discussed in the context of Yahoo Pipes (which are graphical) and Pro-

grammableWeb13 which promotes creating mashups by programming to APIs. However, sev-

eral interesting systems were developed to further simplify the usage of some of the mentioned

mashup tools, and some of them are described in the remainder of this subsection.

An interesting approach to assisted mashup development which shares several features with

the work described in this dissertation is presented in [112]. The authors extracted a dataset of

2786 mashups with 821 distinct components from the ProgrammableWeb mashup repository.

Several key properties of this dataset are important for proper understanding of the presented

results. First, ProgrammableWeb mashups are small on average, with only 3.3 components.

Second, the distribution of component frequency is extremely skewed with the most popular

1.5% of components (i.e. 12 components) accounting for about 50% of the total component

frequency.

Four recommender algorithms were compared on this dataset. The first was an unadaptive

algorithm called Top Popular which recommends the most popular components for each query.

This algorithm is completely equivalent to the baseline algorithm MostPopular described in

section 7.4 of this dissertation.

Next, two collaborative filtering neighborhood algorithms [62] were also employed. In order

to use collaborative filtering methods for this problem, compositions were identified with users

in the framework, while components were naturally identified with items. More specifically,

the training dataset of compositions was represented by a binary matrix R where each row

corresponds to one composition and each column to one component. The value ri,j in the

ith row and jth column of that matrix is then set to 1 if and only if composition i contains

component j.

In the first used collaborative neighborhood algorithm, called Cosine Neighborhood, the

9rave.apache.org
10www.apatar.com
11pipes.deri.org
12Sometimes also referred to as programming by example.
13programmableweb.com
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similarity between two components x and y was defined as

sx,y =
# compositions using both components√

# compositions using x
√

# compositions using y
. (3.11)

As matrix values are binary, it can be easily seen that equation 3.11 actually represents the co-

sine between the column vectors of the matrix corresponding to the two components. However,

while this value typically measures similarity of items in a collaborative filtering algorithm, it

is important to consider the semantics of this similarity in this particular application of the ap-

proach. As the authors explain themselves, and as is evident from the definition, this value in

fact measures how likely two components are to appear in the same composition, and does not

imply they are similar in some other way, for example in their functionality.

The second collaborative neighborhood algorithm that was analyzed, called Direct Rela-

tions, uses a simpler definition of component similarity defining

sx,y = # compositions using both components. (3.12)

Given a new input composition u, for each candidate component x, both algorithms then

compute the relative rating of the component i as

r̂u,x =
∑
y

sx,yru,y. (3.13)

Each term in the sum is the contribution of a component y to the total relative rating—if this

component y is frequently used with the candidate component x in the same composition, as

measured by sx,y, and is also used in the input composition u, in which case ru,y is 1, it will

contribute to making x a more likely recommendation. Components with the highest relative

rating are then recommended to the user.

Finally, the fourth algorithm, called PureSVD [113], was based on latent factor models [114]

which are closely related to singular value decomposition. In this algorithm, the “rating matrix”

R is approximated by the factorization

R̂ = U · Σ · QT . (3.14)

Given n users, m items and f latent factors, U andQ are orthonormal n×f andm×f matrices
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representing the left and right singular vectors associated with the f singular values of R with

the highest magnitude, and Σ is a diagonal f × f matrix where these singular values are stored.

Using this decomposition, relative ratings of candidate compositions are computed as

r̂u,x = ru · Q · qTx , (3.15)

where ru is the component usage vector of the input composition, and qx is the xth column of

Q. Ten latent factors were chosen for evaluation using cross validation.

The algorithms were only evaluated on recall, which can be interpreted as the probability

that a relevant component is recommended, but how exactly relevant components were chosen

is not completely clear. The authors state that all rated components are considered relevant, but

don’t describe how this changes for different queries. While the average number of relevant

components for each query is not reported, it can be concluded that it is not more than 2 as the

best performing algorithm achieves almost 50% recall when recommending only one compo-

nent per query. Furthermore, it is briefly mentioned that one component from a composition is

removed when it is supplied as input to the recommender, and that recommendations are then

somehow analyzed against that removed component, but this point requires further elaboration.

Regardless, evaluation results show several interesting properties relevant to the research

presented in this dissertation. First, the simplest Top Popular algorithm is very competitive

with the seemingly more powerful algorithms. It achieves over 40% recall and outperforms the

PureSVD algorithm by up to 10%, regardless of the number of components recommended per

query. On the other hand, the Cosine Neighborhood and Direct Relations algorithms outperform

Top Popular by up to 10%, but the difference decreases when a larger number of components is

recommended14.

The obvious cause of this behavior is the skewed component frequency distribution in the

dataset—several very popular components are ubiquitous in the dataset. The authors attempted

to isolate this effect by removing the 12 most popular components from contention and rerun-

ning the experiments. With this change, the recall of all algorithms decreased by up to 20%,

and the Top Popular algorithm was affected the most. However, it still remained competitive

and within 15% of the other algorithms, and especially so when more components are recom-

mended per query. In this setting, the Direct Relations algorithm performed significantly better

than the other algorithms, by up to 10% with fewer than 6 recommendations per query.

14Up to 20 components are recommended per query.
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While a mapping of the component recommendation problem into a collaborative filtering

setting provides a rich toolbox for attacking the problem, the semantics of this mapping are

questionable. First, while it is common that rating matrices are sparse, with only 3.3 compo-

nents in a composition on average, it can be expected that the R matrix is extremely sparse.

Second, the inclusion of a component in a composition is inherently different from assigning

a rating to a movie or a song. However, this approach shows promise and potential for future

research.

OMLETTE is a mashup system built on top of Apache Rave. In [115], two extensions

to that system that aim to simplify mashup creation for end-users are presented. First, ACE

(Automatic Composition Engine) attempts to find out the user’s intentions through a series of

questions which the authors state are generated based on previous answers and in the context of

the availability and functionality of components. The gathered answers are then used to create

a SPARQL [116, 117] search query which is submitted to a semantic widget registry [118].

ACE then selects appropriate widgets to get the desired functionality and creates a mashup that

models the user’s goal. The actual effectiveness of ACE in creating compositions that closely

match what the user wants was not evaluated, and it seems likely that good results will be

constrained to some domains where widgets are semantically annotated, though the authors

indicate that the current implementation bases widget understanding on textual attributes such

as titles, descriptions, and tags. In the user study where 44 users were instructed to create a

simple mashup, using ACE actually led to an increase in completion time, but this is attributed

to usability issues and the learning curve of the tool.

In addition to ACE, the paper presents PR (Pattern Recommender) that is aimed at helping

users finish mashups created by ACE or build mashups incrementally by recommending appro-

priate building blocks and how they should be connected. Preexisting mashups are analyzed

to extract so called composition patterns which are categorized into widget co-occurrence and

multi-widget types. The most applicable patterns are recommended to the user, but the process

of identifying them is not precisely defined. Unlike ACE, the PR tool did produce a significant

positive effect on completion time in the user study, but more extensive evaluation is required

to show its applicability to various tasks in different problem domains.

The MatchUp [119,120] system attempts to introduce the concept of autocompletion, which

has long been ubiquitous in browser location bars [121, 122], textual search [123, 124], in-

tegrated development environments (IDEs) [125, 126], and is even being used in UML mod-
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eling [127], into mashup development. Specifically, given a partial composition as input,

MatchUp recommends components and connections between components that can be useful

for completing the mashup. Higher level connections that potentially connect a larger number

of components are referred to as glue patterns. It is assumed that the sets of components and

glue patterns can be arranged in a graph where arcs represent what is called syntactic inheri-

tance, which is defined in terms of more specific interfaces, i.e. one component inherits from

another if it can be used in its place. Compositions are represented as points in the vector space

spanned by these components and glue patterns. MatchUp then finds the k closest glue pat-

terns to the composition and recommends them to the user. Users of MatchUp still need to

consider semantics when accepting a glue pattern recommendation, as the system does not try

to reason about semantics when generating recommendations, but instead, similar to the work

presented in this dissertation, takes advantage of previous experiences and knowledge of other

users who’ve already invested the time and effort to understand certain components and how

they can be connected.

While MatchUp is based on similar ideas about extracting and reusing knowledge from

previously created compositions as the work presented in this dissertation, the two approaches

cannot be directly compared. The assumed inheritance relations are only informally defined and

it is unclear if they can be automatically extracted from compositions in different composition

systems, which is a premise to the usefulness of this approach. Furthermore, there seems to be

an exponential number of possible glue patterns so defining the graph of components and glue

patterns might prove challenging in practice.

The prototype MatchUp implementation on top of IBM Mashup Center was evaluated

through a user study with only ten users working on a single problem, but the results show

promise that the system could be useful in practice.

MashupAdvisor [9] decomposes compositions into concepts, which, while not precisely

defined, are more finely grained than components, representing individual interface elements.

The repository of previously completed compositions is preprocessed to estimate probabilities

that a concept appears as an input or as an output, and several conditional probabilities of

concept co-occurrence as inputs or outputs within the same composition. These probabilities are

then used at query time to score every possible concept as a potential output for the given partial

composition. The concepts are then ranked and the top ranking concepts are recommended to

the user.
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When the user selects a recommendation, MashupAdvisor creates a plan for including the

new concept and possibly other supporting concepts into the composition. The authors indicate

that a semantic matcher is used to compute levels of semantic similarity between concepts

which are then used both when making recommendations and during planning. This semantic

matching is based on textual comparison of concept descriptions called tags which are assumed

to be assigned to each concept. The similarity score of two concepts A and B is defined as

score(A,B) =
synNum

max {len(A), len(B)}
,

where synNum is the number of synonymous terms in the tags of A and B, while the function

len computes the number of terms in the tag.

While both the initial generation of concepts and their descriptions as well as the planning

process are underspecified, evaluation was performed on a synthetic dataset of compositions

that matches composition size and component frequency distributions of ProgrammableWeb.

While it is not specified how exactly the composition process was simulated, evaluation results

show that the proposed approach outperforms a random concept recommender, though it is

difficult to infer the statistical significance of that difference. Furthermore, response times of

up to several minutes were observed in experiments where several thousand compositions were

stored in the composition database, which the authors identify as a major target for future work.

3.2.2 Tools for Yahoo Pipes Development

This subsection focuses on several tools that aid users in Yahoo Pipes development.

In [98], the authors introduce refactoring [128, 129] to Yahoo Pipes. Refactoring is a pro-

cess in which a software artifact is changed without changing its functionality with the aim to

improve its quality by reducing complexity, increasing maintainability or testability, etc. Specif-

ically, the developed system automatically detects suspect constructs in a pipe, often called code

smells in software engineering in general and also in the paper, and produces the refactored pipe

as output.

Pipes are modeled with directed acyclic graphs in the natural way, with vertices representing

modules and directed edges representing wires of the pipe. Ten code smells are described and

defined using a small formal language over the graph representation for testing various prop-

erties of the pipe and categorized into three classes of smells. First, laziness smells include
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those deficiencies that can easily appear if insufficient care is taken when building a pipe, and

include the unnecessary module smell, which is a module that doesn’t affect the output of the

pipe, and the noisy module smell, which occurs when a module has extra fields that are not used

or duplicate fields that can be removed. The second class of deficiencies is called redundancy

smells and tries to mimic code duplication defects often found in software. Examples of re-

dundancy smells are duplicate strings where the same string constant is used in multiple places

and duplicate modules where several modules of the same type are used when a single module

can accomplish the same task. Finally, the third class of deficiencies is called population-base

smells and includes pipe paths that do not conform to idioms commonly found in the Pipes

community, perhaps performing some functionality using a different order of operations than is

the norm in the most used pipes.

A user experiment was conducted to assess the effect of these code smells in pipes on their

perceived quality [130]. 14 out of the 50 initial subjects were identified as end-users with limited

education in computer science through a qualification process, and these users were then used in

the remainder of the experiment. Given a deficient pipe and its refactored version, 63% of users

answered they prefer the refactored version, while 24% preferred the version with code smells.

When asked to predict the output of a pipe, 80% of the answers were correct for refactored pipes

and 67% for unchanged deficient versions. Additionally, it took users an average of 68% longer

to analyze the deficient version of a pipe.

Refactorings that fix the identified deficiencies were defined in terms of graph transfor-

mations. For example, the Pull Up Module refactoring extracts duplicated strings into a new

module that then provides the value via wires. Of the 8051 pipes scraped from the Yahoo Pipes

website, 6503 or nearly 81% had at least one smell. After the refactorings were applied to the

dataset, only 16% of pipes still contained defects. The remaining defects could not be removed

automatically.

These results are interesting because they form the basis for real-time refactoring support in

Yahoo Pipes which would certainly be beneficial to users as suggested by the recent compre-

hensive study of the Pipes community [131].

MARIO [132] is a Yahoo Pipes development tool that allows users to specify goals in terms

of tags in a query text box and outputs one or several complete pipes that try to implement

that goal, additionally giving users the option to modify recommendations. While MARIO uses

custom services to implement the functionality of Yahoo Pipes modules and does not directly

33



3.2. Related Approaches to Assisted Application Development

interact with Yahoo Pipes, this seems like an implementation detail, so Pipes terminology is used

here for simplicity. The recommended pipes are compositions of what are called flows, which

are basically patterns of connected Pipes modules. Flows need to be defined and semantically

annotated before the system can be used. Furthermore, every service or feed that can be used as

a data source to the pipe has to be semantically annotated as well. MARIO tries to fulfill query

goals using a planner called SSPL designed specifically for stream processing [133]. While the

problem of finding optimal plans with SSPL is PSPACE-complete, the planner can find plans

within a few seconds in practice.

While the approach seems promising, requiring even light-weight semantic annotation with

tags and simple taxonomies limits its scope to use cases where the numbers of available compo-

nents and connection patterns is limited. Furthermore, MARIO was not evaluated for success-

fulness in any way. Specifically, the authors only demonstrate that the system responds to short

queries with up to 200 annotated feeds known to the system in up to one second. However,

the key question of whether the recommended plan actually successfully solves the query is not

addressed.

Baya [15] is a plug-in for Yahoo Pipes developed by the same group of authors as OM-

LETTE that recommends what the authors refer to as reusable composition knowledge in form

of patterns from a predefined list of several pattern types, including parameter value pattern

which fills input parameters of a module and connector pattern which represents a connection

between a pair of modules. Actual patterns are extracted from a repository of existing pipes,

as well as dynamically from incoming queries, although this process is not described in detail.

Recommendations are then made using pattern matching algorithms which are only mentioned,

presumably due to lack of space. This approach is interesting as it tries to address nearly all

aspects of Pipes development, from selecting modules and connecting them, to specifying all

module parameters. However, the description lacks significant details and only response time

has been evaluated on a very small set of 303 pipes.

3.2.3 Assisted Software Engineering

Assisted software engineering, also often referred to as Computer-Aided Software Engineer-

ing (CASE) has been a research topic for decades [134–137]. The many advances in the state

of the art of software engineering like better tools and development processes have been fol-

lowed with significant increase in software complexity. Specifically, developers are today faced
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with large code bases that can depend on many libraries built with different technologies [138].

Therefore, assisting software developers in their endeavors is as important today as it ever was,

and assisted software engineering still remains an active area of research [11–13, 139–146].

This subsection gives a brief overview of some of the tools proposed in this area that are most

relevant to the work presented in this dissertation.

To help users navigate complex APIs, Strathcona applies heuristic matching of developer-

defined code fragments with previously written code to produce examples that help the devel-

oper understand an API and compete his task. The system was developed for Java, and imple-

mented as an Eclipse plug-in. The protoexamples, as the authors call these snippets that get

recommended to users, are extracted automatically from an arbitrary code base. Specifically,

the extraction is done at the method level—every method is turned into a protoexample.

To use the system, the developer is expected to highlight a fragment of relevant code and

invoke the plug-in through the context menu of Eclipse. This code fragment is then used to for-

mulate a query, which is then sent to the Stratahcona server which replies with 10 recommended

snippets for the user to consider. To facilitate structural matching of code fragments, both the

input fragment and the protoexamples are represented with a structural context, which is a set

of facts about the piece of code. These facts mostly represent the types used in the fragment in

various ways, either through method signatures declared in the fragment, field access, method

invocation, etc., and supertypes of so called declaring types which host the declared methods.

Four relatively simple heuristics for matching structural contexts are described, including

the CALLS heuristic, which matches method calls, and the USES heuristic, which matches types

used in method invocation, field references, etc. Given a query structural context, candidate

protoexamples are subjected to these four heuristics individually, each of which produces a

ranked list of 100 best matches. Then, the four lists are merged and the 10 best protoexamples

as judged by all four heuristics are recommended to the user.

The recommended examples are presented to the user in several different ways, including

a UML-like diagram of classes used in the example. Furthermore, Strathcona offers a high

degree of explainability as each example is accompanied with a generated description of why

it was recommended. For example, the explanation might say that the recommended fragment

used the same type and called the same method as the query fragment.

A thorough evaluation of the system is provided. The database used in the experiments

contained approximately 3.7 million lines of example code with a total of around three million
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facts. With a database of this size, response times ranged between 0.3 and 3 seconds, which

is sufficiently fast for real-time interaction. Fast response times are achieved primarily through

the use of a heavily indexed PostgreSQL database, which then allows finding relevant examples

with one complex query per heuristic, which the database management system can optimize

well.

The experiments were designed with the aim to test if the system provides useful exam-

ples for completing tasks, how it compares to straightforward alternatives like using grep and

Eclipse’s built-in search functionality, and if developers with little knowledge about an API can

generate sufficiently good query fragments for the system to provide quality examples of the

usage of that API.

While the design of the experiments seems excellent, they all suffer from very small sample

sizes as only one or two developers were used in each experiment. However, there is clear

indication that the system might be useful in practice.

SPARS-J [11] is a Java class retrieval system based on class usage relations. A piece of soft-

ware is modeled as a composition with a weighted directed graph which is called a Component

Graph. Vertices of the graph represent software components—specifically, Java classes in the

particular implementation of SPARS-J—while arcs represent that one component uses another

in some way, e.g. through inheritance, interface implementation, field access or method invoca-

tion. Arc weights are computed based on the particular type of usage relation and its frequency

in the software database. Based on the arc structure of the graph, node weights are defined as

weighted sums of neighboring nodes’ weights, giving a system of linear equations. The com-

puted node weight is then identified with the rating of a component. These ratings are used to

rank components when users search the component database using textual queries, such that the

recommended components are both relevant to the query and also important in that component

collection.

The system was evaluated through several experiments. In one experiment, the source code

of the Java Software Development Kit (JDK) 1.4.2 was used as the code base for ranking com-

ponents. The JDK uses a total of about 6100 classes in total, and it took SPARS-J 20 minutes

to compute the ranked component archive. With a different dataset created by combining many

open source projects found on SourceForge15 that contained around 180000 classes, computing

the ranked component archive took two days, and the generated database required 5.5GB of disk

15sourceforge.net
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space. However, this is a preprocessing step that has to be performed only once to set up the

system for use in a certain domain, and responses to queries were instant for both datasets. Un-

surprisingly, java.lang.String and java.lang.Object were the two highest ranked

components on both datasets.

The effectiveness of SPARS-J was compared to that of Google16 and Namazu17. Namazu is

a full-text search engine that can be used over custom datasets, and was given the same dataset

of source code as SPARS-J. Queries submitted to SPARS-J were augmented with the words

“java” and “source” when they were submitted to Google and Namzu. A total of 10 queries

were submitted, including “quicksort”, “binaryseaerch” and “zip deflate”. For each query, only

the top 10 results returned by the search engines were considered, thus matching the number of

components recommended by SPARS-J. Then, the precision of the results was evaluated as the

ratio of useful results for the given query. Somewhat unsurprisingly, a statistically significant

advantage in precision was observed for SPARS-J. The authors state that other code search

systems were not publicly available for testing, so that is why the system was compared to

general purpose search tools.

Interestingly, the system was also tested in two real-world companies18. After having used

the system for some time, developers of both companies were asked to complete a survey with

several questions pertaining to the usefulness of SPARS-J. The results indicate that the system

was useful, and one of the companies adopted it for further use.

CodeBroker [12] tries to facilitate reuse by delivering task-relevant and personalized rec-

ommendations to a developer. It was implemented in Emacs and supports Java. Component

granularity is at the method level. Specifically, components are represented by their Javadoc

and method signature. When a developer starts entering a new Javadoc or a method signa-

ture, CodeBroker searches for good recommendation candidates using Latent Semantic Analy-

sis (LSA) [147]. The 20 best matches are recommended to the developer, and the results are

continually updated as more information is available.

The most interesting aspect of this research is the way in which recommendations are made

more task-relevant and personalized. During a development session, CodeBroker assembles a

discourse model which defines components that should not be recommended during that ses-

sion, based on the course of the session. Furthermore, CodeBroker maintains a user model for
16www.google.com
17www.namazu.org/index.html.en
18Daiwa Computer and Suntory Limited.
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each developer. A user model is used to represent a particular developer’s preferences and is

updated through the developer’s interaction with the recommender.

Finally, to conclude the subsection, RASCAL [13] and Javawock [145] are briefly described

in parallel because they share several important properties. Both tools are aimed towards Java

development, and specify component granularity on the method and class level, respectively.

Recommendations of methods and classes are based on a form of collaborative filtering where

“users” represent pieces of code, while items naturally map to the objects of recommendation.

The authors of RASCAL introduce an interesting concept of a Knowledge-intensive Inte-

grated Development Environment (KIDE). They identify the lack of tool support as the key

factor for low levels of reuse in the industry, and propose to address this issue by integrating a

method recommender system inside the IDE, which is, in itself, a fairly common approach. This

extended development environment aims to address the no-attempt-to-reuse problem where de-

velopers often miss reuse opportunities because they are unaware that a certain problem has

already been solved.

The evaluation methodology for RASCAL and Javawock is similar to the one presented in

this dissertation—a fragment of a piece of software is used as the input to the recommender,

while the recommender’s output is compared to the hidden part of the code, and precision, recall

and the F1 score are reported.
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Chapter 4

Component Recommendation in

Consumer Computing

The aim of this chapter is to further specify the problem of component recommendation,

and specifically as it pertains to consumer computing. The chapter is divided into two sections.

First, the process of component recommendation based on composition similarity as it applies to

a wide array of composition systems is analyzed and described in section 4.1 Then, in section

4.2, this component recommendation process is explored further in the context of consumer

computing and Geppeto.

4.1 Component Recommendation Process

The process of component recommendation based on composition similarity takes place

both inside the composition workspace where the interaction with the user happens, and in-

side the composition engine that actually analyzes compositions and chooses components to be

recommended. The focus of discussion in this section is on the part of the component recom-

mendation process inside the composition engine with only a simple model of a composition

workspace.

The component recommendation process is shown in figure 4.1. The end goal of the recom-

mendation process is to assign scores to candidate components based on the similarity between

the input partial composition and previously completed compositions so that the best candidates

can be recommended to the user. The process begins inside the composition workspace when

the partial composition the user is working on is encoded into some structured representation
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Figure 4.1: The general process of component recommendation based on composition comparison.

(1). This structured representation is then given to the component recommender system that is

part of the composition engine. The component recommender is based on four key steps: repre-

sentation preprocessing, similarity evaluation, component scores computation and component

recommendation. These steps are shown as rectangles in the figure.

First, the structured representation of the input partial composition (2) is preprocessed into

some recommender-specific representation. Note that in most practical implementations of a

component recommender, all representation preprocessing could be done inside the composi-

tion workspace, before a query is sent to the recommender, i.e. steps (1) and (2) could actually

be merged into a single step. However, these steps are logically distinct. A structured represen-

tation of a partial composition is certainly required, no matter how the component recommender

is actually implemented. On the other hand, it can be beneficial to represent various partial com-

positions differently. For example, a complex representation that requires a lot of processing

could be used for small compositions, while a simpler representation could be used for larger

compositions.

After representation preprocessing, the recommender compares the partial composition (3a)

and previously completed compositions stored in the composition database (3b). It is assumed

that all required representations of a composition are available in the composition database. The

recommender represents the similarity between the partial composition and a database compo-

sition using two pieces of information. First, a real valued similarity score is computed. Second,

for many definitions of similarity, the recommender can additionally determine how different

40



4.2. Application to Consumer Computing and Geppeto

components in the partial and database composition affect the similarity of these compositions.

This additional information can be useful for computing component scores.

When evaluating similarity, the recommender can either compare the partial composition to

all the compositions in the composition database or only to some of them by preprocessing the

database in some way to eliminate dissimilar compositions quickly. In this dissertation, the for-

mer model is used. The primary reason for this choice is that most composition systems in use

today, including both Geppeto and Yahoo Pipes, have composition databases of several thou-

sand compositions at most, which can be easily processed for each query. Possible strategies

for transitioning to filtering the composition database for similarity evaluation are discussed in

section 8.4.3.

Once the partial composition has been compared with the compositions from the database,

the recommender computes component scores (4). Again, as with similarity evaluation, com-

ponent scores can be computed based on similarities with all the compositions in the database

or only some fraction of the most similar compositions. This process is referred to as similar-

ity filtering in component scores computation or simply as similarity filtering in the remainder

of the dissertation. The effects of similarity filtering on recommender quality are evaluated

extensively and discussed in section 8.4.4.

Finally, several components with the highest score are selected (5) and displayed to the user

in the composition workspace (6). The appropriate number of components to recommend per

query depends on the composition system in question and UI design considerations. The effects

of this choice are discussed further in section 8.4.5.

After responding to a query, the recommender can optionally store information about the

partial composition and computed similarities in the composition database (7). This information

can then be used to speed up subsequent queries that result from future changes to that same

partial composition.

4.2 Application to Consumer Computing and Geppeto

This section focuses on the interaction between consumers and the component recommender

system, specifically within Geppeto. The remaining parts of the recommendation process are

the topics of the next two chapters.

Component recommendations are provided to consumers through a machine assistant wid-
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Figure 4.2: The Geppeto NextComponent widget.

get called NextComponent. After the NextComponent widget is added to the composition

workspace, it monitors the consumer’s composition actions and automatically queries the rec-

ommender system and displays recommendations after each composition action made by the

consumer.

The design of the NextComponent widget is guided by four main goals. First, like all wid-

gets for consumer computing, NextComponent should be intuitive to consumers and not require

any special training or additional explanations to be used effectively. Second, due to the fact

that recommendations will change often, the widget should not distract consumers with dra-

matic graphical changes in its appearance. In other words, the basic graphical user interface

of the widget needs to be simple. Third, the most basic information about recommendations

should be available at a glance so that users can notice interesting recommendations even when

they are not actively looking for a recommendation and perhaps already have an idea which

component to add, or maybe are not even considering augmenting their current application, but

are instead only using it. Fourth, a more thorough consideration of recommended components

should be easy for consumers and require little action. Specifically, once consumers decide to

actively explore the given recommendations, they should be given as much information about

the component and its recommendation as possible.

The proposed NextComponent widget is shown in figure 4.2. As is usually the case for

recommender systems [138], the recommended components are presented to the consumer as

a list of items (1) where each item is the name or title of the widget. The list is numbered to

indicate an order to the consumer—more highly recommended components are displayed at the
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top of the list, while less likely useful components are near the bottom of the list. Furthermore,

the recommender’s confidence in each particular recommendation is shown to the right of its

name (2).

Three levels of confidence are possible, ranging from high, through medium, and down to

low confidence. The level of confidence is further emphasized by the use of green, red and

yellow colors which carry well known semantics from the physical world to make it easier to

scan recommendations at a glance.

Consumers can immediately choose to add the component to their workspace (3). This is

expected to be a common action for two distinct reasons. First, the consumer might be familiar

with a particular recommended component and recognize it as useful by its name alone. Second,

the consumer could just add a component whose name seems promising and try it out. The cost

of a false positive in this case is very low, since it is easy to remove the component if it is not

what the consumer was hoping for. This trial and error approach is used by people in many

different contexts [148–151].

On the other hand, consumers might also identify widgets that they consider bad for various

functional or nonfunctional properties. In this case, this widget can be removed from all further

recommendations by clicking the button in the Never column of the assistant’s interface (4).

This button is also color coded to indicate to the consumer that this operation has long-term

consequences. The list of ignored widgets can be edited in the settings of the NextComponent

widget, which is not shown in the figure.

Furthermore, to allow consumers to easily undo an action that they might have done by

accident or quickly reconsidered, an undo button is available at the bottom of the assistant (5).

The undo concept is ubiquitous in many applications consumer use on a daily basis and is thus

intuitive to most people [152, 153]. In addition to undoing a Never action on a widget, the last

widget addition can also be undone with this button.

The number of components that are recommended per query can be regulated either by

typing in the wanted number of recommendations or by using the arrow buttons next to the

text box (6). The NextComponent widget automatically resizes to accommodate the desired

number of recommendations. The default number of recommended components is a topic for

further research, but evaluation results indicate that three components per query provide the best

balance between precision and recall (see section 8.4.5).

Finally, recommendations are displayed as hyperlinks (7), as indicated by their bluish color
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Figure 4.3: The mouseover interaction with the Geppeto NextComponent widget.

and underlined text, which are also ubiquitous on the Web and very familiar to consumers. A

hyperlink indicates that a piece of text can be interacted with to get more or related information.

Two forms of interaction are supported by the NextComponent assistant. First, if the consumer

hovers the mouse pointer over a recommended widget’s name, a preview of the widget’s in-

terface is shown above the mouse pointer. As widgets usually have simple and intuitive user

interfaces, a glimpse at the GUI can provide a lot of additional information about what the wid-

get can do and allow the consumer to make a more informed decision whether to add the widget

or not. An example of this interaction is shown in figure 4.3

The second interaction with recommendation hyperlinks is activated through a click ac-

tion. When a hyperlink is clicked, the interface of the NextComponent assistant is replaced

with a more detailed description of the recommended widget. An example of the click inter-

action is shown in figure 4.4. A preview of the clicked widget is shown at the top, similar to

the mouseover interaction. Under the recommended widget’s interface, additional information

about the widget is displayed, including the text description of the widget provided by the au-

thor, the author identifier and the number of times that widget has been used in compositions.

Several other pieces of information could be provided in this area, including various nonfunc-

tional properties of the widget like its reliability.

Under this basic information, the consumer can find the explanation why this particular
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Figure 4.4: The click interaction with the Geppeto NextComponent widget.

widget was recommended. Here the NextComponent assistant lists the compositions that use

the recommended widget and are also the most structurally similar to the consumer’s partial

composition that was used to query the recommender. By clicking on a provided composi-

tion hyperlink (1), the consumer can examine the similar composition in a new window and

potentially gain further insight into how the recommended component can be used in a real

composition. On occasion, consumers might find that the composition they are trying to build

already exists, though this is not a direct goal of the NextComponent assistant.

Finally, having considered the recommendation in detail, the consumer can either add it to

the workspace (2), add the widget to the ignore list so that it never gets recommended again (3),

or close the details view and return to the default view of the NextComponent assistant widget

(4).
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Chapter 5

Modeling Composite Applications

This chapter describes the base representation of composite applications and several simpler

variants used in component recommenders presented in this dissertation.

Modeling composite applications using some variant of a formal graph is supported by at

least two major factors. First, a graph-based model is easily applicable to various kinds of

composite applications in different domains as both components and interactions between them

naturally correspond to graph concepts. Specifically, components in the application can be

modeled with vertices, while edges provide a way to model relationships between components.

Furthermore, it is easy to generate the graph model of a composite application if a structured

representation of the composition is available, which is frequently the case.

Second, graph-based models have been used successfully in several other research areas

where the structure of an object is of interest, such as in the analysis of the World Wide

Web [154–157] and social networks [158–160], computer vision [161, 162] and computational

chemistry [163,164]. While the algorithms developed in these areas are mostly not directly ap-

plicable to composite applications due to the differences in graph semantics and graph database

properties, approaches and experiences used in developing those algorithms provide valuable

guidelines. Graphs are also prominent in case-based reasoning (CBR) [165–168]. Many prob-

lems involving composite applications, including component recommendation, can be cast as

CBR problems.

To associate component identifiers with vertices, the chosen graph formalism should include

vertex labels. This is essential because components carry the functionality of the composition,

especially in consumer computing where components are general-purpose applications with

high-level functionality. Edge labels could be used to differentiate between, for example, data
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flow and control flow connections between components. However, it is likely that a specific pair

of components will always have the same types of connections between them, so differentiating

these types is less important. For example, a component like the ReceiveMessage widget in

Geppeto will almost invariably have a control flow connection to a TouchMe widget or some

other control widget that executes a part of the composition for each new message, and only

data flow connections to all other widgets that process the received message in some way.

Undeniably, having this information be represented in the model provides useful informa-

tion for component recommendation. For example, if the recommender can recognize this regu-

larity for the ReceiveMessage widget and the input partial composition contains a ReceiveMes-

sage widget with one control flow connection, a recommendation of widgets that can be used

to process messages will likely be more useful than a recommendation of widgets that control

this processing when a message is received.

However, including edge labels in the model is challenging for two main reasons. First, in

the general case, a pair of components can be connected multiple times with different connec-

tion types. To properly model this with labeled edges, the graph model would have to either

allow parallel edges or label edges with a set of connection types, both of which significantly

complicate the model and increase the complexity of computing most similarity measures. Sec-

ond, evaluating the usefulness of edge labels requires a dataset in which connection types can

be easily deduced, and such a dataset of sufficient size is not publicly available. For these two

reasons, edge labels are not considered in this dissertation.

While a graph can represent many useful structural properties of a composite application,

and these properties can typically be explored in time linear in the size of the graph, exact

similarity measures for many interesting definitions of similarity over graphs are computation-

ally expensive or intractable. For example, both subgraph isomorphism [169] and graph edit-

distance [170] on unlabeled graphs are well know to be NP-hard. With labeled graphs, these

computations become tractable but are still challenging to do quickly in the presence of many

duplicate labels, which turns out to be common in composite applications. Therefore, a graph-

based model is used in this dissertation as a basis for representing composite applications in a

computer, but three other models on a lower level of abstraction that retain less structural infor-

mation are also considered. These models can be generated from the graph representation of a

composition, so in the remainder of the dissertation, a composition is identified with its graph

representation where no confusion can arise. All four of the explored models of composite
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applications are defined formally in the sections that follow.

5.1 Graph Model

Let T be the finite set of identifiers of all the components available in a certain composition

system. A composition of these components is then modeled with an unweighted directed graph

with labeled vertices

G =(V,A, λ), where

V = {1, 2, . . . , |V |} is the finite set of vertices,

A ⊆ V × V \ {(u, u) : u ∈ V } is the set of arcs, and

λ : V → T is a labeling function.

The number of vertices and the number of arcs1 in a graph will be denoted with n and m,

respectively. Subscripts will be used when discussing multiple graphs in the same context, so

that, for example, nG = |VG| is the number of vertices of a graph G.

Vertices are used to model components of the composition, while arcs represent connections

between the components. Note that by mapping components to vertices, the interface of the

component is abstracted away. For example, if components are graphical widgets, an action

on any interface element is mapped to an arc incident to the vertex representing the whole

component.

Parallel arcs and self-loops are not allowed in the model. Parallel arcs would arise when

one component is connected to another component in more than one way, for example, if one

component takes several inputs from another. However, as noted earlier, local interaction within

a fixed pair of components is often syntactically identical, and modeling the connection with

a single arc captures the interaction. Therefore, when converting a composition to the graph

representation, parallel connections are replaced with a single arc or possibly with one arc in

each direction if the connections between components are bidirectional. Self-loops are simply

ignored as they provide no useful information for the purposes of component recommendation.

1Arcs are directed edges, which are also sometimes called arrows.
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2, textinput

1, urlinput

3, fetch

4, regex

5, output

Figure 5.1: The Feed-Item Title Prefixer Yahoo Pipes composition and its graph model.

For each vertex u ∈ V , the sets of incoming and outgoing arcs are defined as

in(u) = {(u, v) : (u, v) ∈ A}, and

out(u) = {(v, u) : (v, u) ∈ A}

respectively. Using these sets the indegree and outdegree of a vertex u are defined as

indegree(u) = |in(u)| , and

outdegree(u) = |out(u)| .

The labeling function λ assigns component identifiers to the vertices of the graph model as

labels. In the remainder of the dissertation, a vertex will sometimes be identified with its label

when that is clear from context.

As most compositions tend to produce sparse graphs, adjacency lists are the most suitable

graph representation.

A straightforward example of converting a Yahoo Pipes pipe to its graph model is shown in

figure 5.1. In Yahoo Pipes, components are called modules. The five Pipes modules are modeled

with the five vertices of the graph. The vertex labels are module names, and are shown to the

right of the vertex index on the vertex itself. As is universally the case for Yahoo Pipes, the

graph model is basically the data flow graph of the pipe.

A slightly more complex example is shown in figure 5.2. The Geppeto composition that
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3, ReceiveMessage

1, TouchMe

2, Translator

Figure 5.2: The Message Translator Geppeto application and its graph model.

translates received messages using the Google Translate widget that was introduces in section

2.3 is shown on the left. The three-vertex graph on the right is the graph model representation

of this composition. Note that while it is important for the correctness of this composition that

these operations are ordered in time, the model does not capture this order in any way.

5.2 Component Sequence Model

Since the goal of a component recommender is to recommend components to users of a

composition system, a component-centric simplification of the described graph model is defined

and used in one of the recommender algorithms. The basic information about the functionality

of a composition can be retrieved from just the list of components used in the composition.

Such a list is easily generated from the graph model. As this is a sequence model, the order in

which the components are listed is significant. One order that provides useful information about

the composition is the order in which the components were added to the composition. However,

this information is typically not available in composition databases, which is also the case in

both datasets used in this dissertation.

Another useful order that preserves some structural information about the composition is a

simple generalization of a topological order. A topological order of the vertices of a directed

graph can be though of as a permutation of vertex indices such that, for each vertex, all of its

ancestors in the graph come before it in the permutation. Put another way, if the vertices of a

directed graph are aligned along a straight horizontal line in topological order, all the arcs are
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1: function GENERALIZEDTOPOLOGICALORDER(G)
2: componentList← [] . Initialize to empty list.
3: while G is not empty do
4: candidates← set of all vertices of G with minimal indegree
5: u← an arbitrary vertex from candidates with maximal outdegree
6: componentList.append(λ(u))
7: G.remove(u)
8: end while
9: return componentList

10: end function
Algorithm 5.1: GENERALIZEDTOPOLOGICALORDER algorithm: Returns a list of components of the
graph G in generalized topological order.

directed from left to right.

It is obvious that vertices of a directed graph can be topologically ordered if and only if the

graph is acyclic. Composite applications can have cyclic relationships between components, so

graphs representing compositions may contain cycles. Therefore, the concept of a topological

order is generalized for graphs with cycles as described with high-level pseudocode in Algo-

rithm 5.1. For an acyclic graph, the set candidates in line 4 will always contain the vertices with

indegree zero, i.e. with no incoming arcs. Otherwise, the minimal indegree might be nonzero,

but the set is always well defined. From these vertices with minimal indegree, a vertex with

maximal outdegree in the original graph is picked. This criterion is largely arbitrary, but is

chosen as vertices of higher outdegree might be more central to the functionality of the compo-

sition. Remaining ties, if any, are broken arbitrarily, for example by picking the lowest index

vertex. In line 6, the label of the picked vertex which is the identifier of the component that the

vertex represents is appended to the output component list. Finally, line 7 removes the picked

vertex and all its incident arcs from G.

This algorithm can be implemented using a priority queue in O(m log n) time [171].

The presented example graph in figure 5.1 is acyclic and the component sequence generated

by the GENERALIZEDTOPOLOGICALORDER algorithm is

<urlinput, textinput, fetch, regex, output> .

On the other hand, the graph in figure 5.2 contains two cycles. Initially, the minimal indegree

is one. As vertex 3 has a higher outdegree than vertex 1, it is selected as the first component in
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the list. The final component sequence representation in generalized topological order is

<ReceiveMessage, TouchMe, Translator> .

5.3 Feature Vector Models

Santos et al. [172] reported that a feature vector representation produced very similar clus-

ters to a more complex graph representation when clustering workflows. The feature vectors

contained the task labels of a particular workflow. A similar idea is applied here to the compo-

nent recommendation problem.

To define a feature vector model, it is necessary to define the vector space in which objects

will be represented. For composite applications, a simple vector space that is analogous to the

mentioned task labels vector space is one where each vector dimension counts the occurrences

of a particular component in a composition.

Formally, let Ti ∈ T be the identifier of the ith component available to the users of a

composition system in some fixed order over T . A composition modeled with a graph G =

(V,A, λ) can then be represented in a |T |-dimensional vector space with the vector xcomp,

where

x(i)
comp = #{u : u ∈ V, λ(u) = Ti}

is the value of the ith coordinate of the vector, where the hash symbol is used to represent set

cardinality. This vector is referred to as the component vector of the composition.

Note that this model retains no structural information about the composition beyond the used

components. One way to reintroduce basic structural information is to include arc information

in the vectors. Toward that goal, the vector space is extended to |T | + |T | (|T | − 1) = |T |2

dimensions. The first |T | coordinates still specify component frequency, while the remaining

|T | (|T |−1) coordinates represent arc counts with a fixed order over all possible arcs. A vector

in this space is referred to as the structure vector of the composition.

When there are no repeated components in a composition, the structure vector contains the

same structural information as the graph model, i.e. the graph model can be reconstructed from

the structure vector. However, since all coordinates are treated in the same way, this structural

information is implicit rather than explicit as in the graph model.

Even though these vector spaces can be large, both the component vector and the structure
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vector of a composition are sparse, i.e. most of their coordinate values are zero. They can,

therefore, be represented with a sorted list of key-value pairs where the keys are the nonzero co-

ordinate identifiers. This makes the size of the representation O(n) and O(n+m), respectively,

both of which are independent of |T |.

For example, the component vector for the graph shown in figure 5.2 could be represented

with the list

[ReceiveMessage : 1, T ouchMe : 1, T ranslator : 1],

where an alphabetical order of component identifiers is assumed.

On the other hand, the structure vector for the same graph could be represented with the list

[ReceiveMessage : 1, T ouchMe : 1, T ranslator : 1, ReceiveMessage→ TouchMe : 1,

ReceiveMessage→ Translator : 1, T ouchMe→ Translator : 1,

T ranslator → ReceiveMessage : 1],

where arrows between component names are used to represent arcs.

To make the vector representations easier to read and save on horizontal space, the ones in

both component vectors and structure vectors are omitted in the remainder of the dissertation,

i.e. the frequency of a component or an arc is only explicitly shown if it is greater than one.
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Chapter 6

A Framework for Component

Recommendation Based on Composition

Structural Similarity

This chapter describes how the models presented in chapter 5 can be used to dynamically

recommend components during composite application development. First, a general compo-

nent recommendation method that can be the basis for any algorithm that solves this problem by

comparing composition representations is presented in section 6.1 Then, in subsequent sections,

four recommender algorithms that are based on this general method are defined, in increasing

order of complexity. These algorithms are referred to as structural algorithms in the remainder

of the dissertation as opposed to the simple statistical algorithms defined in section 7.4 that are

not based on this general component recommendation method. A summary of the basic proper-

ties of the four structural recommender algorithms is presented in section 6.5. Afterwards, the

challenge of choosing algorithm parameters is discussed in section 6.6. Finally, to conclude the

chapter, the key steps of all four algorithms are presented on a simple example in section 6.7.

6.1 Component Recommendation Method

The component recommendation method presented in this section is based on the compo-

nent recommendation process that has been described in section 4.1, and provides a framework

within which every component recommendation algorithm based on composition similarity can

be defined. The base structured representation used in the recommendation method is the graph
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1: function MAKECOMPONENTRECOMMENDER(graphDB, PREPROCESS, EVALUATES-
IMILARITY, COMPUTESCORES, RECOMMEND)

2: reprList← []
3: for all Q in graphDB do . representation preprocessing
4: reprList.append(PREPROCESS(Q))
5: end for

6: function COMPONENTRECOMMENDER(P )
7: Pr ← PREPROCESS(P ) . representation preprocessing
8: simList← []
9: for all Qr in reprList do

10: sim← EVALUATESIMILARITY(Pr, Qr) . similarity evaluation
11: simList.append((sim, Qr))
12: end for
13: scores← COMPUTESCORES(simList, Pr) . component scores computation
14: return RECOMMEND(scores, Pr) . component recommendation
15: end function

16: return COMPONENTRECOMMENDER

17: end function
Algorithm 6.1: MAKECOMPONENTRECOMMENDER function: Returns a component recommender
over the composition database based on the parameter functions PREPROCESS, EVALUATESIMILAR-
ITY, COMPUTESCORES, and RECOMMEND.

model from section 5.1. Therefore, it is assumed that all compositions in the composition

database are already represented using the graph model.

The goal of the recommender is to, given a graph model of a partial composition that the user

is working on, compute real valued scores for each component in T and then recommend several

of the highest scoring components as the most likely to be useful for completing the application.

In this recommendation process, four key steps were identified: representation preprocessing,

similarity evaluation, component scores computation, and component recommendation. These

steps are organized in a component recommendation method as described with pseudocode in

Algorithm 6.1.

The instantiation of a recommender algorithm from the component recommendation method

is described using a higher order function MAKECOMPONENTRECOMMENDER that takes as in-

put four functions that specify the four key steps in the recommendation process and returns the

function COMPONENTRECOMMENDER, defined in lines 6–15, which defines the recommender

algorithm.

The PREPROCESS function takes a graph model of a composition as input and returns a

representation that is suitable for a particular algorithm, along with the original graph represen-
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tation in a pair data structure. The input graph representation is preserved as it can be useful

when computing component scores. The PREPROCESS function is applied to the entire compo-

sition database once, during recommender initialization. Lines 2–5 in the pseudocode initialize

reprList with the representations of all preexisting compositions. Note that in a practical im-

plementation, compositions are added to the database in an on-line fashion, but this doesn’t

significantly complicate the problem.

When discussing composition similarity and computing component scores, the letter P is

used to denote the input partial composition and the letter Q to denote the specific database

composition P is being compared to. The subscript r is used to denote that the composition is

represented in some way that might differ from the base graph representation.

The COMPONENTRECOMMENDER function takes as input the graph representation of P

and closes over reprList and the four parameter functions. Using the PREPROCESS function,

the required representation Pr is extracted from the graph in line 7.

The recommender then goes through the preprocessed composition database and evaluates

the similarity between Pr and Qr using the EVALUATESIMILARITY function in line 10. The

EVALUATESIMILARITY function should return a similarity object representing the similarity

of the two compositions with a real number which is called the similarity score, along with

an algorithm specific description of how that similarity score was computed. This additional

information can be used to compute component scores based on their role in achieving the

computed similarity score. The computed similarity object is stored in the list simList along

with the corresponding composition Qr in line 11.

The completed simList is then passed to the COMPUTESCORES function in line 13, along

with Pr. COMPUTESCORES should return a scores data structure that maps component iden-

tifiers to their scores. In its simplest variant, the COMPUTESCORES function would initial-

ize all component scores to zero, go through the entire simList and update component scores

based on every computed similarity. However, for definitions of similarity that do not discrimi-

nate between similar and dissimilar compositions with a large absolute difference in similarity

scores, it can be beneficial to compute component scores based only on some of the most sim-

ilar database compositions, as the large number of dissimilar compositions might otherwise

significantly affect which components are recommended. Therefore, for all four algorithms

presented in this dissertation, a parameter BP , which stands for best percent, is introduced into

the COMPUTESCORES function. The COMPUTESCORES function then selects the most similar
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BP percent of components from simList and computes component scores based only on these

similarities. This process is called similarity filtering. Conceptually, similarity filtering could

be done by sorting simList by similarity score, but an asymptotically faster way is to find the

BP% order statistic of simList and partition the list around it, both of which can be done in

linear time [173]. The effect of similarity filtering on recommendation quality is evaluated in

sections 8.2.1 and 8.3.1. When describing COMPUTESCORES for the recommenders, this com-

mon structure is omitted and only what COMPUTESCORES does for each composition Qr that

gets considered is defined.

Finally, in line 14, components are recommended based on the computed component scores

and the partial composition using the RECOMMEND function.

As all four recommender algorithms defined in this chapter use the same RECOMMEND

function, it is defined here instead of in subsequent sections. As mentioned at the start of this

section, the recommender should suggest one or more components based on their computed

score. The number of recommended components per query is denoted by R and keep constant

throughout the algorithms’ operation. The challenge of selecting the appropriate number of

component to recommend per query is discussed in sections 6.6 and 8.4.5.

If a user has already used a particular component in the composition, recommending the

same component seems less useful than recommending a different component that is possibly

unknown to the user, even when multiple instances of the same component might be required to

complete the composition. Therefore, before selecting theR components with the highest score,

all components already present in the partial composition P are removed from contention. The

remaining components are partitioned around the Rth largest score, and the top R components

are sorted in descending order by score and returned. This can be done in O(|T | + R logR)

time [173], which is typically O(|T |) as R is a small constant.

The computational complexity of any recommender algorithm that follows this method will

depend on the complexities of the four functions PREPROCESS, EVALUATESIMILARITY, COM-

PUTESCORES and RECOMMEND. However, it is clear that response time will be dominated by

evaluating the similarity to every composition in the database and possibly computing compo-

nent scores. Based on this observation, to make the recommender usable as a real-time assistant

in application development, a key requirement for similarity evaluation and component scores

computation is that both procedures should be efficient, and ideally only take time linear in the

size of the compositions being compared. This issue is discussed further in section 8.2.3.
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6.2 Cosine Similarity for Feature Vectors

The simplest algorithm defined in this chapter is based on the component vector model

described in section 5.3. The similarity score for this algorithm is the cosine of the angle

between component vectors, so the algorithm is called ComponentVectorCos.

As component vector coordinates represent component frequency, they are nonnegative.

Therefore, all component vectors lie in the same orthant, i.e. the same multidimensional gen-

eralization of a quadrant, and the angle between them lies between −π
2

and +π
2

so its cosine is

nonnegative. If this angle is close to 0, its cosine will be close to 1 which indicates a higher

degree of similarity. If the angle is close to π
2

in absolute value, its cosine will be close to 0

which indicates low or no similarity.

In general, the cosine of the angle between two vectors x and y can be computed using their

dot product as

cosφx,y =
x · y
‖x‖‖y‖

.

As mentioned in section 5.3, component vectors are represented with a sorted list of key-value

pairs where each pair corresponds to a nonzero coordinate value. If there are lP and lQ nonzero

coordinate values of the component vectors of P and Q, then the dot product in the numerator

can be computed in O(lP + lQ) time by traversing both lists in parallel using two pointers.

Computing the norms in the denominator takes Θ(lP )+Θ(lQ) time. Consequently, the similarity

score can be computed in Θ(lP + lQ) time.

Note that computing the cosine of the angle between component vectors doesn’t provide

any additional similarity information beyond the computed similarity score. Thus, the EVAL-

UATESIMILARITY function for the ComponentVectorCos algorithm only returns the similarity

score.

As the goal of the recommender is to suggest components that might be useful for complet-

ing the application, the COMPUTESCORES function adds the computed similarity score to the

score of every component that is more frequent in Q than in P , multiplied by that difference in

frequency.

An analogous approach is applied to the structure vector representation in the StructureVec-

torCos algorithm. The only difference in similarity computation is that structure vectors have

more nonzero coordinate values if there is at least one arc in the composition. On the other

hand, note that COMPUTESCORES still only deals with components, and arc coordinates of the
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structure vectors are simply ignored.

6.3 Component Sequence Edit Distance

The ComponentSeqEditDistance algorithm is based on computing an edit distance between

component sequences of P andQ. The EVALUATESIMILARITY function for ComponentSeqEd-

itDistance finds an optimal way to convert the component sequence of P into the component

sequence of Q by matching identical components or adding and removing components from P ,

subject to nonnegative real costs Cadd and Crem. Specifically, if k components in the component

sequence of P are matched to components in Q, then the edit distance D is defined as

D = (nP − k)Crem + (nQ − k)Cadd. (6.1)

Equation 6.1 arises because if k components are matched, then all the remaining nP − k com-

ponents in P must be removed and all the nQ − k components in Q that haven’t been matched

must be added to P to change the component sequence of P into the sequence of Q.

The similarity score of P and Q is then defined as

similarity score =
1

1 +Dopt

, (6.2)

where Dopt is the minimal possible edit distance.

The similarity score defined by equation 6.2 is a real number between 0 and 1, with values

near 0 denoting very low similarity and values near 1 denoting high similarity. The change of

similarity score with the minimal edit distance Dopt is shown graphically in figure 6.1. When

the component sequences of P and Q are identical, then Dopt = 0 and the similarity score is

equal to 1. The similarity score decreases quickly for edit distances between 0 and 5, and very

slowly afterwards.

Since the lengths of the component sequences of P andQ are equal to the number of vertices

in their graph representation, they are denoted by nP and nQ. The edit distance can be computed

using dynamic programming in Θ(nPnQ) time by filling in a matrix of edit distances for all pairs

of component sequence prefixes in a systematic way.

The PREPROCESS function returns the component sequence in generalized topological or-

der for database compositions. For the input partial composition P , two sequence orders are
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Figure 6.1: The change of similarity score with minimal edit distance for the COMPONENTSEQEDIT-
DISTANCE algorithm.

possible. First, in a practical setting, if the user adds a new component to his partial composi-

tion, the recommender can reuse the edit distance matrix computed for the previous query when

the input partial composition had one less component if the component sequence order matches

component insertion order. Specifically, when computing the edit distance matrix for the input

partial composition P , EVALUATESIMILARITY reuses the nP − 1 rows of the edit distance ma-

trix computed for the previous query and updates the last row in just Θ(nQ) time. When users

remove components from a partial composition, a possibly large part of the edit distance matrix

must be recomputed. Additionally, this approach requires the recommender system to store all

the computed edit distance matrices, perhaps for a limited time frame, which incurs a possibly

significant memory overhead.

Second, the component sequence of the input partial composition can be ordered in gen-

eralized topological order as well. For this ordering, storing computed edit distance matrices

provides no benefit and the EVALUATESIMILARITY function must compute the whole edit dis-
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tance matrix for each query, which takes Θ(nPnQ) time. On the other hand, the generalized

topological order provides a stronger foundation for the computed similarity score. Both possi-

ble orders are evaluated in this dissertation.

In both cases, EVALUATESIMILARITY returns the edit distance matrix along with the simi-

larity score so that the optimal set of edit operations can be reconstructed. This reconstruction

provides additional information about the roles of particular components in the computed edit

distance, and this information is useful for computing component scores. In particular, at least

two distinct strategies for computing component scores are possible. First, when updating com-

ponent scores based on a particular database composition Q, the scores of those components

that were added to P in the editing process could be increased by the computed similarity score

between P and Q1.

Second, the component sequence editing process also provides the algorithm with a set of

matched components. This set of components is a subset of all components that appear both in

P and Q, and some of these components might not be matched due to the sequential nature of

the representation2. This set of matched components can be used to update component scores

in a more focused way. For each component c in Q that was matched to a component in P ,

COMPUTESCORES increases the scores of components that are connected to c in the graph

representation of composition Q via an incoming or outgoing arc by the computed similarity

score. These components are good candidates to be added to the composition next as they are

on the frontier between the similar and the dissimilar parts of the compositions.

With both approaches to computing component scores, it takes Θ(nP + nQ) time to re-

construct the optimal edit operations from the edit distance matrix and O(mQ) time to update

component scores. In this dissertation, only the second approach is evaluated. Additionally,

the score of the remaining components in Q is increased marginally by a small fraction of the

similarity score so that they might get recommended when too few connected components are

found or when most of them have already been used in P . An example of this approach to

computing component scores is presented in the next section.

It is important to note that the ComponentSeqEditDistance algorithm assigns a nonzero sim-

ilarity score to every composition in the composition database even if there are zero matching

1Note that this is, in fact, identical to increasing the scores of all components in Q and to the component scores
computation process used in both ComponentVectorCos and StructureVectorCos because all the components in Q
that are not already components of P must necessarily be added to P in the edit process. When recommending
components, all components that were originally in P are removed from consideration, and therefore, changes to
the scores of the components in Q that are also components in P are irrelevant.

2See section 6.7 for an example.
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components which is in contrast to both feature vector algorithms and the graph based algorithm

described in the next section. However, the described approach to component scores computa-

tion ensures that those compositions that contain no matches still don’t contribute to the final

component scores used for making recommendations, even in the absence of similarity filtering.

6.4 Probabilistic Graph Edit Distance

Matching of labeled graphs is identified as the best case for matching of general graphs

in [168]. This is because if only vertices with equal labels can be matched and there are no

repeated labels, the optimal matching can be found in time linear in the sum of the graph sizes.

This idea is the starting point for defining a reasonably efficient similarity measure for the

composition graph model.

The GraphEditDistance algorithm, which is the fourth structural algorithm defined in this

dissertation, finds a set of edit operations that convert the vertex set of P into the vertex set of

Q. Assume that the algorithm has found a matchingM that maps vertices from P to vertices of

Q, respecting labels, i.e. component identifiers. Then the vertex set of P can be converted into

the vertex set of Q by removing all the nP − |M| vertices of P that are not matched byM and

adding to P all the nQ− |M| vertices of Q that are not matched byM. Note that this is similar

to the ComponentSeqEditDistance algorithm except that the matching M is not restricted by

any order over the vertices. While arcs are not deleted or added, the arc structure of the graphs

is used to define a similarity measure for the sets of matched vertices in P and Q.

Let p1 and p2 be vertices of P , and q1 and q2 be the vertices of Q corresponding to p1 and

p2 under the matchingM. Furthermore, let S be the number of quadruples p1, p2, q1, q2, such

that there is a path from p1 to p2 in P if and only if there is a path from q1 to q2 in Q. Then the

similarity score associated with the matchingM is defined as

similarity score =
|M|+ S · Cconn

1 + (nP − |M|)Crem + (nQ − |M|)Cadd
, (6.3)

where Cconn, Crem and Cadd are nonnegative real numbers and are parameters of the algorithm.

The numerator ensures that larger matches with similar connectivity patterns give larger sim-

ilarity scores. The denominator is the edit distance increased by 1 to make the result defined

when a perfect matching is possible, i.e. when all vertices can be matched.

In the presence of multiple vertices with the same label, many different matchings may be
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possible. When the number of duplicates is small, it might be possible to enumerate and evaluate

each possible matching. However, the number of possible matchings grows very quickly with

the number of duplicates. For example, if there are s instances of a particular component in P

and t instances of that same label in Q, the number of ways to match the s vertices of P is

(t)s = t(t− 1) . . . (t− s+ 1),

assuming s ≤ t.

While the average number of a particular component in the Yahoo Pipes dataset used in

this dissertation is around 1.57, about 20% of the pipes have a component repeated at least

five times, and one pipe uses the fetch module 95 times. Therefore, and also in the interest

of generality, enumerating all possible matchings is infeasible. This problem is addressed by

limiting the number of matching choices the algorithm makes and introducing randomness so

that all matchings have a chance to be explored. This approach is illustrated with pseudocode

in Algorithm 6.2.

The EVALUATESIMILARITY function defines the recursive procedure EXPLOREMATCH-

ING that is the core of this algorithm in lines 5–28. EXPLOREMATCHING recursively tries to

match every vertex u from P to an unused vertex in Q that represents the same component. The

list of candidate vertices can easily be precomputed in PREPROCESS and is denoted by Qcands

in the pseudocode. Before calling EXPLOREMATCHING in line 29, these match candidates are

randomly shuffled in line 4, which is also the only place where randomness is introduced into

the algorithm.

The number of invocations of EXPLOREMATCHING is limited in line 6 with a number L

that is a parameter of the algorithm. If L is larger, the algorithm is potentially slower but more

candidate matchings can be explored, possibly yielding better results. Lines 9–14 deal with

the case when a matchingM is finalized, i.e. all the vertices of P have been processed. The

loop in lines 16–25 tries to match vertex u with the candidate vertices v from Q and recursively

complete the matching. The set Qused can be implemented with a bitset, and the matchingM

with a simple array allowing updates in lines 18–19 and 22–23 in constant time. In line 20, the

new value of S is computed by traversing the matching and comparing connectivity of u in P

to that of v in Q, as described earlier. Finally, the possibility of not matching u is explored in

line 26. This might be optimal when the number of matching candidates is less than the number

of u’s duplicates in P , and is necessary when there are no matching candidates at all.
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6.4. Probabilistic Graph Edit Distance

1: function EVALUATESIMILARITY(Pr, Qr)
2: bestScore← 0.0
3: bestMatching ← {}
4: randomly shuffle every list in Qcands . Qcands maps components to a list of vertices

that represent that component in Q, and is a part of Qr.

5: procedure EXPLOREMATCHING(u, Qused,M, S)
6: if this procedure has been called more than L times then
7: return
8: end if
9: if u > nP then . Evaluate the matching.

10: candScore← the similarity score computed based onM and S
11: if candScore > bestScore then
12: bestScore← candScore . Update with better matching.
13: bestMatching ←M
14: end if
15: else
16: for all v in Qcands[u] do . Try to match u.
17: if v /∈ Qused then
18: Qused.add(v) . Update Qused andM.
19: M.add(u, v)
20: newS ← updated S value
21: EXPLOREMATCHING(u+ 1, Qused,M, newS) . Recurse.
22: Qused.remove(v) . Undo the changes.
23: M.remove(u, v)
24: end if
25: end for
26: EXPLOREMATHCHING(u+ 1, Qused,M, S) . Don’t match u.
27: end if
28: end procedure

29: EXPLOREMATCHING(1, {}, {}, 0.0) . Start from the first vertex of P with no vertices
from Q used and the empty matching.

30: return (bestScore, bestMatching)
31: end function
Algorithm 6.2: EVALUATESIMILARITY function for the GraphEditDistance algorithm: Returns the
largest found similarity score and the matching that produced it.

When all matchings have been explored or the invocation limit has been reached, EVALU-

ATESIMILARITY returns the largest found similarity score and the matching that achieved that

score in line 30.

It is nontrivial to describe the a priori computational complexity of this algorithm in that

it largely depends on component frequencies and component duplication in P and Q as well

as the size of the maximal matching. Note that L bounds the number of invocations of EX-

PLOREMATCHING, and not the total number of operations. This allows more operations to be
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6.4. Probabilistic Graph Edit Distance

performed when there are many matching possibilities. For intuition about the computational

complexity, assume that the average number of candidates in the loop in line 16 is Θ(
nQ

nP
),

i.e. that the candidates are distributed uniformly over all vertices of P . Then EVALUATESIMI-

LARITY takes O(L(1 +
nQ

nP
)nP ) = O(L(nP + nQ)) time. The rightmost nP factor comes from

updating the value of S in line 20. This is based on revisiting all the previously matched vertices

from P and comparing the connectivity of this pair to their matches inQ, as described earlier. If

the connectivity of every pair of vertices can be checked in constant time, then S can be updated

in time linear in the size of the matching which is loosely bounded by O(min{nP , nQ}). There-

fore, to allow efficient connectivity checking, the PREPROCESS function of GraphEditDistance

compute the transitive closure of the input graph and include that in the returned representation.

Unlike vector angle cosine used in the feature vector algorithms ComponentVectorCos and

StructureVectorCos and similar to the edit distance computed in the ComponentSeqEditDis-

tance algorithm, a matching between vertices of the composition graphs provides structural

information about how or why exactly two compositions are similar. The identical process for

computing component scores as in the ComponentSeqEditDistance algorithm is used. Specif-

ically, the computed matching is used in COMPUTESCORES to significantly increase only the

scores of those components inQwhose corresponding vertex is directly connected to a matched

vertex, either by an incoming or outgoing arc. The score of the remaining components in Q is

only increased by a small fraction of the similarity score so that these components get consid-

ered for recommendation if too few connected components are found in the whole composition

database or when most of the candidate components are already in P and, therefore, aren’t

useful recommendations.

A simple example that illustrates this process is shown in figure 6.2. Of the vertices in P ,

only A and D appear in Q. The matching computed by EVALUATESIMILARITY is indicated

with matching fill colors. There are two instances of D in Q, and the left one is chosen in

M. Note that in this case both choices of D lead to the same similarity score with S = 0 as

neither D is reachable from the vertex A in Q as it is in P . Arcs that influence how component

scores are updated based on this P -Q pair are marked with asterisk and tilde symbols. Assume

that EVALUATESIMILARITY computed a similarity score s for this matching. Because D was

matched, the scores of components X , D, A and Y would be increased by s because they label

vertices that are directly connected to the matched D. The connecting arcs are marked with

asterisk symbols. Similarly, because A was matched, the scores of D and Y would be further
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Figure 6.2: A simple P -Q pair illustrating COMPUTESCORES for the GraphEditDistance algorithm.
The computed matching is indicated by matching fill colors of A and D vertices. The arcs that influence
which component scores are increased are marked with asterisk and tilde symbols.

increased by s based on arcs labeled with a tilde. Finally, the score of component Z would

be increased by ε · s, where ε is a small real constant much smaller than the inverse of the

number of compositions in the composition database. Because of this marginal score increase,

the algorithm would prefer component Z to components that were never used in any similar

compositions, but would only recommend Z if all connected components have already been

used in P . In all evaluations in subsequent chapters, ε was set to 10−8.

Note that the RECOMMEND function eliminates bothA andD from recommendation candi-

dates because they are already used in the partial composition P , but, conceptually, their scores

are increased in COMPUTESCORES.

6.5 Summary of the Defined Structural Recommender Algo-

rithms

Four structural recommender algorithms based on the general component recommendation

method described in section 6.1 have been defined in this chapter. An overview of the basic

properties of these algorithms is presented in table I.

The simplest considered algorithm is ComponentVectorCos defined in section 6.2. Compo-

nentVectorCos uses a feature vector as its base representation for compositions, where features

are the frequencies of components used in the composition. This vector is called the component
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6.5. Summary of the Defined Structural Recommender Algorithms

Table I: An overview of the four recommender algorithms.

ComponentVectorCos StructureVectorCos ComponentSeqEditDistance GraphEditDistance

Base
component vector structure vector component sequence

vertex-labeled
Representation digraph

Parameters BP , R BP , R
BP , R, BP , R, L, Cadd,

Cadd, Crem Crem, Cconn

Similarity Measure acosφ acosφ b 1
1+Dopt

Equation 6.3

Affected comps more comps more comps connected to comps connected to
Component Scores frequent in Q frequent in Q matched comps in Q matched comps in Q

Complexity c dΘ(lP + lQ) dΘ(lP + lQ) eΘ(nPnQ) fO(L(nP + nQ))

a φ is the angle between the vectors
b Dopt is the minimal edit distance between component sequences of P and Q
c per database composition; includes only the dominating time complexity of EVALUATESIMILARITY and COM-

PUTESCORES
d l is the number of nonzero coordinate values of the vector
e can be improved to Θ(nP + nQ) when the component sequence of P is ordered in component insertion order

instead of the generalized topological order and a new component has just been added
f assuming matching candidates are evenly distributed as explained in the text

vector of the composition. The only parameters of ComponentVectorCos are BP , which regu-

lates similarity filtering in component scores computation, and R, which determines how many

components are recommended for each query. As is common for feature vector algorithms,

ComponentVectorCos uses the cosine between the component vectors of compositions to mea-

sure composition similarity. When a database composition Q is considered during component

scores computation, the scores of those components in Q that are more frequent in Q than in

the input partial composition P are increased by that difference in frequency multiplied by the

computed similarity score between P and Q. Evaluating similarity and updating component

scores for each database composition Q takes time linear in the length of the component vec-

tors, i.e. in the number of nonzero vector coordinates which is bounded above by the number of

components in P and Q.

The StructureVectorCos algorithm, also defined in section 6.2, introduces arc information

into the feature vector which is now called structure vector. Specifically, in addition to compo-

nent frequencies, structure vectors contain arc frequencies as well. In all other respects, Struc-

tureVectorCos and ComponentVectorCos are identical. The effect of component connectivity

information on the quality of a recommender in this feature vector model is analyzed based on

the comparison of these two algorithms.

The ComponentSeqEditDistance algorithm defined in section 6.3 is based on a sequential
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representation of compositions. Specifically, the components of a composition are ordered into

a list that is called the component sequence of the composition. Two orders of the component

sequence are considered in this dissertation—a generalized topological order that preserves ad-

ditional structural information about the composition and component insertion order that allows

the algorithm to be significantly faster by reusing computation between queries. In the Com-

ponentSeqEditDistance algorithm, composition similarity is based on the minimal edit distance

Dopt between the component sequences of compositions. The allowed edit distance operations

are adding a component to the component sequence of the input partial composition P , re-

moving a component from the component sequence of P and matching a component in P to a

component in Q. When all the edit operations are performed, the component sequences of P

and Q must be identical. Those components in P that are neither added nor removed during

the process are considered matched. In addition to the BP and R parameters, ComponentSe-

qEditDistance uses two edit distance parameters Cadd, which specifies the cost of adding a

component to P , and Crem, which specifies the cost of removing a component from P .

While one additional strategy to computing component scores with ComponentSeqEditDis-

tance is outlined in section 6.3, in this dissertation, ComponentSeqEditDistance significantly

increases the component scores of only those components in Q that are connected by an incom-

ing or outgoing arc to a component that has been matched in the optimal edit process.

When components of the input partial composition P are ordered in the component sequence

in the generalized topological order, the whole edit distance matrix must be recomputed by

the recommender for each query. The time complexity of solving this problem with dynamic

programming is Θ(nPnQ). If components of P are ordered in insertion order, then parts of the

edit distance matrix can be persisted in the recommender system and used for later queries with

subsequent versions of P which significantly reduces time complexity, but increases memory

requirements.

Finally, the algorithm GraphEditDistance defined in section 6.4 uses the vertex-labeled di-

rected graph model defined in section 5.1 as the base representation of compositions. To evalu-

ate similarity between two compositions P and Q, GraphEditDistance searches for a matching

M that maps components from P onto the same components in Q, i.e. matches vertices of the

graph representations of P and Q respecting vertex labels. Given a matchingM, the similarity

score of P and Q is defined in a similar way as in the ComponentSeqEditDistance algorithm. In

particular, an edit distance between the vertex set of P and the vertex set of Q is computed for a

68



6.6. Choosing Algorithm Parameter Values

Table II: A summary of algorithm parameters.

Description

BP

Stands for best percent. Regulates similarity filtering in component scores
computation—only the most similar BP percent database compositions
are used for score computation.

R The number of components that are recommended per query.

Cadd The edit distance cost incurred for adding a component to P .

Crem The edit distance cost incurred for removing a component to Q.

Cconn
The factor that increases the similarity score of a P -Q pair
when matched components are similarly connected.

L Limits the number of matchings considered in GraphEditDistance.

particular matchingM, along with a similarity factor that is based on the size of the matching

M and the connectivity similarity between the matched components in P andQ. The similarity

score is then computed based on the quotient of that similarity factor and the edit distance.

In the presence of duplicate components in P and Q, many different matchings are possi-

ble. As enumerating all these possibilities in infeasible, randomness is introduced so that the

GraphEditDistance algorithm randomly explores this matching space searching for a matching

with a large similarity score. The search process is limited by the parameter L which can be

used to regulate the tradeoff between faster execution and exploring more possible matchings.

In addition to the parameters BP , R and L, GraphEditDistance is parameterized with edit

distance costs Cadd and Crem which serve the same purpose as in the ComponentSeqEditDis-

tance algorithm. Finally, the parameter Cconn is a measure of significance of similar connec-

tivity between the matched components in P and Q when the algorithm evaluates composition

similarity.

6.6 Choosing Algorithm Parameter Values

All the parameters used in any of the four structural algorithms defined in this chapter are

summarized in table II. All four algorithms share two parameters—the parameter BP which

regulates the degree of similarity filtering in component scores computation and the parameter

Rwhich specifies how many components are recommended for each query to the recommender.

As explained in section 6.1, with a higher level of similarity filtering, the recommender

bases its recommendations only on compositions from the composition database that are the
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most similar to the input partial composition. There are two possible benefits of this procedure.

First, in the absence of similarity filtering in component scores computation, components that

are very frequent in the composition database can become strong candidates for recommen-

dation even when they are never used in composition that are very similar to the input partial

composition and thus are probably not useful recommendations. This problem is most likely to

occur if a component recommender algorithm doesn’t significantly discriminate between very

similar and slightly similar compositions in terms of similarity score. The cumulative effect of

the many less similar compositions that contain some frequent component can make the com-

ponent score of that frequent component higher than the component score of rare components

that only appear in a few very similar compositions, but might actually be the best recommen-

dations. Second and less important, while the dominating factor in recommender response time

is similarity evaluation, significantly reducing the number of compositions that are used for

computing component scores can potentially decrease recommender response times.

On the other hand, aggressive similarity filtering can cause sparsity problems when there

aren’t any very similar compositions in the composition database to begin with, and the cumu-

lative effect of many compositions is exactly what is being sought.

Choosing the number of recommended components per queryR is largely a UI design issue.

Recommending more components might expose the user to new ideas, but also reduces the

amount of information that can be displayed for each recommendation if UI space is restricted.

The effects of both parameters BP and R on recommender quality are evaluated in chapter

8.

The edit distance parametersCadd andCrem in both ComponentSeqEditDistance and GraphEd-

itDistance and Cconn in GraphEditDistance are candidates for model selection techniques.

While choosing these parameters manually can provide a way to model the difficulty or fre-

quency of adding and removing components to and from the partial composition, anticipating

the true effect of a particular choice is challenging. Therefore, the choice of the values for the

edit distance parameters should be based on extensive evaluation on a particular dataset.

For both datasets used for recommender evaluation in this dissertation, the effect of chang-

ing these parameters on recommender accuracy was minimal. This issue is discussed further in

section 7.6.

Finally, the L parameter of GraphEditDistance can be used to control the tradeoff between

its execution time and possibly discovering better matches. Note that L also bounds the max-
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Table III: Composition base representations used in the four recommender algorithms.

P Q

GraphEditDistance

A

B

C

D

DD

A

Y

Z

X

ComponentSeqEditDistance <A,B,C,D> <X,D,D,A, Y, Z>

StructureVectorCos

[A,B,C,D, [A,D : 2, X, Y, Z,

A→ B, A→ Y,D → A,D → D,

B → C,C → D] D → Y,X → D, Y → Z]

ComponentVectorCos [A,B,C,D] [A,D : 2, X, Y, Z]

imum size of a composition for which meaningful recommendations can be given as composi-

tions with more than L components won’t have a single matching explored.

6.7 An Example of Algorithm Operation

In this section, the key steps of similarity evaluation and computing component scores of

all four structural recommender algorithms defined in this chapter are described on the example

P -Q pair from figure 6.2.

The component sequence, component vector and structure vector representations shown in

rows 2–4 of table III are generated from the graph representations in the top row. The com-

position P is a simple chain of components, while Q is considerably more complex, but still

acyclic. Intuitively, these two compositions are not very similar—they do share the components

A and D, but these components seem to perform quite different roles in their respective com-

position and there are several additional components in each composition that are not present

in the other composition. In P , component A is the starting point of the composition in some

sense—it is either the source of data or control flow, or something similar. On the other hand,

in Q, component A appears to be more central to the composition. The opposite is true for

component D—it is the last component in the chain of P , and topologically near the beginning
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Table IV: Similarity evaluation for the P -Q pair in the four recommender algorithms. The similarity scores are
computed assuming Cadd = Crem = 1.

P Q Computed Similarity Score

GraphEditDistance

A

B

C

D

DD

A

Y

Z

X

*

*

~

~
*

* |M| = 2, S = 0 2+0
1+(4−2)+(6−2) = 2

7

ComponentSeqED <A,B,C,D> <
++
X, D,

++++++++
D,A, Y, Z> Dopt = 3 + 5 1

1+8 = 1
9

StructureVectorCos

[A,B,C,
::
D, [A,

:::::
D : 2, X, Y, Z,

cosφ = 1∗1+1∗2√
7
√
14
≈ 0.30A→ B, A→ Y,D → A,D → D,

B → C,C → D] D → Y,X → D,Y → Z]

ComponentVectorCos [A,B,C,
::
D] [A,

:::::
D : 2, X, Y, Z] cosφ = 1∗1+1∗2√

4
√
8
≈ 0.53

of Q. Note that because of this reversal of roles of components A and D, their occurrences in

the topologically ordered component sequences used by the ComponentSeqEditDistance algo-

rithm are interleaved, i.e. A comes before D in the component sequence of P , but after D in the

component sequence of Q.

The four structural recommender algorithms evaluate the similarity between this example

P -Q pair as illustrated in table IV. GraphEditDistance discovers a matchingM between A and

D components as indicated by matching gray fills of the components. The size of this matching

is 2, and S = 0 because there is a directed path from A to D in composition P , while there is no

such path in Q. To compute numeric similarity scores for this example, both edit distance costs

Cadd and Crem for both GraphEditDistance and ComponentSeqEditDistance are set to 1. Based

on equation 6.3, GraphEditDistance evaluates the similarity of this P -Q pair with a similarity

score of 2/7.

Because of the inversion of roles of components A and D in compositions P and Q dis-

cussed at the start of this section, only one of these components can be matched when computing

an optimal edit distance between the component sequences of P and Q in the ComponentSe-

qEditDistance algorithm. In fact, matching either A or D in this example leads to the same

edit distance. The edit process shown in the table is preferred if the algorithm chooses to add
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Table V: Updating component scores based on the computed similarities in the four recommender algo-
rithms. The computed similarity scores are denoted with the symbol s.

A D X Y Z

GraphEditDistance s = 2/7 2s = 4/7 s = 2/7 2s = 4/7 ε · s = 2ε/7

ComponentSeqEditDistance ε · s = ε/9 s = 1/9 ε · s = ε/9 ε · s = ε/9 ε · s = ε/9

StructureVectorCos − s ≈ 0.30 s ≈ 0.30 s ≈ 0.30 s ≈ 0.30

ComponentVectorCos − s ≈ 0.53 s ≈ 0.53 s ≈ 0.53 s ≈ 0.53

a component to P instead of removing a component from P whenever both choices lead to the

same edit distance. The matched D components are underlined in the component sequences.

The remaining components of P are removed in the edit operation, which is illustrated with

a strikethrough. On the other hand, the additional components in Q must all be added to P

to make the component sequences equal, which is denoted by plus symbols above these com-

ponents in the table. As three components need to be removed and five components need to

be added, ComponentSeqEditDistance computes the edit distance of Dopt = 8 and a similarity

score of 1/9 by equation 6.2.

For both feature vector representations in the algorithms StructureVectorCos and Compo-

nentVectorCos, the vector dot product in the numerator of the cosine equals 3. This is because

in all coordinates of the vector spaces except those associated with the frequencies of compo-

nents A and D, at least one of the vectors has the value 0. In the coordinate corresponding to

component A, both vectors have the value 1 and in the coordinate corresponding to component

D, the vector of composition P has the value 1, while the vector of composition Q has the

value 2. These coordinates are underlined in the table. However, the computed similarity scores

significantly differ in the denominator of the cosine where the lengths of these vectors are multi-

plied. As structure vectors are significantly longer than component vectors, the similarity score

computed by the ComponentVectorCos algorithm is almost twice as large as the similarity score

computed by the StructureVectorCos algorithm.

The effect of this P -Q pair on component scores is shown in table V. This example has

already been explained for the GraphEditDistance algorithm in section 6.4—based on the arcs

marked with asterisk and tilde symbols, the scores of components X and A would be increased

by 2/7, and the scores of components D and Y by 4/7. Finally, the score of component Z

would be increased by 2ε/7, where ε is a very small constant, e.g. 10−8.

In the ComponentSeqEditDistance algorithm, the same approach to computing component
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scores is employed. The only component that is matched in the optimal edit process corresponds

to the unshaded component D in the graph in table IV. Therefore, because of the D → D arc,

the score of component D is increased by the similarity score. The scores of the remaining

components of Q are marginally increased by ε/9.

In the feature vector algorithms, the scores of all components that are more frequent in Q

than in P are increased by that difference in frequency multiplied with the similarity score. For

the example discussed in this section, all the components in Q except for component A would

get their score increased by the computed similarity score. Note that because components that

are already part of the input partial composition P are removed from contention when the top

R components are picked to be recommended so the changes in score to components A and D

are inconsequential.
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Chapter 7

Evaluation Methodology

The approach to component recommendation based on structural similarity of compositions

is evaluated through the four structural component recommender algorithms defined in chapter 6

using two distinct evaluation scenarios—evaluation based on composition snapshots which are

recommender query examples, presented in chapter 8, and evaluation based on simulated com-

position development where a composition is created incrementally, one component at a time,

and the recommender is queried after each step, presented in chapter 9. Both evaluation scenar-

ios are based on the idea that previously finished compositions can be used to create queries for

the recommender for which additional information is available about which components would

be useful recommendations for that query.

This chapter defines the general evaluation methodology used in both scenarios. First,

the two datasets used for evaluation—a dataset of Yahoo Pipes compositions, and a synthetic

dataset of more complex compositions—are described in section 7.1. Second, measures of rec-

ommender quality used in the evaluations are defined in section 7.3. Three simple statistical

component recommender algorithms that are used mainly to characterize the datasets and as

baselines when evaluating the structural algorithms are defined in section 7.4. Then, section 7.5

explains the methodology used for evaluating probabilistic recommender algorithms. Finally,

the chapter is concluded with a discussion of algorithm parameter values that were chosen for

evaluation in section 7.6.
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7.1 Evaluation Datasets

The presented recommender algorithms are evaluated on two distinct datasets, i.e. two dif-

ferent collections of composite applications. The first dataset is a set of 7600 most popular

Yahoo Pipes that were extracted from the Pipes website. The second dataset is synthetic and

models more complex compositions with some of the properties of composite applications that

can be created with Geppeto.

In the remainder of this section, these two datasets are analyzed in terms of the number

of distinct components used in the compositions, the number of components and connections

in compositions, neighbor diversity of components, component repetition in compositions, and

structural complexity. The analyses are summarized and the dataset properties are compared

from the aspect of component recommendation in section 7.2.

7.1.1 The Yahoo Pipes Dataset

In Yahoo Pipes terminology, components are called modules and connections between mod-

ules are called wires. Modules are used to construct feed URLs, fetch feed data, process it,

merge it with other feed data, and present it as a new feed. When developing a pipe, there are

a total of 55 different modules to choose from. The histogram of module frequencies in the

dataset of 7600 pipes is shown in figure 7.1.

Three outliers have been remove to make the histogram more readable. First, the most

frequent module is the fetch module that appears 12685 times in the 7600 pipes in the dataset.

This module is used to fetch feed data and is therefore used in every pipe at least once. The

second most frequently used module is the output module which is used exactly once in every

pipe and represents the output feed of the pipe. Finally, the third most used module is urlbuilder

which enables construction of parametrized URLs from parts, some of which can optionally be

entered by the pipe’s user. Urlbuilder occurs 5889 times in the dataset. These outlier modules

have a significant impact on component recommendation on this dataset as they are ubiquitous

in Yahoo Pipes.

Out of the remaining 52 modules, 10 modules are used between 1800 and 4000 times, and

the other 42 modules are used at most 900 times with 22 modules being used at most 200 times.

The 13 most frequent modules seem to be essential in Pipes development while the remaining

42 modules are only occasionally useful.
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Figure 7.1: The histogram of component frequencies in the Yahoo Pipes dataset with a bin size of
100. Three outliers have been removed to make the histogram more readable: the fetch module with
a frequency of 12685, the output module with a frequency of 7600 and the urlbuilder module with a
frequency of 5889.

The histogram of the number of modules used in a pipe in the Pipes dataset is shown in figure

7.2. The average number of modules per pipe is around 9.3, the median is 7, and the maximum

is 177. As is obvious from the histogram, the distribution of composition size for Yahoo Pipes is

very skewed towards smaller compositions, and pipes with more than 20 modules are rare. This

is because most pipes perform simple feed transformations, e.g. feed filtering or geotagging,

that can be achieved with only several modules.

The distribution of the number of wires per pipe is shown in figure 7.3. The average number

of wires per pipe is around 8.9, the median is 6 wires, and the maximum is 266. Almost all

pipes in the dataset have fewer than 20 wires which is to be expected due to the distribution of

module counts per pipe discussed above.

The distribution of neighbor diversity in the Pipes dataset is shown in figure 7.4. The neigh-

bor diversity of a component is defined as the number of distinct components it is connected
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Figure 7.2: The histogram of the number of modules used in a pipe in the Yahoo Pipes dataset with a
bin size of 2. There are several pipes in the dataset above size 80 up to a maximum of 177 used modules.

to via an arc at least once in the whole dataset. Two significant groups of modules in terms of

neighbor diversity can be identified in the histogram—one with modules with neighbor diversity

between 8 and 14 and one with modules having a neighbor diversity in the 18–22 range.

In general, components with large neighbor diversity are less useful for component recom-

mendation as they provide less specific information about which components could be useful to

finish the composition.

Several modules frequently appear multiple times in a single pipe, most of all fetch and

urlbuilder. As noted in section 6.4, a module is repeated in a pipe an average of 1.57 times,

and the fetch module appears 95 times in a single pipe. Component repetition is significant

for the GraphEditDistance algorithm as repeated matching components increase the number of

possible vertex matchings.

Yahoo Pipes are structurally very simple compositions. When represented with the graph

model from section 5.1, all pipes are acyclic because the graph model represents the data flow
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Figure 7.3: The histogram of the number of wires per pipe with bin size 2. Similar to the module counts
histogram in figure 7.2, there are several pipes in the dataset with more than 100 wires which are not
shown in the histogram. The actual maximum number of wires in a pipe is 266.

of the pipe. Furthermore, out of the 7600 pipes in the dataset, 6302 are directed trees1.

A recent study [131] analyzed the Yahoo Pipes dataset and community and discovered sev-

eral properties of interest for the research presented in this dissertation. Slightly over 60% of all

the analyzed pipes had the same bag of modules as another pipe in the dataset. In fact, under a

somewhat loosely defined structural model that is on a similar level of abstraction as the graph

model from section 5.1, the study found that around 81% of pipes have a minimal distance of

only 2 to another pipe, where the distance metric is the number of modules or wires that have to

be changed. The study authors suggest that this is because pipes can be cloned and the duplicate

can be used as a starting point for a new pipe. One of the conclusions of the survey is that pipe

authors would benefit from better development support which also might reduce the amount of

duplication of functionality.

1A directed tree is a directed acyclic graph (DAG) that remains acyclic even when arcs are replaced with
undirected edges, i.e. becomes an undirected tree when arcs are replaced with edges.
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Figure 7.4: The histogram of the number of distinct components a component is connected to at least
once in the whole datasets with a bin size of 2.

7.1.2 The Synthetic Dataset

The primary motivation for evaluating the presented algorithms on a synthetic dataset is to

explore how the algorithms perform for structurally more complex and diverse compositions

than Yahoo Pipes. Size, arc density and structural complexity of the generated compositions are

based on experiences with Geppeto.

To match the Pipes dataset, 7600 compositions were generated, represented in the graph

model from section 5.1. The components used in the generated compositions were drawn from

a set of 1000 available components. Note that this is more than an order of magnitude more

components than there are available in Yahoo Pipes. To model the fact that some components

are used more often than others, the base relative frequency of the kth component was defined as

as 0.99k. For intuition, note that this means that the tenth most frequent component is used about

9% less often than the most frequent component, and the hundredth most frequent component
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is used about 73% less often.

The challenging aspect of generating a dataset for this problem is that the premise of a

component recommender is that there is composition knowledge stored in the previously created

compositions. This composition knowledge is then used towards making recommendations

when faced with new queries. To model this property, component affinityAC,D was defined as a

measure of how often components C and D appear together in the same composition and also a

measure of how likely there is a connection from C to D. Component affinity is not defined to

be symmetric. This is because, for example, a particular route planning widget might often feed

data to a map widget, but the map widget might be much more popular and rarely connected

to that particular route planning widget. Furthermore, connections are directed and that map

widget might not even send any data back to the route planning widget.

For every component C of the 1000 available components, a number α between 0.01 and

0.99 was picked uniformly at random. This number is a measure of how many components C

has a high affinity to and controls neighbor diversity of the component. The kth component in

a random order specific to C was then assigned the affinity αk. Note that affinity is relative.

In other words, a high α characterizes components that can be connected to many different

components, i.e. have high neighbor diversity, because αk decreases fairly slowly. On the other

hand, a low α characterizes components that are typically connected to only a small number of

other components as αk decreases very quickly.

The size of every graph was drawn from a Gaussian with µ = 9 and σ = 3.5, truncated on

the left at 2. The first component was chosen according to component base relative frequencies.

Every subsequent component D was chosen based on the unnormalized probability obtained

by multiplying its base relative frequency with AC,D for some component C already in the

composition, chosen uniformly at random.

When all n components were chosen, each component was assigned an outdegree o drawn

from a Gaussian distribution of integers in the interval [0, n), with µ = 1 and σ = 2. Then, out

of all the n − 1 potential outgoing arcs, o were chosen using component affinities as relative

frequencies.

Finally, if the composition graph wasn’t weakly connected2, arcs with the highest affinity

were added until the graph became weakly connected, in a manner analogous to Kruskal’s

minimum spanning tree algorithm [174].

2A graph is weakly connected if its undirected analog is connected. In other words, if arcs are replaced by
undirected edges, there is a path between every pair of vertices.
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Figure 7.5: The histogram of component frequencies in the synthetic dataset with a bin size of 10.

The described process produced a dataset of 7600 compositions where 762 different com-

ponents of the possible 1000 appear at least once. The distribution of component frequencies in

the dataset is shown in figure 7.5. A small bin size of 10 was chosen to highlight that almost 250

components appear very sporadically in the dataset. The most frequent component appears 950

times which is significantly less than the dataset size. Therefore, no components are ubiquitous

in the synthetic dataset.

The histogram of composition sizes is shown in figure 7.6. The average and median size of

compositions is 9, and the largest composition has 21 components. The distribution of the num-

ber of arcs per composition is shown in figure 7.7. The average number of arcs in a composition

is 16.4, with a median of 16 and a maximum of 52.

The distribution of neighbor diversity in the synthetic dataset is shown in figure 7.8. The

shown distribution is a result of the interplay of base relative frequencies of components and

the parameters α. Even though α parameters are chosen uniformly, the distribution is decidedly

nonuniform. This can be explained through a simple model that focuses only on the effect of

82



7.1. Evaluation Datasets

0 5 10 15 20 25
0

200

400

600

800

1000
Composition sizes histogram for the synthetic dataset

Figure 7.6: The histogram of composition sizes in the synthetic dataset with a bin size of 1.

the α parameter on neighbor diversity.

Given a component C with the neighbor diversity parameter α, the affinity of C to the kth

component in some fixed order of components specific to C is defined as αk. Assume that an

arc (C,D) will appear in the dataset if and only if the component affinity AC,D is at least some

constant p < 1. This would, in other words, mean then the neighbor diversity of component C

would equal the number of such components D that have affinity AC,D ≥ p. Denote neighbor

diversity with nd. Then

αnd < p, (7.1)

because k starts at 0. Taking logs reveals the relationship between neighbor diversity and α in

this simple model:

nd ∼ 1

logα
. (7.2)

In words, neighbor diversity is inversely proportional to the logarithm of α. Therefore, the range

of α values that produce a certain value of neighbor diversity decreases quickly as neighbor
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Figure 7.7: The histogram of arc counts in compositions in the synthetic dataset with a bin size of 2.

diversity increases, and this property is clearly reflected in the histogram—most components

have low neighbor diversity, there is a large number of components with neighbor diversity

between 30 and 150, and only about 50 components have neighbor diversity over 150.

This property of the dataset models the fact that most components usable with Geppeto are

specific and can’t be meaningfully connected to a large number of other components. On the

other hand, a small number of generic programmable widgets can be connected to nearly every

other component.

Components are, on average, repeated 1.43 times in a single composition in the synthetic

dataset, and a single component is, at maximum, used 16 times in one composition. In terms of

structural complexity, 6515 of the generated synthetic compositions contain at least one cycle,

and 483 of the remaining compositions are directed trees.
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Figure 7.8: The histogram of the number of distinct components a component is connected to at least
once in the whole datasets with a bin size of 10.

7.2 Summary and Comparison of Evaluation Dataset Prop-

erties

The number of components in Yahoo Pipes development is only 55, while 762 components

appear in the synthetic dataset. With all else being equal, this would make the problem of

component recommendation on the synthetic dataset significantly more challenging. However,

a high quality component recommender would also be more useful in a composition system

where many components can be used.

There are no ubiquitous components in the synthetic dataset, while in the Pipes dataset, the

fetch and output modules appear in every pipe as their functionality is essential. On the other

hand, the distribution of component frequencies is very similar in both datasets. In the synthetic

dataset, the 20% of the most frequent components account for about 71% of the total number
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of components, while 50% of the most frequent components cover 95% of the total number of

components. In the Pipes dataset, these two percentages are 76% and 94%. Therefore, in both

datasets, about one half of the available components are used rarely. A similar distribution was

found in the use of APIs in mashups listed on the Programmable Web website [175].

While the average size of compositions in both the Pipes dataset and the synthetic dataset

is close to 9 components per composition, the distribution of composition size is significantly

skewed towards smaller compositions in the Pipes dataset, while it is normal in the synthetic

dataset. The relatively small number of components per composition is typical for composition

systems, especially those where compositions are created through direct manipulation of com-

ponents in a graphical setting. More complex functionality is then achieved through hierarchical

organization where an entire composition is used as a component in another composition.

Compositions in the synthetic dataset are structurally much more complex than Yahoo Pipes.

Specifically, pipes process feeds in fairly simple patterns and their graph representation is an

acyclic data flow graph. On the other hand, the synthetic dataset aims to model more com-

plex compositions where connections arise not only from data flow, but also from control flow,

temporal or location-based events, etc.

These structural complexity properties of the datasets are also reflected in the number of

connections per composition. For both datasets, the shape of the distribution of the number of

connections per composition closely follows that of the composition size distribution. However,

while pipes are mostly directed trees, i.e. a pipe with n modules is likely to have n − 1 wires

which is reflected in the nearly identical distributions of pipe module and wire counts, compo-

sitions in the synthetic dataset on average have twice as many connections as components.

In section 7.1.1, the neighbor diversity of a composition was defined as the number of

distinct components that component is connected to at least once in the entire dataset. In the

synthetic dataset, most components have low neighbor diversity relative to the total number of

available components and the distribution of neighbor diversity is unimodal. Conversely, in the

Pipes dataset, neighbor diversity is more evenly distributed, with two large groups of modules

in the 8–14 and the 18–22 ranges.

The average repetition of a component in one composition is only slightly lower in the syn-

thetic dataset than in the Pipes dataset at 1.43 versus 1.57. However, component repetition is

qualitatively significantly different in that the most often repeated components in Yahoo Pipes

are the ubiquitous fetch and urlbuilder modules, while there are no ubiquitous modules in the
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synthetic dataset. Consequently, when evaluating composition similarity in the GraphEditDis-

tance algorithm, it is less likely that the same component is repeated many times in both the

input partial composition and a database composition in the synthetic dataset than in the Pipes

dataset. Due to this qualitative difference, the GraphEditDistance algorithm is expected to

achieve lower response times on the synthetic dataset than on the Pipes dataset.

7.3 Measures of Recommender Quality

For each query, the recommender produces an output list of R recommended components,

whereR is a parameter of the used recommender algorithm. The algorithms are evaluated using

four measures of recommendation accuracy by comparing the list of recommended components

with the set of components called the useful recommendations for that query. The set of use-

ful recommendations is chosen in different ways for different experiments and is explained in

chapter 8.

The first measure of recommender accuracy is based on the intuition that given a small

enough R that all recommendations can be considered by the user at a glance, the recommen-

dation will be successful if at least one recommended component is useful. This measure is

called intersection accuracy throughout the dissertation. For a particular recommendation of

R components, the intersection accuracy of the recommender is set to 1 if at least one of the

R components is in the set of useful recommendations for that query. Otherwise, intersection

accuracy is 0.

The remaining three accuracy measures are precision, recall and the F1 score, all of which

are commonly used in information retrieval [70,176,177]. These measures are based on binary

relevancy of components for a particular query to the recommender. In the evaluation results in

the following chapters, a component is considered relevant for a query if and only if it is in the

set of useful components for that query. Let the set of useful components for a query be U and

the set of recommended components beR. Then

precision =
|U ∩ R|
|R|

, and

recall =
|U ∩ R|
|U|

.

Note that using previously introduced notation, |R| = R, and that precision is equivalent to
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intersection accuracy if R = 1.

In a probabilistic interpretation, precision is the probability that a recommended component

is useful. Conversely, recall is the probability that a useful component is recommended. It is

well known that precision and recall are inversely related [46]. Specifically, precision can often

be increased by decreasing the number of recommendations R, while recall can be increased

by increasing R. For example, perfect recall can always be achieved by recommending every

component in in the set of all components T . Therefore, precision and recall are always reported

together.

The relative importance of precision and recall depends on the specific use case of the rec-

ommender. A low precision algorithm might often lead the user astray by recommending use-

less components. On the other hand, a low recall algorithm will often miss opportunities to

recommend some very useful component.

In this dissertation, this tradeoff between precision and recall is evaluated using the F1 score,

which is the harmonic mean of precision and recall

F1 =
precision · recall
precision+ recall

, (7.3)

and is often used to represent both precision and recall with a single number when both are

equally important.

In every experiment, the averages of these four measures over all queries are graphed next

to each other with equal value ranges on the graph axes.

There are several desirable properties for a recommender except accuracy. In this disser-

tation, special attention is given to recommendation coverage. In general, in the evaluation of

recommender systems, coverage is a measure of the size of the set of items for which a recom-

mender can make rating predictions or can recommend to users [46]. A recommender with low

coverage is likely to be less useful to users as it is unable to assist them in many choices they

might have to make. Conversely, a recommender with higher coverage has a larger chance to

recommend components that the user is not aware of.

Herlocker [46] defines catalog coverage as the percentage of items in the item set that

are actually recommended, usually measured in a set of recommendations in a single point in

time. In the evaluation results in the following chapters, catalog coverage is defined to be the

percentage of components from the component set T that get recommended at least once by an

algorithm during an experiment.
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Furthermore, the recommender algorithms are evaluated for successful coverage where only

recommendations of useful components are counted towards coverage. Successful coverage, by

definition, is at most as high as catalog coverage, and the difference between catalog coverage

and successful coverage is the percentage of components that were recommended at least once,

but were never actually useful recommendations. Catalog coverage and successful coverage

are graphed next to each other with equal value ranges on the graph axes so that they can be

compared easily.

Both catalog coverage and successful coverage are analyzed qualitatively using coverage

curves. A coverage curve is a graph in which the y-axis represents the frequency of recommen-

dations of a particular component, and the x-axis represents the rank of that component when

components are sorted in nonincreasing order by that frequency. For example, the most fre-

quently recommended component has rank 0 and its frequency is graphed directly on the y-axis

of the coverage curve.

For every algorithm, the area under the coverage curve for catalog coverage is equal to the

number of queries multiplied by the number of recommendations per query R. However, the

distribution of that area reveals how the algorithm achieves its catalog coverage. For example,

an algorithm might achieve high catalog coverage by recommending components randomly.

Then the coverage curve for its catalog coverage would be close to a horizontal line. On the

other hand, an algorithm that only recommends some of the most popular components will have

a very steep coverage curve that quickly touches the x-axis.

The same idea is also applied to successful coverage where the total recommendation fre-

quency of components on the y-axis is replaced with the frequency of successful recommenda-

tions.

Finally, the recommenders are evaluated on response time which is defined as the length of

the interval between the moment when the recommender receives a query and the moment when

it produces a list of recommended components. All the algorithms and the testing framework

were implemented in Python 3 and the experiments were run on a workstation with an Intel

Core2 Q9400 processor and 4GB of RAM, under Windows XP.
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7.4 Baseline Recommender Algorithms

Along with the four structural recommender algorithms defined in chapter 6, three simple

recommender algorithms that provide useful information about the datasets and serve as base-

lines are also evaluated. The algorithm WeightedRandom recommends R components picked

from the set of all components T at random. The probability that a particular component is

chosen is proportional to its frequency in the composition database for a particular experiment.

WhenR = 1, the probability that a component is recommended is equal to its relative frequency

in the composition database, and goes up with R.

The algorithm MostPopular deterministically recommends the R components that are most

frequent in the composition database.

Finally, the algorithm MostFreqConn ranks components by how often they are connected

to components in the input partial composition P in the composition database and then rec-

ommends the R most frequent components. Specifically, during initialization, for each pair

of components u, v ∈ T , the algorithm counts how often the arcs (u, v) and (v, u) appear in

the graphs in the composition database. Then when making recommendations for a partial

composition P , for every component u of P and every component v ∈ T this frequency is

added to the score of component v. Finally, the components with the highest R scores are se-

lected, sorted by score and recommended. Therefore, the time complexity of this algorithm is

O(nP |T |+R logR).

Note that these baseline algorithms do not conform to the recommender method described

in section 6.1 in that they do not search for similar compositions in the database for each query.

Rather, they extract statistics from the composition database at initialization time, before any

query has been processed. In a practical setting, these statistics would be updated dynamically

as new compositions are added to the composition database.

As the structural recommender algorithms, these baseline algorithms also never recommend

components that have already been used in the input partial composition P , i.e. these composi-

tions are filtered out before components are recommended.

A summary of the definition of these three baseline algorithms is shown in table I.
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Table I: A summary of the three baseline algorithms.

Algorithm Recommended components

WeightedRandom
R components not already in P chosen at random with probability
proportional to their frequency in the composition database.

MostPopular
R components not already in P that are the most frequent in the
composition database.

MostFreqConn
R components not already in P that most frequently connected
to components in P in the composition database.

7.5 Evaluating Probabilistic Algorithms

Out of the evaluated algorithms, GraphEditDistance and WeightedRandom are probabilistic

algorithms, i.e. they employ a random process in their operation. Furthermore, two of the

strategies used for simulating composition development in chapter 9 are also randomized and

all the recommender algorithms employed under those strategies are treated as probabilistic

because their inputs vary depending on the random process used in this simulation strategy.

Throughout the presented evaluation results, average recommendation accuracy and aver-

age recommender response time are reported. When evaluating a probabilistic algorithm, the

evaluation was repeated 30 times. The resulting distribution of average accuracies and response

times can be approximated with a normal distribution by the central limit theorem. In the re-

mainder of this section, only accuracy is discussed, but the exact same procedure was applied

when computing average recommender response times.

The reported accuracy estimate is the mean of the average accuracies over the 30 runs of the

experiment. Since the true mean is unknown, the unbiased estimator of the standard deviation

is

ŝ = 1.0086

√∑30
i=1(xi − x̄)2

29
(7.4)

where xi is the average accuracy for the ith run of the experiment and x̄ is the mean of all xi.

Since the true standard deviation of the distribution is unknown, the t-distribution was used

to compute confidence intervals. For 29 degrees of freedom and α = 0.05, the half-width of the

confidence interval is computed as

CI = 2.045
ŝ√
30
. (7.5)

When a result was computed in this manner, the legend of a graph shows error bars. How-
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ever, the results were very precise in most experiments so the computed confidence intervals

are nearly invisible on most graphs.

In addition to average recommender response times, maximum response times were also

analyzed. For a probabilistic algorithm, the reported maximum response time is the median of

the maximum response times in the 30 runs of the experiment.

Finally, the average coverage in the 30 runs is reported, with a confidence interval
√

30 times

larger than in 7.5 as it is not a mean of sample means, but a simple mean of 30 experiments.

For the purposes of qualitative coverage analysis via coverage curves, results of the first of the

30 runs are reported for the probabilistic algorithms.

7.6 Chosen Algorithm Parameter Values

Examining the effects of similarity filtering for component scores computation and of the

number of recommended components per query on recommendation quality is one of the focus

points for the evaluation presented in this dissertation. These effects are evaluated by varying

the parameter BP which regulates similarity filtering as the recommender only considers the

BP percent most similar compositions in the composition database when computing component

scores, and the parameter R which defines the number of components that get recommended

for each query. For experiments that focus on different aspects of the recommender algorithms,

these parameters are fixed to BP = 10% and R = 3. These parameter values are supported by

evaluation results, and these choices are discussed in detail in chapter 8.

The edit distance parameters of the ComponentSeqEditDistance and GraphEditDistance

algorithms are good candidates for model selection techniques [178, 179]. Alternatively, the

parameters can be set based on domain knowledge about the particular composition system.

During preliminary research, the edit distance parameters of both ComponentSeqEditDistance

and GraphEditDistance were optimized using a simple hill climber over several choices of BP

and R with 200 random starting parameter values and up to a hundred iterations with both the

Pipes dataset and the synthetic dataset. Interestingly, the F1 score achieved by the algorithms

stayed within several percent for all runs of the algorithms, i.e. with a wide range of different

parameters. There are two explanations for this behavior. First, a lot of the edit operations for

a specific P -Q pair are fixed and can’t be changed regardless of the parameter values. Specifi-

cally, all the components in P that don’t appear in Q must necessarily be removed, and all the
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components that appear only in Q must be added. Second, the absolute value of the computed

edit distances affects the final recommendations only slightly—recommendations are made pri-

marily based on the relative differences in the computed similarity scores, and changing edit

distance parameters typically only scales the computed edit distances up or down.

Due to the large number of different experiments that were conducted during evaluation of

the recommender algorithms, the relatively high duration of each experiment, and the prob-

abilistic nature of the GraphEditDistance algorithm, optimizing these parameters for every

experiment was infeasible. Based on this fact and the indication that varying edit distance

parameters has a relatively small effect on recommendation accuracy, the parameter values

Cadd = Crem = 1.0 and Cconn = 0.5 were used consistently in all experiments, and this issue

was left for further research.

Finally, in all the presented results, the parameter L of the GraphEditDistance algorithm,

which regulates the maximum number of matching choices considered by the algorithm, was

set to max {(nP + 2)2, 100}. This allows progressively more choices to be explored when the

partial input composition P gets larger, while also establishing a constant upper limit which

then provides a guarantee for worst case performance. This constant upper limit is especially

important for unusually large input partial compositions with a lot of repeated components,

for example the pipe with 95 fetch modules, which would otherwise require an impractically

large amount of time to process. Note that this means that for such input partial compositions,

the GraphEditDistance algorithm might not be able to produce high quality recommendations,

but in many cases, producing high quality recommendations for such compositions might be

impossible as they are so different from other compositions.
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Chapter 8

Snapshot Evaluation

In this chapter, the first evaluation scenario for evaluating component recommendation al-

gorithms based on composition snapshots is presented. A composition snapshot (or simply, a

snapshot) represents a particular stage of development of a composition. In particular, a snap-

shot is a subgraph of a previously completed composition. A set of components that can be use-

ful for completing the snapshot into that previously completed composition is assigned to every

snapshot—these components are then called useful components or useful recommendations in

the sense that the user might benefit from their recommendation in the stage of development of

the composition that is represented by the snapshot. The snapshot subgraph is then provided as

the input partial composition to the recommender and its output is compared to the set of useful

recommendations.

An example of a composition and its snapshot is shown in figure 8.1. The completed com-

position from the dataset is created by combining components A through E, with two instances

of component B. A possible snapshot of this composition consists of components B, C and

E which are marked in the figure with a gray fill. Additionally, the snapshot subgraph has the

single arc (B,C) which is marked with an asterisk.

There are several possible ways to define the set of useful recommendations for a snapshot,

and two of these choices are discussed in this chapter. The simplest definition of the set of

useful components of a snapshot is the set difference of the component set of the completed

composition from the dataset and the component set of the snapshot. For the example in figure

8.1, components A and D would be considered useful in this definition. Note that compo-

nent B is not considered a useful recommendation because it is already a part of the snapshot,

even though another instance of it is required to complete the snapshot, as discussed in section
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Figure 8.1: A snapshot of a composition. The vertices in the snapshot have a gray fill and the only arc
in the snapshot is marked with an asterisk.

6.1. This definition of useful recommendations for a snapshot is used throughout most of this

chapter.

The goals of the experiments presented in this chapter are as follows. First, the effect of

similarity filtering is evaluated because some algorithms, depending on how they evaluate sim-

ilarity, might experience degradation of recommendation quality due to the influence of the

long tail of the composition similarity distribution on the computed component scores. In other

words, when computing component scores in the absence of similarity filtering, the cumulative

effect of all database compositions that are not very similar to the input partial composition can

outweigh the effect of a few very similar compositions, which, in turn, can make the recom-

mender choose poor recommendations.

Choosing the number of components to recommend per query R is a central issue in the

design of a component recommender system. If too many components are recommended, users

are likely to ignore most recommendations most of the time. On the other hand, if too few

components are recommended, opportunities for useful recommendations can be missed. In

this respect, choosing R is largely a matter of user interface design. While these properties

can’t be directly evaluated with an off-line experiment, information about the effect of different

values of R on recommender quality can be used as a guideline for choosing an appropriate

value.

The effect of the size of the composition database N is evaluated primarily to explore

how response times of the various recommender algorithms increase for larger composition

databases. The changes of other recommender quality measures are then useful for analyzing

the tradeoff between, for example, response time and accuracy as the composition database size

changes. Specifically, for some component recommendation use cases, it might be beneficial to
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only use a part of the whole composition database when making recommendations. Additional

considerations regarding composition database size are discussed in section 8.4 at the end of

this chapter.

The effect of arcs in the input partial composition is evaluated because users might create

applications in various ways. On one extreme, a user might make all the required connections

between a set of components before adding another component to the composition workspace.

This situation is explored throughout most of the chapter. However, on the other extreme, a user

might not make any connections before all the components required for making a composite

application are on the composition workspace. It is important that a component recommender is

able to provide useful recommendations in both these situations, and this is a major reason why

all the presented algorithms are component-centric in that they base their similarity evaluation

mostly on components included in compositions. Through the results in these extreme cases, the

goal is to characterize the general effect of arcs in the input partial composition on recommender

quality.

Finally, as noted above, different definitions of useful recommendations can be meaningful.

The simplest definition of usefulness assumes that all the unused components of a completed

composition can be useful for completing a snapshot, i.e. a partial composition. However, in

a large composition, the user might not be able to identify a component that is in some sense

distant from the partial composition as a useful recommendation, even though that component

will eventually be used. For example, a component might be a leaf of the composition graph

and the path that leads to it from the nearest snapshot vertex could be long. This issue is

further analyzed in the next chapter, but in this chapter, a definition of useful components that is

restricted only to the frontier of the snapshot is also considered. Specifically, in this definition, a

component is considered useful only if it is directly connected to the snapshot in the completed

composition. Such a component is then called adjacent-useful.

The rest of this chapter is organized in the following way. First, in section 8.1, the pro-

cess by which snapshots were generated is explained. Then in sections 8.2 and 8.3, the results

of snapshot evaluation on the Pipes dataset and on the synthetic dataset are presented with an

emphasis on the changes in accuracy, coverage and response time with different algorithm pa-

rameter settings and input and environment properties. In both sections, the generated snapshot

set is briefly analyzed, and the following algorithm properties are evaluated:

• the effect of similarity filtering for component score computation, governed by the BP
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parameter

• the effect of changing the number of components recommended per query R

• the effect of the number of compositions in the composition database, denoted by N

• the effect of arcs in the input partial composition

• the effect of the adjacent-useful definition of useful recommendations

Finally, the main results of snapshot evaluation for both datasets are summarized and dis-

cussed in section 8.4. This section includes both an analysis of recommender quality in the

absolute sense, and a summary of the effects discussed in sections 8.2 and 8.3.

8.1 Snapshot Generation

Composition snapshots were generated from both composition datasets in the following

way. First, 500 distinct compositions were selected from the dataset, uniformly at random.

Then, 2000 snapshots were generated from the 500 chosen compositions. When generating

each snapshot, one of the 500 compositions was chosen uniformly at random, i.e. an average of

four snapshots were generated from each of the 500 compositions.

For a complete composition of size n, the size of the snapshot was chosen from the Gaussian

distribution of integers in [1, n − 1] with µ = n/2 and σ = n/4. This distribution of size was

chosen over a uniform distribution because the uniform distribution significantly favors small

snapshots as they are available in every composition. For a given snapshot size ns, ns vertices

were chosen from the complete composition, uniformly at random. The snapshot subgraph was

then defined as the subgraph induced by the chosen vertices, i.e. all the arcs between the chosen

vertices were included in the snapshot.

Finally, the set of useful recommendations for that snapshot was computed as explained

above. If this set turned out to be empty, thus making the snapshot useless for evaluating the

recommender, the snapshot was discarded and a new snapshot was generated instead.

The same set of snapshots was used for all the conducted experiments. The remainder of

the dataset, i.e. the dataset excluding the 500 compositions selected for snapshot generation,

was used to generate databases of previously completed compositions that the algorithms use to

make recommendations. Databases of size 100, 750, 1500, 2500, 4500 and 7000 were used in

the experiments, and this size is denoted by the capital letter N . The databases were generated

by initially randomly shuffling the remainder of the dataset after the 500 compositions used for
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snapshots were removed. Then the database of size N is simply the first N compositions in the

list. In this way, a database of a smaller size is a subset of any database of a larger size, and, for

any fixed size N , the composition database is always the same.

Except when evaluating the effect of different composition database sizes on recommender

quality, a database size of N = 2500 was used in all experiments presented in this chapter.

8.2 Snapshot Evaluation Results on Yahoo Pipes

In the set of 2000 snapshots generated from the Yahoo Pipes dataset, 54 out of the available

55 modules appear at least once in some snapshot. The average size of a snapshot is around 4.3

modules with 2 wires. This sparsity is to be expected as pipes are very sparse to begin with, and

whenever nonadjacent vertices are selected for a snapshot, a possible path between them in the

completed compositions will not be present in the snapshot in any way, i.e. arcs of the original

snapshot will be lost.

Importantly, the three most popular modules in Yahoo Pipes, namely the fetch, output, and

urlbuilder modules, are ubiquitous in the snapshots as well. The fetch module appears a total

of 1564 times, the output module 835 times, and the urlbuilder module 615 times.

In general, the module frequency distribution in the snapshots remained very similar to that

of the whole dataset with 72% and 94% of the total module frequency being covered by the

most frequent 20% and 50% of the modules, respectively.

The evaluation results presented in this section are organized in the following way. First,

the effects of similarity filtering for component score computation on recommender quality

are evaluated in subsection 8.2.1. Then, subsection 8.2.2 focuses on the issue of selecting the

number of components to recommend per query. In subsection 8.2.3, the effect of composition

database size is evaluated, primarily in terms of recommender response time. The effect of arcs

in the input partial composition is explored in subsection 8.2.4. Finally, recommender accuracy

under the adjacent-useful definition of useful recommendations is examined in subsection 8.2.5.

8.2.1 Effects of Similarity Filtering in Computing Component Scores

Similarity filtering in computing component scores is controlled by theBP parameter which

all four structural component recommender algorithms presented in this dissertation share. The

BP parameter determines the percentage of best matching compositions from the composition
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Effects of similarity filtering on recommender accuracy for the Pipes dataset

Figure 8.2: Changes in recommender accuracy for BP between 5 and 100 percent with R = 3 and
N = 2500 for the Pipes dataset.

database that are considered in component scores computation. Specifically, a lower value of

BP eliminates database compositions on the tail end of the similarity distribution.

The changes in recommendation accuracy for all four structural recommender algorithms

and the three baseline algorithms for values of BP between 5% and 100% with R = 3 and

N = 2500 are shown in figure 8.2. In the first row, intersection accuracy is graphed on the left

and the F1 score on the right, while the second row shows precision and recall graphs. For this

experiment, all four accuracy measures are qualitatively the same, i.e. are effected in the same

way by similarity filtering.

The results for the baseline algorithms form horizontal lines because these algorithms do not

depend on the BP parameter in any way as they are not based on evaluating similarity between

compositions and thus don’t do similarity filtering.
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Effects of similarity filtering on recommender coverage for the Pipes dataset

Figure 8.3: Changes in recommender coverage for BP between 5 and 100 percent with R = 3 and
N = 2500 for the Pipes dataset.

The feature vector algorithms ComponentVectorCos and StructureVectorCos are almost un-

affected by similarity filtering for BP values above 10%. Similarly, the accuracy of both

ComponentSeqEditDistance and GraphEditDistance decreases slightly as BP is increased, by

close to 3% as BP is increased from 10% to 100%. As both ComponentSeqEditDistance and

GraphEditDistance are affected in almost the same way, it seems that the general shape of

the similarity score based on edit distances, which is similar for both algorithms, makes these

algorithms more sensitive to similarity filtering.

The accuracy for all four structural algorithms decreases by several percent when BP is

reduced from 10% to only 5%. This is because, for some queries, the algorithms fail to score at

least R new components using only 125 of the most similar completed pipes, and are therefore

unable to recommend R components with a nonzero score. This occurs for queries where the

snapshot represents a large subgraph of a particularly common pattern found in Yahoo Pipes

and most of the 125 most similar pipes are in fact nearly identical and mostly contain only those

modules already found in the snapshot.

Similarity filtering also has a significant positive effect on coverage of all four structural

algorithms, as shown in figure 8.3. Catalog coverage is shown in the graph on the left, while the

right graph shows successful coverage where only useful recommendations are counted. Again,

the baseline algorithms are independent of BP as they do not process the composition database

for each query so their coverage remains constant, with fluctuations in WeightedRandom due to

randomness.

Over 2000 recommendations, the WeightedRandom algorithm recommends nearly all of the
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55 available modules at least once. However, only around 50% of these modules are ever useful.

The same level of successful coverage is achieved by GraphEditDistance for BP in the 5–10%

range. Furthermore, ComponentSeqEditDistance and GraphEditDistance benefit more from

more aggressive similarity filtering than the feature vector algorithms. The ComponentSeqEd-

itDistance algorithm achieves more than 30% higher coverage as BP is reduced from 10% to

5%, but only a 13% increase in successful coverage in that BP range. The GraphEditDistance

algorithm gains nearly 20% of both catalog coverage and successful coverage as BP is reduced

from 50% to 5%. Catalog coverage of both feature vector algorithms doubles in this BP range,

but about one half of this increase is achieved through inaccurate recommendations.
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Coverage curves with BP=100% for the Pipes dataset

Figure 8.4: Coverage curves for BP = 100% for the Pipes dataset with R = 3 and N = 2500.
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Figure 8.5: Coverage curves for BP = 10% for the Pipes dataset with R = 3 and N = 2500.

Both catalog coverage and successful coverage are next analyzed qualitatively using cov-
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erage curves. The coverage curve for catalog coverage of an algorithm is generated by sorting

components that have been recommended at least once in nonincreasing order by recommen-

dation frequency, and then graphing recommendation frequencies in that order. The coverage

curve for successful coverage is generated in an analogous way, except that only successful

recommendations are counted.

The coverage curves for the Yahoo Pipes dataset with no similarity filtering, i.e. BP =

100% are shown in figure 8.4, with catalog coverage on the left and successful coverage on

the right. As these coverage curves are based on 2000 recommender queries with R = 3,

the area below the catalog coverage curve for each algorithm is exactly 6000. As expected,

the MostPopular algorithm has the steepest coverage curve, recommending only 11 of the 55

modules. On the other hand, WeightedRandom has the flattest coverage curve.

The coverage curves for all four structural algorithms are similar—they all recommend the

most recommended module for around one half of all queries, and there are seven modules

in total that are recommended very frequently. The remaining modules are recommended in

fewer than 300 queries, and all the modules after the 16th most recommended module are only

recommended once or twice.

The coverage curves for successful coverage are similar in shape, but contracted towards

the y-axis. In general, the area under the coverage curve for successful coverage equals the

number of successfully recommended components. For the structural algorithms, only 9 Pipes

modules are recommended successfully more than a hundred times. The GraphEditDistance

algorithms separates itself slightly from the other algorithms around the 10th rank, and with a

slightly longer tail, shorter only than that of the WeightedRandom algorithm.

The qualitative effect of similarity filtering on coverage can be seen from comparing the

previously discussed figure 8.4 and figure 8.5, which shows coverage curves with aggressive

similarity filtering with BP = 10%. Two significant differences can be seen in the coverage

curves for catalog coverage. First, when similarity filtering is applied, there is a plateau in

recommendation frequency between the 7th and the 13th ranked modules for all four struc-

tural component recommenders. Second, the tail of the coverage curve is longer for all four

algorithms, especially for ComponentSeqEditDistance and GraphEditDistance.

A similar effect is seen in successful coverage in that the coverage curves are slightly raised

around the 10th rank and have a longer tail.

Similarity filtering has a negligible effect on recommender response time, as shown in figure
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Effects of similarity filtering on recommender response time for the Pipes dataset

Figure 8.6: Changes in recommender response time for BP between 5 and 100 percent with R = 3 and
N = 2500 for the Pipes dataset.

8.6. The average response times are shown in the graph on the left, while maximum response

time is shown on the right. The baseline algorithms respond practically instantly for every

query, so their graphs are on the x-axis. Both values decrease very slightly with aggressive

similarity filtering for all four structural algorithms, but response time should not be taken into

account when choosing the BP parameter. These graphs show that, although both similarity

evaluation and component scores computation process the whole composition database, simi-

larity evaluation completely dominates in its effect on response time for all four algorithms.

Based on the results presented in this subsection, a BP value of 10% was used for the

remainder of the experiments. While more aggressive similarity filtering provides a further

increase in coverage, accuracy decreases slightly and would decrease considerably for smaller

database sizes.

8.2.2 Effects of the Number of Recommended Components Per Query R

The effect of changing the number of recommended components R from 1 to 10 on recom-

mendation accuracy is shown in figure 8.7. As expected, increasing R increases intersection

accuracy and recall, but decreases precision for all algorithms. Consequently, the F1 score in-

creases for small values ofR and then decreases for largerR. Specifically, for all four structural

recommender algorithms, the maximum F1 score is achieved for R = 2, with R = 3 being a

close second.

ComponentVectorCos and StructureVectorCos perform virtually identically at all data points.
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Figure 8.7: Changes in recommender accuracy for R between 1 and 10 with BP = 10% and N = 2500
for the Pipes dataset.

For all R greater than 1, they either match or marginally outperform GraphEditDistance, which

consistently outperforms the ComponentSeqEditDistance algorithm by between 2 and 5 percent.

Of the baseline algorithms, MostPopular performs most closely to the structural algorithms,

with similar qualitative dependence on R. On the other hand, WeightedRandom and MostFre-

qConn increase their intersection accuracy and recall the most as R is increased, but they also

start with very low accuracy for small values of R. Furthermore, their precision decreases very

slowly with R, staying mostly between 20 and 30 percent. These two effects produce an almost

constant F1 score beyond R = 5.

The effect of changing the number of recommended components per query on recommender

coverage is shown in figure 8.8. As can be expected by its definition, coverage increases close

to linearly withR. Excluding the WeightedRandom algorithm which is expected to achieve high
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Figure 8.8: Changes in recommender coverage forR between 1 and 10 withBP = 10% andN = 2500
for the Pipes dataset.

coverage, GraphEditDistance and ComponentSeqEditDistance recommend the largest number

of different modules across all values of R, both in catalog coverage and successful coverage.

While their accuracy is nearly identical, StructureVectorCos does consistently outperform

ComponentVectorCos in coverage, indicating that the inclusion of arc information does allow

for slightly more focused recommendations.

For the Pipes dataset, special attention needs to be given to the R = 1 case as it is especially

affected by the three ubiquitous modules fetch, output and urlbuilder. For example, since every

pipe contains one instance of the output module, an output recommendation will be successful

for any query where output is not already part of the snapshot. This happens in 1165 snapshots.

The fetch module, which is the most frequent module in Yahoo Pipes, appears 1564 times in the

2000 snapshots so it is very often not a valid candidate for recommendation. The MostPopular

algorithm will recommend the fetch or output module every time it is not a part of the snapshot.

Furthermore, for such snapshots, both feature vector algorithms will also always recommend

either fetch or output because they increase scores of all components in Q that are not in P in

their COMPUTESCORES function. Particularly, the score of the output module will simply be

the sum of all similarity scores over all the considered database compositions.

This is good intuition about how these feature vector algorithms work. They recommend

the most popular components in the composition database, but weighted by similarity scores. In

other words, they recommend the most popular components in the compositions that are similar

to the input partial composition.
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On the other hand, ComponentSeqEditDistance and GraphEditDistance sometimes recom-

mend other modules even for snapshots that don’t contain fetch or output as they increase com-

ponent scores only for those components that are directly connected to matched components.

When both fetch and output are a part of the query snapshot, all algorithms are forced to rec-

ommend some other module. As can be seen from the coverage graphs shown in figure 8.8, the

recommendations of MostPopular and the feature vector algorithms diverge in this case with the

feature vector algorithms recommending about five times as many different modules as Most-

Popular, but their accuracy still turns out to be almost identical. When R is increased beyond

1, the feature vector algorithms consistently outperform MostPopular across all measures.

In a practical setting, special components essential for each composition, such as the fetch,

output, and urlbuilder modules for Pipes, would need to be handled separately as recommending

them is likely not very useful as all users except complete novices will be aware of them and

their role in a composition.

The effect of the number of recommended components on recommender response time is

negligible as response time is clearly dominated by similarity evaluation, so it is not considered

here.

8.2.3 Effects of Composition Database Size N

All four accuracy measures are qualitatively affected by changes in the composition database

size in exactly the same way, as shown in figure 8.9 where the results for several values of N

from 100 up to 7000 are graphed.

Accuracy remains nearly constant for N beyond 750 for all four structural algorithms. This

can be explained by the fact that the Yahoo Pipes dataset contains many similar pipes so a fairly

small sample of the composition set provides sufficient information to make useful recommen-

dations for most queries. The baseline algorithms perform slightly better as the composition

database size increases as the statistics they collect from the database become more accurate

predictors of their true values.

Interestingly, all three baseline algorithms have increased accuracy for the smallest database

size tested (N = 100), while all three structural algorithms lose accuracy for that case. The re-

sults for a database size of 100 will depend largely on which 100 compositions are selected,

i.e. a large variance of accuracy can be expected for different samples. Obviously, the partic-

ular 100 compositions selected for these experiments provided useful statistics to the baseline
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Effects of composition database size on recommender accuracy for the Pipes dataset

Figure 8.9: Changes in recommender accuracy for N between 100 and 7000 with BP = 10% and
R = 3 for the Pipes dataset.

algorithms which allowed them to perform slightly better than for larger databases where this

variance is expected to decrease significantly. On the other hand, it is likely that, for some

queries, such a small database contained few or no compositions similar to the input partial

composition. Furthermore, with a BP of 10% and N = 100, the structural algorithms only

consider the 10 most similar compositions when computing component scores. Therefore, they

are unable to recommend 3 components for some queries or they recommend some components

with very low absolute scores, which decreases their accuracy.

Coverage results for the same range of composition database sizes are shown in figure 8.10.

For composition databases of 100 and 750 pipes, total catalog coverage of all four structural

algorithms increases by between 15 and 25 percent from the coverage at N = 2500, but most

of these recommendations are unsuccessful as successful coverage increases only marginally
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Effects of composition database size on recommender coverage for the Pipes dataset

Figure 8.10: Changes in recommender coverage for N between 100 and 7000 with BP = 10% and
R = 3 for the Pipes dataset.

in this range of database sizes. Both the increase in catalog coverage and the relative stability

of successful coverage can be explained through the connection of similarity filtering based

on a relative, percentage-based BP parameter with the size of the composition database. As

the database size decreases with a constant rate of similarity filtering, fewer and fewer of the

most similar compositions are involved in component scores computation. Therefore, as seen

in subsection 8.2.1, recommendations become more focused and catalog coverage increases.

However, component scores computed based on so few compositions chosen from an already

small sample of the whole composition database are less reliable and lead to bad recommenda-

tions for some queries.

The feature vector algorithms lose around 2% and GraphEditDistance loses 6% of success-

ful coverage as N is increased from 2500 to 7000. Both these effects are minor, corresponding

to one and three fewer recommended modules, respectively, but can also be explained by the

effect of similarity filtering. In other words, increasing N with a constant BP is similar to

increasing BP with constant N , which has already been shown to reduce coverage.

It can be concluded that, for the Pipes dataset, the size of the composition database in itself

does not significantly affect recommender coverage.

Recommender response time is defined as the time difference between receiving a partial

composition as input and producing a list of recommended components. Average response

times for different values of N are shown on the left in figure 8.11, while maximum response

times are shown on the right.

All four structural algorithms show linear growth of response time withN caused by similar-
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Effects of composition database size on recommender response time for the Pipes dataset

Figure 8.11: Average and maximum response time in milliseconds as a function of N between 100 and
7000 with BP = 10% and R = 3 for the Pipes dataset.

ity evaluation over the whole composition database. The slope of the graph is determined by the

computational complexity of each algorithm in evaluating similarity of each P -Q pair. The re-

sponse time grows most quickly with N for the ComponentSeqEditDistance algorithm, which,

on average, requires almost one second to respond to a query for the largest tested database

size of N = 7000. The average response time of the GraphEditDistance algorithm increases

with about half the slope of ComponentSeqEditDistance, reaching almost half a second for the

largest composition database. Both feature vector algorithms achieve a worst case average re-

sponse time in the 200ms range. Response times of the baseline algorithms are independent of

the composition database size and all three baseline recommenders respond practically instantly.

While average response time is important for predicting hardware requirements for hosting

a recommender system, maximum response time is more important in terms of user interaction.

While the maximum response time of both feature vector algorithms (263ms for ComponentVec-

torCos and 420ms for StructureVectorCos) increases only by about a factor of two compared to

average response time, the difference between average and maximum response time is signifi-

cantly larger for the more complex edit distance algorithms. The GraphEditDistance algorithm

evaluated the worst case query for 2.2 seconds, while ComponentSeqEditDistance required as

much as 7 seconds.
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Change in recommender accuracy when arcs are removed from the input partial composition for the Pipes dataset

Figure 8.12: Change in recommender accuracy when arcs are removed from the input partial composi-
tion P for values of R between 1 and 10, with BP = 10% and N = 2500 for the Pipes dataset.

8.2.4 Effects of Arcs in the Input Partial Composition

Based on the nearly identical results of the two feature vector algorithms discussed in the

previous subsections, it can be concluded that arcs impact recommender quality much less than

components. Specifically, the StructureVectorCos algorithm, which includes arc information in

the feature vector representation of compositions, outperforms the ComponentVectorCos algo-

rithm, which works with feature vectors containing only component frequencies, only slightly

in accuracy and coverage—in most experiments, the difference is within one percent and not

significant.

In this subsection, the goal is to examine this issue in more detail. While the difference

between the two feature vector algorithms is universal in that they are based on different rep-
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resentations one of which uses arcs and one of which does not, an important issue in com-

ponent recommendation is the impact of arcs in input partial compositions. This issue arises

because different users compose applications in different ways—some users might add com-

ponents when all the connections between previously added components have been defined,

while others might first get all the required components to the composition workspace and only

then start connecting the components. Both these options are only the ends of a spectrum of

possibilities in composite application development.

Due to this fact, one of the design requirements for a component recommender is that the

recommender should provide useful recommendations even when no connections between com-

ponents have been established. All of the previously discussed results were based on experi-

ments where a snapshot was the subgraph induced by a set of vertices in a composition graph,

i.e. all the possible arcs in the completed composition were present in the snapshot. In this

subsection, the algorithms are evaluated in the opposite extreme, where no arcs are present in

the input partial composition. Note that arcs were still present in database compositions and all

of the recommender algorithms operate exactly as described in chapter 6, i.e. they don’t adapt

to the lack of arcs specifically.

For all of these experiments, the exact same set of 2000 snapshots and their corresponding

sets of useful recommendations were used, except that all arcs were removed from the snap-

shots. As this change has a negligible effect on recommender response time, only accuracy and

coverage are analyzed.

The effect of arcs in the input partial composition on recommender accuracy is shown in

figure 8.12. The graphs show the change of intersection accuracy, the F1 score, precision, and

recall, i.e. the difference between a particular measure of accuracy when arcs are included in

the input partial composition and when they are removed. This change is graphed against the

number of recommendations per query R, but the same qualitative effect can be observed in

BP - and N -graphs as well.

Accuracy of ComponentSeqEditDistance decreases by between 1 and 5 percent, depending

on R. This decrease can be explained by the fact that when no arcs are present in the input

partial composition, the component sequence representation used in the ComponentSeqEdit-

Distance algorithm essentially contains the components of the composition in random order as

any order becomes equally valid for a generalized topological order—in fact, every order of

components is a topological order in the strict sense, without any generalization. On the other

111



8.2. Snapshot Evaluation Results on Yahoo Pipes

1 2 3 4 5 6 7 8 9 10
R

10

5

0

5

d
if
fe

re
n
ce

 i
n
 c

o
v
e
ra

g
e
 %

GraphEditDistance

ComponentSeqEditDistance

StructureVectorCos

ComponentVectorCos

MostPopular

WeightedRandom

MostFreqConn

1 2 3 4 5 6 7 8 9 10
R

10

5

0

5

d
if
fe

re
n
ce

 i
n
 s

u
cc

e
ss

fu
l 
co

v
e
ra

g
e
 %

Change in recommender coverage when arcs are removed from the input partial composition for the Pipes dataset

Figure 8.13: Change in recommender coverage when arcs are removed from the input partial composi-
tion P for values of R between 1 and 10, with BP = 10% and N = 2500 for the Pipes dataset.

hand, the compositions in the composition database still contain arcs so their component se-

quences list components in generalized topological order. This mismatch causes the algorithm

to occasionally miss useful recommendations.

All algorithms except ComponentSeqEditDistance achieve almost exactly the same accu-

racy with and without arcs in the input partial composition as their graphs are grouped around

the 0% change value. Specifically, the ComponentVectorCos algorithm and the baseline algo-

rithms MostPopular and MostFreqConn, which are completely independent of arcs in the input

partial composition, have completely horizontal graphs indicating no change in accuracy as

they produce exactly the same output in both experiments. The accuracy of StructureVector-

Cos, GraphEditDistance and WeightedRandom fluctuates marginally, in the order of a half of a

percent over all measures.

While the more complex feature vector algorithm StructureVectorCos does include arc in-

formation, their absence in the input partial composition mostly scales the similarity scores of

compositions in the composition database, so a lack of significant effect is not surprising.

On the other hand, the results for GraphEditDistance are somewhat unexpected in that it

too achieves the same accuracy regardless of arcs in the input partial composition. This implies

that, for the Pipes dataset, exploring multiple matching options provides no real benefit.

Removing arcs from the input partial composition has a similarly minor effect on coverage,

as shown in figure 8.13. Only the ComponentSeqEditDistance algorithm shows a significant

decrease in coverage and successful coverage of up to 13%, but only when more than four
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Figure 8.14: A snapshot of a composition. The vertices in the snapshot have a gray fill and the only
arc in the snapshot is marked with an asterisk. This figure is a repeat of figure 8.1 to illustrate the
adjacent-useful definition of useful recommendations.

modules are recommended per query.

The StructureVectorCos and GraphEditDistance algorithms show slight variation in cover-

age, corresponding to a difference of between 1 and 4 modules, which is not significant.

8.2.5 Evaluation Results Under the Adjacent-Useful Definition of Useful

Recommendations

In all the previously discussed experiments, recommendation quality was evaluated based

on the broadest definition of usefulness—a component was considered a useful recommenda-

tion for a snapshot given to the recommender as the input partial composition if and only if

it was used in the original completed composition that the snapshot was generated from. In

this subsection, a stricter definition of usefulness is considered. Specifically, a component is

considered a useful recommendation for a snapshot if and only if it is directly connected to a

component in the snapshot in the completed composition the snapshot was generated from.

For convenience, figure 8.1 is repeated here as figure 8.14. As explained previously in

section 8.1, under the usual definition of useful components, components A and D would be

considered useful1. In this subsection, under the adjacent-useful definition of useful recommen-

dations, component A would not be considered a useful recommendation as it is not directly

connected to any component in the snapshot.

The rationale for this definition is that recommender users might not be able to identify

that a recommended component is useful if it could only be useful after several intermediate

components are added to the composition. On the other hand, by this alternate definition of
1Component B would not be considered useful because it is already used in the snapshot itself, i.e. the user is

aware of it and knows how to use it.

113



8.2. Snapshot Evaluation Results on Yahoo Pipes

1 2 3 4 5 6 7 8 9 10
R

25

20

15

10

5

0

5

d
if
fe

re
n
ce

 i
n
 i
n
te

rs
e
ct

io
n
 a

cc
u
ra

cy
 %

1 2 3 4 5 6 7 8 9 10
R

25

20

15

10

5

0

5

d
if
fe

re
n
ce

 i
n
 F

1
 %

1 2 3 4 5 6 7 8 9 10
R

25

20

15

10

5

0

5

d
if
fe

re
n
ce

 i
n
 p

re
ci

si
o
n
 %

1 2 3 4 5 6 7 8 9 10
R

25

20

15

10

5

0

5
d
if
fe

re
n
ce

 i
n
 r

e
ca

ll 
%

GraphEditDistance

ComponentSeqEditDistance

StructureVectorCos

ComponentVectorCos

MostPopular

WeightedRandom

MostFreqConn

Change in recommender accuracy when only adjacent components are considered useful for the Pipes dataset

Figure 8.15: Change in recommender accuracy when only adjacent components are considered useful
recommendations for values of R between 1 and 10, with BP = 10% and N = 2500 for the Pipes
dataset.

useful components, the user should identify only those components that are on the frontier

between the partial composition and the eventual goal of the composition process.

As before, the exact same set of snapshots was used for these experiments, but the set

of useful recommendations was changed as described above. With this different definition

of usefulness, the size of the union of the useful recommendation sets for all 2000 snapshots

only decreases from 54 to 53 modules, i.e. only one module was never directly connected to a

snapshot. Furthermore, the average size of the set of useful recommendations for a snapshot

decreases from 2.76 to 1.89 components, and the sets are different for 884 of the 2000 queries.

The effect of this change on recommender accuracy is shown in figure 8.15. Analogously

as in the previous section, the graphs show the difference between accuracy with the adjacent-
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useful definition of useful components and accuracy results discussed earlier, which were ob-

tained with the broader definition of usefulness.

Note that when using the adjacent-useful definition of useful recommendations, the set of

useful recommendations for every snapshot is at most as big as with the broader definition,

but sometimes smaller. This causes a general decrease of intersection accuracy and precision

across all structural and baseline algorithms, especially for small values of R. The most ex-

treme decrease of precision is observed for the ComponentSeqEditDistance algorithm which

loses 25% of precision when only one module is recommended. Of the structural algorithms,

GraphEditDistance is least affected in precision by this change.

MostFreqConn is the least effected baseline algorithm, decreasing in precision by only 3%

even when R = 1. However, its precision is low to begin with. The MostPopular algorithm

behaves similarly to the structural algorithms, losing slightly more precision at almost all data

points. Finally, the precision of WeightedRandom decreases consistently by around 7% because

there are fewer modules to guess, on average.

The more pronounced decrease in precision when only a few components are recommended

is caused by the fact that the ubiquitous modules in Yahoo Pipes development are more often

considered bad recommendations. For example, when a snapshot does not contain and is also

not directly connected to the output module, a recommendation of that module will be inaccu-

rate.

Interestingly, the recall of both feature vector algorithms and ComponentSeqEditDistance

also decreases slightly when a small number of components is recommended per query, but

levels off and even increases slightly when at least four components are recommended. On the

other hand, the recall of the GraphEditDistance algorithm increases over all values of R, by

up to 4%. A similar and even more pronounced increase is seen for MostFreqConn, while the

recall of both remaining baseline algorithms decreases by up to 5%.

The cumulative effect of both the changes to precision and recall can be observed through

the F1 score in the upper right graph in the figure. The F1 score of all algorithms decreases

with the restricted definition of useful recommendations. The least affected algorithms are

GraphEditDistance and the baseline MostFreqConn and WeightedRandom algorithms. This

is expected as GraphEditDistance recommends those components that are often directly con-

nected to components in the snapshot, and MostFreqConn bases its recommendations exactly

on the frequency of such connections. The ComponentSeqEditDistance algorithm employs the
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Change in recommender coverage when only adjacent components are considered useful for the Pipes dataset

Figure 8.16: Change in recommender coverage when only adjacent components are considered useful
recommendations for values of R between 1 and 10, with BP = 10% and N = 2500 for the Pipes
dataset.

same method of scoring components as GraphEditDistance, but it matches fewer components

due to a fixed order in the underlying sequential representation.

The effect of this change in the definition of useful recommendations on coverage is shown

in figure 8.16. Obviously, there is no effect on catalog coverage as the input to the recom-

menders is exactly the same under both definitions of useful recommendations. Therefore,

the differences in successful coverage are caused by recommendations of components that are

actually used to finish an input partial composition P , but they are not directly connected to

components of P .

The successful coverage of several algorithms decreases by up to 6 percent when more

than four modules are recommended per query, which corresponds to 3 modules and is not

significant. Additionally, WeightedRandom loses several modules in successful coverage at all

data points, with high variance.

8.3 Snapshot Evaluation Results on the Synthetic Dataset

In the snapshot set, only 490 of the total 762 components are used at least once. Similarly

to the Pipes snapshot set, the average snapshot has around 4.3 components. The snapshots are

denser than the Pipes snapshots, but still sparse with 3.9 arcs per snapshot, on average. In

spite of this sparsity, 630 of the 2000 snapshots contain at least one cycle, while the remaining
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snapshots are DAGs2.

The most frequent component appears only 148 times in the snapshot set, which is more

than five times less than the frequency of the fetch module in the Pipes snapshot set. Overall,

the component frequency distribution is significantly flatter than that of the whole dataset, with

60% and 88% of the total component frequency covered by the 20% and the 50% of the most

popular components, respectively. For comparison, these percentages are 71% and 95% in the

entire synthetic dataset of 7600 compositions.

The remainder of the section is organized in an analogous way to section 8.2. In subsection

8.3.1, the effects of similarity filtering for component score computation are analyzed. Then, in

subsection 8.3.2, the effect of the number of recommended components per query is evaluated.

The change of recommender quality with different composition database sizes is presented in

subsection 8.3.3. Subsection 8.3.4 analyzes how recommender quality is affected by the poten-

tial lack of connections in the input partial composition, through repeating the experiments with

arcs removed from the snapshots. Finally, the section is concluded with the evaluation of the

adjacent-useful definition of useful recommendations in subsection 8.3.5.

8.3.1 Effects of Similarity Filtering in Computing Component Scores

In terms of accuracy, similarity filtering only marginally affects the ComponentSeqEditDis-

tance algorithm, while all the other algorithms are practically unaffected, as shown in figure

8.17. The accuracy of ComponentSeqEditDistance decreases by up to 5% on both sides of the

BP = 25% value across all four accuracy measures, but the only significant decrease happens

between BP values of 10 and 5 percent. As explained in subsection 8.2.1 of the Pipes snapshot

evaluation results, this decrease is likely caused by a fraction of the snapshots for which fewer

thanR components achieve a nonzero score. Unlike the Pipes dataset, this effect is not observed

in the GraphEditDistance algorithm.

The same dichotomy of algorithms is observed in the effect of similarity filtering on cov-

erage, as shown in figure 8.18. While the catalog coverage of the ComponentSeqEditDistance

algorithm increases significantly by more than 10% from no similarity filtering to BP of 5%,

the large majority of this increase is in unsuccessful recommendations, as successful coverage

only increases by slightly more than 3% in that range. The coverage of all the other algorithms

is unaffected.
2A DAG is a directed acyclic graph.
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Effects of similarity filtering on recommender accuracy for the synthetic dataset

Figure 8.17: Changes in recommender accuracy for BP between 5 and 100 percent with R = 3 and
N = 2500 for the synthetic dataset.

The coverage curves with no similarity filtering are shown in figure 8.19. Two interesting

properties that are in contrast with the Pipes dataset can be observed. First, the coverage curves

of all algorithms except MostPopular are flatter, i.e. many components get recommended fre-

quently, and the most recommended component gets recommended around 150 times. This is

the effect of a generally flatter distribution of component frequency in the dataset and the lack

of ubiquitous components. As can be expected, the WeightedRandom algorithm achieves the

flattest coverage curve, followed closely by GraphEditDistance.

The second interesting distinction from the Pipes coverage curves is the MostPopular al-

gorithm. Throughout the 2000 queries, the MostPopular algorithm recommends only five dis-

tinct components, and the three most frequent components are recommended for 1900 or more

queries. The coverage curve of MostPopular is therefore practically a vertical line, and the
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Effects of similarity filtering on recommender coverage for the synthetic dataset

Figure 8.18: Changes in recommender coverage for BP between 5 and 100 percent with R = 3 and
N = 2500 for the synthetic dataset.
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Coverage curves with BP=100% for the synthetic dataset

Figure 8.19: Coverage curves for BP = 100% for the synthetic dataset with R = 3 and N = 2500.

curve is cut in figure 8.19 around the frequency of 170 as all the other coverage curves would

otherwise be melded on the x-axis.

The coverage curves for successful coverage meet around the value 60 on the y-axis, and

are very similar for all four structural algorithms and MostFreqConn, with GraphEditDistance

showing the longest tail by around 40 components and the most recommended components at

every frequency beyond 80. The area under the curves for MostPopular and WeightedRandom

is vanishingly small as their accuracy on the synthetic algorithm is below 3%.

For completeness, the coverage curves with aggressive similarity filtering at BP = 10% are

shown in figure 8.20. This figure shows that coverage is practically unaffected both quantita-

tively and qualitatively by similarity filtering, with marginal effects on the ComponentSeqEdit-
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Coverage curves with BP=10% for the synthetic dataset

Figure 8.20: Coverage curves for BP = 10% for the synthetic dataset with R = 3 and N = 2500.
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Effects of similarity filtering on recommender response time for the synthetic dataset

Figure 8.21: Changes in recommender response time for BP between 5 and 100 percent with R = 3
and N = 2500 for the synthetic dataset.

Distance algorithm, as discussed above.

The effect of similarity filtering on recommender response time is shown in figure 8.21.

Analogous to the Pipes dataset, it can be observed that the response time of all recommender

algorithms is dominated by the process of similarity evaluation, and that computing component

scores accounts for only a small fraction of the time.

While the general effect of similarity filtering for the synthetic dataset is minor, the re-

maining evaluations in the following subsections were performed with BP set to 10%, which

provides some small benefit to the ComponentSeqEditDistance algorithm in coverage, and is

also consistent with the Pipes evaluation.

120



8.3. Snapshot Evaluation Results on the Synthetic Dataset

1 2 3 4 5 6 7 8 9 10
R

0

20

40

60

80

in
te

rs
e
ct

io
n
 a

cc
u
ra

cy
 %

1 2 3 4 5 6 7 8 9 10
R

0

20

40

60

80

F1
 %

1 2 3 4 5 6 7 8 9 10
R

0

20

40

60

80

p
re

ci
si

o
n
 %

GraphEditDistance

ComponentSeqEditDistance

StructureVectorCos

ComponentVectorCos

MostPopular

WeightedRandom

MostFreqConn

1 2 3 4 5 6 7 8 9 10
R

0

20

40

60

80
re

ca
ll 

%

Effects of R on recommender accuracy for the synthetic dataset

Figure 8.22: Changes in recommender accuracy forR between 1 and 10 withBP = 10% andN = 2500
for the synthetic dataset.

8.3.2 Effects of the Number of Recommended Components Per Query R

Changing the number of recommended components per query has a similar qualitative effect

as in the Pipes dataset, as shown in figure 8.22. As more components are recommended, inter-

section accuracy and recall of all four structural algorithms increase, while precision decreases.

The baseline algorithm MostFreqConn behaves very similarly to the structural algorithms. On

the other hand, due to the larger component diversity, the MostPopular and WeightedRandom

algorithms show practically constant precision below 3%, and their recall and F1 score increase

with R, but remain well under 10% even when 10 components are recommended per query. For

all three structural algorithms, the maximum F1 score is again achieved with R values of 2 and

3.
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Figure 8.23: Changes in recommender coverage forR between 1 and 10 withBP = 10% andN = 2500
for the synthetic dataset.

Coverage results are shown in figure 8.23. Increasing R increases successful coverage only

marginally beyond R = 5, and no algorithm is able to reach successful coverage of 45%. This

is in contrast with the Pipes dataset where increasing R continually increases both total and

successful coverage. It should be noted that coverage is always reported relative to the total

number of components in the dataset, which is 762 in the synthetic dataset. However, a signif-

icantly smaller number of only 484 components are ever considered useful recommendations

for the snapshot set used in the evaluations. In other words, an ideal recommender with 100%

precision could only achieve up to 64% successful coverage.

GraphEditDistance achieves the highest coverage except for WeightedRandom, and high-

est successful coverage for all values of R. The ComponentSeqEditDistance algorithm rec-

ommends between 1 and 5 percent fewer components than GraphEditDistance, and both al-

gorithms perform significantly better than the feature vector algorithms and MostFreqConn,

especially for larger values of R. However, this advantage in catalog coverage appears to result

mostly from inaccurate recommendations as the successful coverage of ComponentSeqEditDis-

tance is aligned almost perfectly with that of the feature vector algorithms.

8.3.3 Effects of Composition Database Size N

The four accuracy measures for different sizes of the composition database are shown in

figure 8.24. Qualitatively, all four accuracy measures are affected by variations in database

size in the same way. The feature vector algorithms and the baseline MostFreqConn algorithm
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Figure 8.24: Changes in recommender accuracy for N between 100 and 7000 with BP = 10% and
R = 3 for the synthetic dataset.

achieve only a slight increase in accuracy forN larger than 750. On the other hand, the accuracy

of GraphEditDistance and ComponentSeqEditDistance increases significantly by up to 10% as

the number of compositions in the database is increased from 750 to 7000. Both WeightedRan-

dom and MostPopular perform poorly for all database sizes and achieve their optimal accuracy

with a database of 1500 compositions.

Changes in recommender coverage for different composition database sizes are shown in

figure 8.25. On the Pipes dataset, a decrease in coverage with larger databases was observed for

all algorithms except ComponentSeqEditDistance. This decrease was explained by the indirect

effect of similarity filtering, i.e. through the fact that more and more compositions are consid-

ered when component scores are computed as the size of the database increases with a constant

BP value. However, on the synthetic dataset, coverage is practically unaffected by similarity
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Effects of composition database size on recommender coverage for the synthetic dataset

Figure 8.25: Changes in recommender coverage for N between 100 and 7000 with BP = 10% and
R = 3 for the synthetic dataset.

filtering and this effect is not present when changing database sizes.

All the algorithms achieved the worst catalog and successful coverage for the smallest

database of only 100 compositions. This is to be expected on a dataset with many compo-

nents as such a small database doesn’t even contain many of the components that are required

to complete some of the snapshots.

For databases of 750 compositions and larger, catalog coverage of the edit distance algo-

rithms decreases by up to 5% as the database size is increased to the maximum of 7000 com-

positions, while it stays nearly constant for the feature vector algorithms and all baseline al-

gorithms except WeightedRandom. Looking at the successful coverage graph, it is clear that

the edit distance algorithms achieve a higher catalog coverage for smaller databases through

inaccurate recommendations. This behavior is closely related to changes in accuracy discussed

above. Specifically, the edit distance algorithms require a slightly larger composition database

than the feature vector algorithms to reach their optimal accuracy. When fewer compositions

are available for analysis, but the composition database is large enough to contain most com-

ponents in some compositions, many inaccurate recommendations are made, but they cover a

larger set of components.

Recommender average and maximum response times for the synthetic dataset are shown in

figure 8.26. ComponentVectorCos and StructureVectorCos perform similarly in both average

and maximum response time as for the Pipes dataset, as can be expected due to similar com-

position sizes between the two datasets. On the other hand, ComponentSeqEditDistance and
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Effects of composition database size on recommender response time for the synthetic dataset

Figure 8.26: Average and maximum response time in milliseconds as a function of N between 100 and
7000 with BP = 10% and R = 3 for the synthetic dataset.

GraphEditDistance behave significantly better for the synthetic dataset. In the case of the Com-

ponentSeqEditDistance, average response time is very close to the Pipes dataset at just under

one second. However, maximum response time is almost halved at 3302 milliseconds as there

are some pipes with an especially large number of modules.

The GraphEditDistance algorithm processed queries faster, both on average and in the worst

case. The average response time on the synthetic dataset is below 350ms for all database sizes

and nearly matches the simpler feature vector algorithms. The worst response time recorded in

the experiment was slightly below 1.6 seconds, which is still almost four times slower than the

StructureVectorCos algorithm. This increase in performance of GraphEditDistance is due to

the number of repeated matching components within compositions of the two datasets. While

component repetition within a particular composition is only slightly less common in the syn-

thetic dataset, the case where the same component is repeated in many compositions is much

rarer than in the Pipes dataset. Therefore, for most queries, few possible vertex matchings exist

to be examined by the algorithm and the limit L is reached rarely.

8.3.4 Effects of Arcs in the Input Partial Composition

The change in accuracy when arcs are removed from the snapshots is shown in figure 8.27.

No significant effect can be observed as all changes across all values of R and all four accuracy

measures are within one percent, i.e. all tested algorithms achieve nearly identical accuracy

results with or without arcs in the input partial composition. This behavior, with one exception,
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Change in recommender accuracy when arcs are removed from the input partial composition for the synthetic dataset

Figure 8.27: Change in recommender accuracy when arcs are removed from the input partial composi-
tion P for values of R between 1 and 10, with BP = 10% and N = 2500 for the synthetic dataset.

was also seen on the Pipes dataset, and is explained in subsection 8.2.4.

The mentioned exception is the ComponentSeqEditDistance algorithm whose accuracy did

decrease when arcs were removed on the Pipes dataset, and stays practically constant on the

synthetic dataset. This implies that the generalized topological order isn’t very representative of

the structure of synthetic compositions, which is to be expected based on the generation process

used to create the synthetic dataset. Specifically, when synthetic components were generated, no

special rules were in place to enforce a similar order of components in a composition. Regularity

was introduced into the dataset through component affinities which resulted in similar groups of

components appearing together with similar local connectivity. Furthermore, most structurally

complex graphs have a large number of possible (generalized) topological orderings, so even if

two compositions are exactly the same, their component sequences might not be the same.
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Change in recommender coverage when arcs are removed from the input partial composition for the synthetic dataset

Figure 8.28: Change in recommender coverage when arcs are removed from the input partial composi-
tion P for values of R between 1 and 10, with BP = 10% and N = 2500 for the synthetic dataset.

In contrast, Yahoo Pipes are by their nature very linear and a large majority of them can be

represented with directed trees which typically allow fewer valid component sequences so the

topological order does actually represent a useful structural property of the pipe.

An analogously small effect can be seen in coverage shown in figure 8.28. The results are

largely unchanged, with insignificant fluctuations in several algorithms.

Based on these results, it can be concluded that arcs in the input partial composition have

close to no effect on recommender quality for the synthetic dataset. This issue is discussed

further in subsection 8.4.7.

8.3.5 Evaluation Results Under the Adjacent-Useful Definition of Useful

Recommendations

When only those components directly connected to the snapshot are considered useful rec-

ommendations, the size of the union of the sets of useful recommendations for all snapshots

decreases from 484 to 467 components and the average size of individual sets decreases from

2.89 to 2.33 components. In total, 630 of the 2000 queries are affected.

The change in all four measures of accuracy with this change in definition of useful compo-

sitions is shown in figure 8.29. Similar qualitative effects to the Pipes dataset can be observed,

with three significant differences. First, the baseline algorithms MostPopular and WeightedRan-

dom are almost unaffected in the absolute sense by the changed definition of usefulness as their

precision is already below 3% on the synthetic dataset. Second, both precision and intersection
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Change in recommender accuracy when only adjacent components are considered useful for the synthetic dataset

Figure 8.29: Change in recommender accuracy when only adjacent components are considered useful
recommendations, for values of R between 1 and 10, with BP = 10% and N = 2500 for the synthetic
dataset.

accuracy decrease as on the Pipes dataset, but the decrease is more even across different values

of R. Precision and intersection accuracy of all algorithms decreases by up to 6%, with larger

decreases occurring when a small number of components is recommended per query. Further-

more, this decrease is significantly smaller than on the Pipes dataset, where all algorithms lost

between 14 and 25 percent in precision for R = 1. The observed difference is the result of

the existence of ubiquitous components in Yahoo Pipes, whose removal from the set of useful

recommendations negatively impacts precision.

Finally, the third qualitative difference is that recall consistently increases by under 2%

for all algorithms at all data points. The net effect of both changes to precision and recall

is a decrease of the F1 score by up to 4% for all four structural algorithms and the baseline
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Change in recommender coverage when only adjacent components are considered useful for the synthetic dataset

Figure 8.30: Change in recommender coverage when only adjacent components are considered useful
recommendations, for values of R between 1 and 10, with BP = 10% and N = 2500 for the synthetic
dataset.

MostFreqConn algorithm.

No significant change in coverage is observed, as shown in figure 8.30. Successful coverage

of all algorithms except MostPopular decreases by up to 2%, which is a direct consequence of

decreased precision that was observed above. This change doesn’t occur on the Pipes dataset

because of the total number of modules which is very low when compared to the number of

components in the synthetic dataset.

Overall, it can be concluded that the distinction between the most general definition of use-

fulness where all components required to complete the partial composition are considered good

recommendations and the adjacent-useful definition is minor, both in accuracy and successful

coverage. This stability of results can be explained through two factors. First, due to the small

size of compositions, on average, less than 20% of useful components are not actually connected

to the snapshot, as evident from the decrease of average useful component set size from 2.89

to 2.33 components. Second, as the regularity in the synthetic dataset stems from component

affinity which models the fact that certain components often appear together and are connected,

components that are often directly connected to components of the input partial composition

are more likely to get recommended than other components as they will appear more often in

similar compositions.
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8.4 Snapshot Evaluation Summary

In this section, the results presented in the previous two sections are summarized and dis-

cussed. First, in subsections 8.4.1 through 8.4.3, accuracy, coverage, and response times of

all algorithms are analyzed in terms of their absolute value with standard parameter values

BP = 10% and R = 3, and with a database of N = 2500 compositions. Then, the remainder

of the section is organized in an analogous way to the previous two sections, with subsections

8.4.4 through 8.4.6 discussing the effects of similarity filtering in component scores computa-

tion, the number of component recommendations per query, and the size of the composition

database. The section is concluded with subsections 8.4.7 and 8.4.8 that summarize the effects

of arcs in the input partial composition and the adjacent-useful definition of useful recommen-

dations on recommender quality, respectively.

8.4.1 Accuracy

All four structural recommender algorithms achieve similar accuracy over both datasets.

On the Pipes dataset, intersection accuracy of around 92% is achieved by the feature vector

algorithms, while GraphEditDistance and ComponentSeqEditDistance trail the feature vector

algorithms by 1 and 2 percent, respectively. Such a high level of intersection accuracy can be

attributed to the high impact of ubiquitous Pipes modules like fetch, output, and urlbuilder that

are often considered correct recommendations as they are indeed required to complete a partial

composition. This claim is supported by the results of the MostPopular baseline algorithm,

which always recommends these ubiquitous modules and achieves almost 83% in intersection

accuracy. The remaining baseline algorithms MostFreqConn and WeightedRandom perform

significantly worse, achieving 65% and 53% in intersection accuracy, respectively.

The precision of all four structural algorithms ranges between 45 and 49 percent. This means

that, on average, in a recommendation list of three components, one and a half components are

useful for completing the composition. When considering precision, it is important to note that

accuracy is defined for each query by observing a single example composition from which the

query snapshot is extracted. Specifically, that one composition provides a use case where some

components would be useful to complete the partial composition represented by the snapshot.

However, it is possible that other components could also legitimately be considered useful rec-

ommendations. With this in mind, it is obvious that the reported precision values are, in a sense,
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lower bounds on the actual usefulness of the recommender—some of the recommended com-

ponents that are not useful for completing a partial composition into that particular direction

could actually be useful to the user in practice.

All four structural recommenders achieve just over 60% recall, meaning that almost two

thirds of useful components actually get recommended. These precision and recall values result

in F1 scores between 52 and 55 percent.

The baseline algorithms perform significantly worse in precision and recall. The maxi-

mum F1 score is achieved by MostPopular at 43%, while MostFreqConn and WeightedRandom

achieve 32% and 23%, respectively.

Three important qualitative differences in the results of various recommender algorithms on

the Pipes dataset and on the synthetic dataset can be observed. First, the baseline algorithms

MostPopular and WeightedRandom perform very poorly on the synthetic dataset across all four

measures of accuracy, both in the absolute sense and relative to the structural algorithms. Par-

ticularly, the MostPopular algorithm achieves 7% in intersection accuracy, and under 3% in

precision, recall and F1 score. WeightedRandom performs even worse, scoring about half that.

It can be concluded that, while these algorithms perform somewhat competitively in Yahoo

Pipes, this is only due to the small number of components used in Pipes and the prevalence of

several ubiquitous components. On the other hand, with a significantly larger component set

and more diversity in the dataset, these algorithms are useless for any practical implementation.

The second significant difference between performance on the two datasets is is observed in

the third baseline algorithm MostFreqConn. MostFreqConn reaches accuracy levels within one

percent of both feature vector algorithms and ComponentSeqEditDistance for all four measures.

This algorithm was specifically crafted to exploit the high level of regularity in connections

between components that is induced into the dataset through component affinities, so this level

of performance is not unexpected.

Third, while both feature vector algorithms and ComponentSeqEditDistance perform almost

identically, the GraphEditDistance algorithm outperforms them by 5% in intersection accuracy

(75% vs 70%) and between 3 and 5 percent in precision, recall, and the F1 score.

Precision and recall of the structural algorithms is slightly more than 10% lower than in the

Pipes dataset, but the achieved levels show that all four structural algorithms and MostFreqConn

provide useful recommendations on this dataset.
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8.4.2 Coverage

Recommender coverage was evaluated quantitatively in terms of total catalog coverage and

successful coverage. Over both datasets, the best performing structural algorithm in terms of

coverage is GraphEditDistance. On the Pipes dataset, it reaches 57% catalog coverage with

52% successful coverage. This means that more than half of the 55 modules available in Yahoo

Pipes development got successfully recommended at least once in the 2000 queries.

On the other hand, coverage is somewhat lower on the synthetic dataset. GraphEditDistance

achieves 46% catalog coverage and 36% successful coverage. While these numbers are lower

than on the Pipes dataset, there are 762 components available in the synthetic dataset versus

only 55 modules in Pipes. Furthermore, coverage is always reported against that total number

of components, but, in fact, only 484 distinct components are actually considered useful in at

least one query. As mentioned in subsection 8.3.2, this means that an ideal recommender with

100% accuracy could only hope to achieve up to 64% successful coverage. Additionally, while

the considered values of recommended components per query are in fact a significant fraction

of the total number of Pipes modules, they are vanishingly small compared to the number of

components in the synthetic dataset.

This is illustrated in the difference in coverage of the WeightedRandom algorithm for the two

datasets, as this algorithm can be expected to achieve the highest coverage of all the considered

algorithms. For the Pipes dataset, WeightedRandom achieves almost 100% coverage even when

only one component is recommended per query. However, for the synthetic dataset, it never

recommends around 20% of the available components, i.e. it reaches 80% catalog coverage

even when R is 10.

Of the remaining structural algorithms, StructureVectorCos outperforms ComponentVector-

Cos in both coverage and successful coverage, but only marginally. The ComponentSeqEditDis-

tance algorithm performs more like GraphEditDistance, even outperforming it in total coverage

for R ≥ 5 on the Pipes dataset.

As mentioned above, the WeightedRandom algorithm recommends the most distinct com-

ponents and dominates in total catalog coverage, but suffers low accuracy so its successful cov-

erage is significantly lower. Specifically, it matches GraphEditDistance in successful coverage

on the Pipes dataset, but successfully recommends about seven times fewer components on the

synthetic dataset with 5% successful coverage versus 36% of the GraphEditDistance algorithm.

MostPopular is expectedly the worst algorithm in terms of coverage, especially in the synthetic
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dataset where it recommends less than 1% of all components. On the other hand, the MostFreq-

Conn algorithm is competitive in coverage with the feature vector algorithms, especially on the

synthetic dataset where it matches them nearly perfectly.

8.4.3 Response Time

The three baseline algorithms don’t process the composition database and respond to queries

nearly instantly, within several milliseconds. On the other hand, evaluation results show that

both average and maximum algorithm response time grow linearly with the size of the com-

position database for all four structural algorithms, and that response time is dominated by the

process of similarity evaluation, while the contribution of component scores computation is

marginal.

As expected from the complexity analysis presented in section 6.5, the ComponentSeqEd-

itDistance algorithm is by far the slowest. With a database of 7000 compositions, it requires

close to a second to respond to queries on average, both on the Pipes and the synthetic dataset.

Furthermore, the worst queries with the largest composition database on the two datasets took

7 and 3.3 seconds, respectively.

GraphEditDistance responds in around half a second for an average partial pipe, and re-

quires up to 2 seconds. However, it performs significantly batter on the synthetic dataset with

250ms on average and up to 1.6 seconds. Yahoo Pipes require more computation because

they contain many more matching duplicates in compositions, i.e. the same module appears

many times in both the input partial composition and in many database compositions, and many

matchings are possible. The fetch and urlbuilder modules are duplicated particularly often.

Finally, the StructureVectorCos feature vector algorithm requires less than 200ms on average

on both datasets, and up to 450ms for the worst case query on both datasets. The simpler

ComponentVectorCos algorithm responds about 30% faster in all cases.

Much research has been done on tolerable delays when using a computer [180–184], es-

pecially for the web [185–187]. Delays beyond a few seconds decrease user performance and

change their intentions, e.g. making them less likely to continue using a site. A study conducted

with 30 web users found that most users considered latency up to 5 seconds as high quality of

service (QoS), but there was generally a lot of variance in these classifications such that, for

example, 14 users classified an 8 second delay as high QoS, and 4 users classified it as low QoS

which was used for delays over 11 seconds on average [186].
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The maximal times listed above do not equate with user-perceived response time since they

do not include networking costs, but they are the dominant component in recommender respon-

siveness. While the achieved response times might be sufficiently low in most cases, there are

numerous approaches for increasing recommender responsiveness, and a few are mentioned in

the remainder of the subsection. Primarily, evaluating similarity and updating component scores

for different database compositions can be parallelized in a straightforward way. Furthermore,

the recommender could report preliminary results at any point during computation and poten-

tially refine them when the whole computation is done. The user could be kept aware of this

process with a progress bar, which has been shown to increase perceived responsiveness [184].

Based on the results shown in figure 8.9, the easiest way to reduce response times for Yahoo

Pipes would be to simply sample the database instead of computing similarity scores over the

whole database, as larger database sizes provide little to no benefit for recommendation qual-

ity. This approach can be applied to other datasets as well, and provides a tradeoff between

recommendation quality and response time.

With minimal preprocessing, database compositions that are completely dissimilar to the

input partial composition, e.g. those having none or very few components in common, could be

filtered out and ignored by the recommender. Implementing the inner loop of the algorithms in

a compiled language such as C++ would also provide a significant speedup over the evaluated

Python implementations.

Finally, to avoid high infrastructure costs that would be required to support a large number

of simultaneous users, the recommender can be easily offloaded to the client side machine as

the representation of compositions is very compact, and a database of a million compositions

would require in the order of 100MB of storage, and much less with compression.

8.4.4 Effects of Similarity Filtering in Computing Component Scores

Similarity filtering provides a significant increase in both catalog and successful coverage

for all four structural algorithms on the Yahoo Pipes dataset. The edit distance algorithms

are most positively affected, increasing their successful coverage from 35% when no similarity

filtering is applied to 55% with aggressive similarity filtering whenBP is set to 5%, i.e. only the

most similar 5% of compositions from the database are considered when computing component

scores.

The qualitative effect of similarity filtering on coverage is also positive, as the analyzed
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coverage curves show that more focused recommendations are made when similarity filtering

is applied and the most popular modules get recommended less often, while the other modules

get recommended more often.

A much smaller effect is observed in accuracy, but all four structural algorithms achieve

the highest accuracy with BP = 10%. For more aggressive similarity filtering, too few com-

positions are considered when computing component scores, and the algorithms are unable

to identify three good components to recommend for some queries which decreases accuracy

by up to 5%. A similar decrease is observed when no similarity filtering is applied. This is

because good recommendations of unpopular modules get missed as the cumulative effect of

many compositions with low similarity scores causes more popular modules to be preferred

for recommendation. Eliminating this problem was the key motivating factor for introducing

similarity filtering in the first place.

On the synthetic dataset, the influence of similarity filtering on both coverage and accuracy

is minor. This fact can be explained by two related factors. First, compositions in the synthetic

dataset are much more diverse than Yahoo Pipes. Therefore, even without similarity filtering, a

significantly smaller number of database compositions with a nonzero similarity score should be

expected for many queries. The tail of the similarity distribution of database compositions is not

large enough to affect recommendations in a negative way. Second, if a component that would

not actually be a useful recommendation appears in some compositions with lower similarity, it

does not appear in a large fraction of those compositions as no components are ubiquitous in the

dataset. Therefore, the cumulative effect of all these compositions with low similarity scores is

not significant to the overall component ranking.

It can be concluded that similarity filtering successfully diminishes the domination of ubiq-

uitous components on recommendations, but is not sufficient to completely eliminate it. In

practice, special attention should be given to such components, as recommending them is not

particularly useful except for novice users. A possible solution is to add weight factors to com-

puted component scores based on component popularity such that more popular components

need even higher component scores to be recommended over less popular components. The

ultimate usefulness of such a strategy cannot be objectively tested in an off-line experiment, but

instead requires a live experiment with real users.

Finally, evaluation results show that similarity filtering has almost no effect on recommender

response time, implying that response times are completely dominated by similarity evaluation.
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8.4.5 Effects of the Number of Recommended Components Per Query R

As is usually the case [46], increasing the number of recommendations per query increases

recall, but decreases precision. For both datasets, the best balance of these two effects is

achieved when two or three components are recommended per query, i.e. the F1 score of all

four structural recommender algorithms achieves its maximum for R = 2 and R = 3. This

number of components is also in line with basic UI design considerations specific to component

recommendation in consumer computing, presented in section 4.2.

Obviously, coverage of all algorithms also increases when more components are recom-

mended per query. On the Pipes dataset, the edit distance algorithms, which are the best per-

formers in terms of coverage, shown an increase of successful coverage from 25% to almost

80% when the number of recommended components is increased from 1 to 10. This dramatic

increase is mainly the result of the fact that only 55 modules in total are available for Pipes

composition so that the recommender chooses a significant portion of all available modules in

each query when larger values of R are used.

On the synthetic dataset, where more than an order of magnitude more components are

available, the coverage of these two algorithms increases from slightly over 20% to slightly

over 40% in the same range of R values.

8.4.6 Effects of Composition Database Size N

Due to the regularity of the Pipes dataset, a database of only 750 Pipes is sufficient for all

four structural recommender algorithms to achieve their maximal accuracy, i.e. larger databases

of Pipes provide no measurable benefit.

On the synthetic dataset, the edit distance algorithms achieve higher accuracy with each

larger composition database, but the increase slows down considerably after N = 2500. The

feature vector algorithms and the well-performing MostFreqConn baseline algorithm reach their

accuracy potential with only N = 1500 compositions in the database, and their accuracy in-

creases only marginally beyond that. This difference between the two groups of algorithms

is due to the different method of updating component scores. The edit distance algorithms

use the higher degree of structural information gained through similarity evaluation to choose

components in a more focused way. In a diverse dataset such as the synthetic dataset used

for evaluation, these algorithms require a larger database of compositions to achieve their opti-

mal accuracy. However, with a sufficiently large database, they outperform the simpler feature
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vector algorithms by between 3 and 7 percent.

The effect of different database sizes on coverage is small and mostly related to the effect

of similarity filtering, as increasing the database size with a constant level of similarity filtering

is similar to decreasing similarity filtering with a constant database size. Specifically, due to

this effect, the coverage of all structural algorithms decreases from the smallest to the largest

database size on Yahoo Pipes. On the other hand, on the synthetic dataset where the effect of

similarity filtering is minimal, successful coverage remains nearly constant for N ≥ 1500.

Finally, both average and maximum response time of all algorithms grow linearly with the

size of the composition database. This linear growth is caused by similarity evaluation of the

input partial composition and every composition in the database.

8.4.7 Effects of Arcs in the Input Partial Composition

One of the requirements for component recommenders in consumer computing is that they

are able to provide useful recommendations even when no or few connections between com-

ponents are established in the input partial composition. This is because a valid and frequently

used way of creating a composition is to first get all the required components onto the compo-

sition workspace and only then connect them. This workflow results naturally from the knowl-

edge automation process.

All four algorithms presented in the dissertation were designed with this requirement in

mind. To test how they perform when no connections are present in the input partial composi-

tion, all arcs from the snapshots were removed. On the Pipes dataset, only the ComponentSe-

qEditDistance algorithm is affected negatively by the removal of arcs, both in accuracy, where it

loses between 3 and 5 percent across all measures, and in successful coverage, which decreases

by up to 12%, but only when more than four components are recommended per query.

Practically no effect is observed on the synthetic dataset. While, as discussed above, it is

a requirement for all component recommender algorithms that they provide useful recommen-

dations when there are no connections in the input partial composition, the ideal component

recommender algorithm should be able to provide better recommendations when more infor-

mation is available. However, in both the Pipes and the synthetic dataset, connections are, in

some sense, implied by the components. For example, in the Pipes dataset, if the urlbuilder and

the fetch module are used together in a pipe, they are almost always connected, except when

there are other instances of those same modules in the pipe. In the synthetic dataset, the strong

137



8.4. Snapshot Evaluation Summary

relationships between modules and connections is introduced through component affinities. The

extent of this relationship can be expected to vary across different composition systems, but it

is always present to some degree.

8.4.8 Evaluation Results Under the Adjacent-Useful Definition of Useful

Recommendations

Under the adjacent-useful definition of useful recommendations, only those components

that are directly connected to the snapshot in the completed composition the snapshot is gener-

ated from are considered accurate recommendations.

With this change, the intersection accuracy and precision of all algorithms decrease on both

datasets. The largest effect is observed on the Pipes dataset, for small values of R when recom-

mendations of the ubiquitous Pipes modules are most significant. Specifically, while recommen-

dations of some of these ubiquitous modules are almost always accurate when any component in

the completed composition is considered a useful recommendation, under the adjacent-useful

definition of usefulness, this is true only for a smaller number of queries. Therefore, while

precision of the structural algorithms decreases by between 14 and 25 percent when only one

module is recommended, it decreases consistently by between 10 and 15 percent when three

or more modules are recommended. A significantly smaller effect is observed on the synthetic

dataset, where precision decreases by at most 6%.

A smaller change occurs in recall, which increases by up to 2% on the synthetic dataset,

and changes between −5 and 4 percent on the Pipes dataset, depending on the algorithm and

the number of components recommended per query. Combining the changes in precision and

recall, the F1 score decreases by up to 11% on the Pipes dataset, and up to 4% on the synthetic

dataset.

Unlike accuracy, successful coverage is practically unaffected, while catalog coverage un-

derstandably stays exactly the same, with slight fluctuations in probabilistic algorithms.

Overall, it can be concluded that the presented algorithms inherently prefer components that

are directly useful to augment the input partial composition, especially on the synthetic dataset.

This is in line with expectations as it is likely that more evidence for the usefulness of those

components directly connected to an input partial composition is present in the composition

database than for other, more distant components.
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Chapter 9

Simulated Composition Evaluation

In this chapter, a significantly different approach to evaluating recommender quality than

the snapshot-based one used in chapter 8 is employed. Instead of presenting the recommender

with example inputs generated from existing compositions, the whole process of creating the

composition with the help of the component recommender is simulated. Specifically, starting

with an empty composition workspace, components of an existing composition are added one

by one and connected to recreate the composition. The main goal of this series of experiments

is to further constrain the definition of what makes a component a useful recommendation in

order to limit the effect of popular components on recommender accuracy results.

As the results of the previous chapter indicate, connections in the input partial composition

have a minor effect on recommender quality. Therefore, the simulation process is focused only

on components and all possible connections are made whenever a new component is added to

the composition. In that sense, the composition at various stages of development resembles a

snapshot used in the previous chapter as all the connections between the used components are

established. The recommender is queried after each component is added and connected to the

other components in the partial composition.

The key process in composition simulation is choosing which component to add at each

step. The way users choose components and in which order they are added to a composition

inevitably varies with the specific composition system and user preferences. Furthermore, this

process is further complicated by the presence of the component recommender. The component

recommender introduces several questions into composition simulation such as is the user able

to consider all the recommended components at every step?, and to what degree do recommen-

dations change the user’s intention, such that, for example, they add a component with some
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functionality that they didn’t consider before?

Instead of trying to accurately model this complicated process, four distinct simulation

strategies are proposed and the recommender algorithms are evaluated using these strategies.

While these four strategies do not attempt to model every reasonable way a composition might

be created, they are defined with the goal of spanning extremes in two areas. First, they aim

to address the order in which the user adds functionality to a composition. On one extreme,

the user wants to add functionality that directly extends the current partial composition. Specif-

ically, the user is interested in a component that will directly interact with the components

already in the partial composition. This order follows the data and control flow of a composi-

tion, and is therefore loosely equivalent to developing an application from its input, through its

core logic, to its output. For example, in Yahoo Pipes, this corresponds to starting a pipe with

a urlbuilder module, connecting it to a fetch module, and using a filter to create the output of

the pipe, in that order. The described order of components is approximated with the generalized

topological order defined in section 5.2.

On the other extreme, the user might want to add a component with some functionality that

will eventually be useful in completing the composition, but will not necessarily be directly

connected to any of the previously added components. In this model, the user might build

the previously described pipe starting with the output module, then adding the fetch and filter

modules, and finishing the pipe with a urlbuilder module. This possibility is modeled by a

random order among the missing components that still need to be added to a partial composition

to complete it.

The second variability that is addressed by the four proposed simulation strategies is the

level at which the recommender might change the user’s intentions. On one extreme, the user

considers the recommended components and adds one of the recommended components only

if it is perfectly in line with what they were looking for. For example, if the user wants to

somehow get a data feed and the fetch module is one of the components recommended by the

component recommender, the user will identify that this module has the desired functionality

and add it to the partial composition. However, if none of the recommended components offers

the desired functionality, the user will find such a component through other means, e.g. by

employing textual search or asking a friend.

On the other extreme, the user is able to identify any piece of functionality that will even-

tually be useful to complete the composition. For example, when building the previously de-
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scribed composition, the user might want to get a data feed into the pipe at some stage of

composition, but will also recognize a recommended filter module as useful and add it first.

Again, if none of the recommended components are useful for completing the composition, the

user then proceeds to find a suitable component in some other way.

The four simulation strategies that try to model these described situations are defined and

applied to a simple example in section 9.1. Then, sections 9.2 and 9.3 present the simulated

composition evaluation results for Yahoo Pipes and the synthetic dataset, respectively. Accu-

racy and recommender response time are considered with different numbers of components

recommended per query and different database sizes. Note that the default database size used

in these experiments was 1500 to keep the total evaluation time manageable, and a fixed level

of similarity filtering with BP = 10% is maintained.

In this evaluation scenario, accuracy is binary—a recommendation is considered accurate

if and only if one of the recommended components is actually added as the next component of

the composition. This definition is equivalent to both intersection accuracy and recall if only

the added component is considered useful, while precision is then a constant fraction of recall

depending on the number of components recommended per query. Therefore, only the single

measure of accuracy defined above is reported. A possible interpretation of this measure is

user-perceived recommender accuracy.

No recommendations are made for the empty composition. In practice, it is reasonable

to initially recommend generally useful and frequently used components, if such components

exist in a particular composition system. However, since this recommendation is not based on

any partial composition, every algorithm would score the same on this recommendation which

would not contribute to their comparison. Additionally, as a technical detail, since none of the

algorithms ever recommends a component that is already a part of the partial composition, the

unsuccessful recommendations that result when a previously used component is added to the

composition are not recorded.

All the presented results are based on simulated composition of the exact set of 500 compo-

sitions that were also used to generate snapshots for snapshot evaluation. A significant change

is made to the ComponentSeqEditDistance algorithm in that the component sequence of the

input partial composition is ordered by insertion time, i.e. components are simply appended to

the sequence as the composition is created. As explained in section 6.3, this order then allows

the algorithm to reuse previously computed edit distances of earlier versions of the same partial
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9.1. Simulation Strategies

Table I: Four strategies for simulating how components are
added to a partial composition.

Topological Random

Unguided AlwaysTopological AlwaysRandom

Guided RecThenTopological RecThenRandom

composition to compute similarity scores much more efficiently, with time complexity Θ(nQ)

per database composition Q instead of Θ(nPnQ). The component sequences of the database

compositions are still kept in generalized topological order as their development is not simu-

lated so the component insertion order is not known.

To conclude the chapter, the results over both datasets are summarized and discussed in

section 9.4, and compared to the results obtained through snapshot evaluation.

9.1 Simulation Strategies

Under the first proposed simulation strategy, components are added to the partial composi-

tion in generalized topological order, regardless of recommendations made by the recommender

system. This strategy corresponds to the situation described in the chapter introduction in which

the user adds functionality in a linear order and only identifies a recommended component as

useful if it has that particular functionality that is required next. Based on the mechanics of the

strategy, it is called AlwaysTopological.

In the second strategy, called AlwaysRandom, a random missing component is added to

the partial composition, again regardless of recommendations. Both these strategies share the

property that they model a composition process in which the user has a strong preference for

what functionality to add next and only uses the recommender to pick an appropriate component

that has that functionality if such a component is recommended. Otherwise, it is assumed that

the user employs some other component discovery mechanism to find a component with the

desired functionality.

The remaining two strategies follow the opposite idea and model composition processes in

which the user is ready to change the preferred order of adding functionality to the composi-

tion provided that useful recommendations are provided. Therefore, both of these strategies

are called guided simulation strategies, whereas AlwaysTopological and AlwaysRandom are un-

guided.
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9.1. Simulation Strategies

C DBA

Figure 9.1: A simple composition of four components used to illustrate the four simulation strategies.

The two guided simulation strategies differ only in situations in which no useful component

is recommended by the recommender system. When any useful component is recommended,

it is added to the partial composition. When several useful components are recommended, the

one higher in the list of recommendations is given priority. On the other hand, when no useful

components are recommended, simulation proceeds in a way similar to the unguided strategies.

Specifically, under the RecThenTopological1 simulation strategy, the next component in

topological order is added when no useful components are recommended. Analogously, un-

der the RecThenRandom simulation strategy, a random useful component is added to the partial

composition if no useful components are recommended.

The names of the four described simulation strategies are shown in table I. The strategy

names are arranged in a 2 × 2 matrix such that strategies in the same row of the matrix model

the same type of interaction between the user and the recommender system, and those in the

same column model the same preferred way of adding functionality to the composition.

To further illustrate these four simulation strategies, they are applied to one step of develop-

ment of the simple composition shown in figure 9.1. Such a simple composition was chosen to

make the topological order unique and simplify the discussion. Structurally, this composition

corresponds perfectly to the pipe desribed in the chapter introduction, but symbolic names are

used to make the figures more readable.

The four strategies are applied to the example composition when the partial composition

contains only component A in figure 9.22. The unguided simulation strategies are illustrated

in the first two rows. Completely independently of recommendations, under the AlwaysTopo-

logical simulation strategy, component B is added to the partial composition and connected

to A because it is the next component in the topological order of the completed composition.

Similarly, in the AlwaysRandom strategy, a random useful component is added irrespective of

recommendations. In the figure, it is assumed that component C is chosen at random from the

set of components B, C and D.

1Rec stands for recommended.
2Note that under the two random simulation strategies, the first component is chosen at random. However, to

more easily focus on the differences between the simulation strategies, it is assumed that component A was chosen
so that all four strategies start from the same partial composition.
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9.1. Simulation Strategies

A

Initial Partial

Composition

Simulation

Strategy

AlwaysTopological

AlwaysRandom

RecThenTopological

Recommended: X D Y

Recommended: X Y Z

RecThenRandom

Recommended: X D Y

Recommended: X Y Z

Resulting Partial

Composition

BA

CA

DA

BA

DA

CA

Figure 9.2: An example application of the four simulation strategies. It is assumed that component C is
chosen when a random component is needed.

The operation of guided strategies is more complex in that the result depends on the output of

the recommender. Two examples of component recommendations for each of the two strategies

are shown in the figure. In the first case, components X , D and Y are recommended. In

this case, both the RecThenTopological and RecThenRandom strategies add the component D

to the partial composition because it is useful for finishing the composition and it has been

recommended.

The two strategies differ in the second example, when three components that are not in the

completed composition (X , Y and Z) are recommended. In this case, the RecThenTopological

strategy proceeds like the AlwaysTopological strategy by adding component B, while the Rec-

ThenRandom strategy proceeds like the AlwaysRandom strategy and adds component C to the

composition.
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9.2. Simulated Composition Evaluation Results on Yahoo Pipes
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Figure 9.3: Changes in recommender accuracy under different simulation strategies for R between 1
and 10 with BP = 10% and N = 1500 for the Pipes dataset.

9.2 Simulated Composition Evaluation Results on Yahoo Pipes

On the Pipes dataset, a total of 3834 queries are submitted to the component recommender

system for each experiment, as the 500 test pipes are created component by component. This

section is divided into two subsections. In subsection 9.3.1, the accuracy results under differ-

ent simulation strategies and with different numbers of recommended components per query

are presented. Following that, subsection 9.3.2 analyzes accuracy and response time in this

simulation model with different composition database sizes.
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9.2. Simulated Composition Evaluation Results on Yahoo Pipes

9.2.1 Effects of Simulation Strategy and the Number of Recommended

Components per Query R

Average accuracy over the 3834 recommendations under all four simulation strategies and

different numbers of recommended components per query is shown in figure 9.3. The graphs

for the four simulation strategies are arranged in the same way as in table I, with unguided

strategies in the top row, and guided strategies in the bottom row.

Several interesting effects can be observed in the presented graphs. As already established in

subsection 8.2.4, the ComponentSeqEditDistance algorithm is sensitive to component sequence

order on the Pipes dataset. When compositions are created under a topological simulation

strategy (i.e. either AlwaysTopological or RecThenTopological), the order in which components

are added to the partial composition closely matches the generalized topological order that

is used by ComponentSeqEditDistance to represent database compositions. On the other hand,

under the two randomized simulation strategies where components are added in a more irregular

manner, the differences in the semantics of the component sequence decrease the algorithm’s

accuracy by up to 12%.

With the same change from a topological strategy to its corresponding random strategy,

the accuracy of the GraphEditDistance algorithm decreases consistently by between 2 and 6

percent, while the feature vector algorithms are nearly unaffected, and in fact, achieve slightly

higher accuracy under randomized strategies when a small number of components are recom-

mended per query. This difference in behavior is easily explained by the way component scores

are computed in GraphEditDistance and the feature vector algorithms. The GraphEditDistance

algorithm prefers components that are more likely to be directly connected to the partial com-

position and those components are more likely to be added with a topological strategy than with

a random strategy. The feature vector algorithms are unaffected by the order in which compo-

nents are added to the composition and also don’t prefer directly connected components when

computing component scores.

A significant difference in accuracy is also apparent with strategies in the same column,

i.e. those that share the same model of the preferred way of adding functionality to a compo-

sition, especially when a smaller number of modules is recommended per query. For example,

the accuracy of all algorithms increases by up to 22% when the AlwaysTopological strategy

is replaced by the RecThenTopological strategy. This happens because, under the two guided

strategies, a recommendation is accurate if any component that was actually used to create the
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Figure 9.4: Changes in recommender accuracy under different simulation strategies for N between 100
and 7000 with BP = 10% and R = 3 for the Pipes dataset.

previously completed composition whose construction is being simulated gets recommended.

9.2.2 Effects of the Composition Database Size N

A different view of the same effects on accuracy is presented in figure 9.4, where accuracy is

graphed for different composition database sizes with a constant three modules recommended

per query. As was already observed in snapshot evaluation, on the Yahoo Pipes dataset, a

very small database is sufficient for all algorithms to achieve their maximum accuracy, and this

remains true under all four simulation strategies.

These graphs show more clearly how the accuracies of the structural algorithms disperse

compared to in snapshot evaluation where all four algorithms achieve nearly identical accuracy.

Under both topological strategies, the GraphEditDistance algorithm performs significantly bet-
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Effects of composition database size on recommender response time for the Pipes dataset

Figure 9.5: Changes in recommender average and maximum response time under the AlwaysTopological
simulation strategy for N between 100 and 7000 with BP = 10% and R = 3 for the Pipes dataset.

ter than the other three algorithms. Specifically, it reaches between 4 and 9 percent higher

accuracy than the feature vector algorithms and between 4 and 17 percent higher accuracy than

ComponentSeqEditDistance. This effect is discussed in detail in section 9.4.

A significant difference from snapshot evaluation results can also be seen in algorithm re-

sponse times shown in figure 9.5. As response times are not affected by the applied simulation

strategy, the graphs only show the gathered data for the AlwaysTopological strategy.

When components of the input partial composition are put into the component sequence

representation in the same order in which they were added to the composition, the Compo-

nentSeqEditDistance algorithm is able to reuse already computed edit distances for previous

versions of the same partial composition which considerably speeds up its execution. The aver-

age response time decreases from 1s observed in snapshot evaluation to 223ms. Similarly, the

maximum response time decreases from over 7s to just 752ms.

The response time of the feature vector algorithms increases slightly. Furthermore, average

response time of GraphEditDistance increases by almost 100ms, while its maximum response

time is over 3s—an increase of more than a second from snapshot evaluation. These increases

are expected as there are several outliers in the dataset in terms of pipe size and snapshots

extracted from them are expected to only use half the modules used in the whole pipe.
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9.3. Simulated Composition Evaluation Results on the Synthetic Dataset

9.3 Simulated Composition Evaluation Results on the Syn-

thetic Dataset

On the synthetic dataset, every experiment consisted of 4100 queries that were processed by

the recommender while the development of the 500 compositions also used for snapshot gener-

ation was simulated. The results of these experiments are presented in the following subsections

in an analogous way to the previous section—the effects of different simulation strategies and

the number of components recommended per query are analyzed in subsection 9.3.1, and ac-

curacy and response time with different composition database sizes are presented in subsection

9.3.2.

9.3.1 Effects of Simulation Strategy and the Number of Recommended

Components per Query R

The accuracy of the recommender algorithms under the four simulation strategies for dif-

ferent values of R is shown in figure 9.6. No significant difference in accuracy can be observed

between the simulation strategies in the same row, as all changes are bounded by 2%, regard-

less of the number of recommended components. This is in contrast to the Pipes dataset where

the accuracy of GraphEditDistance and especially ComponentSeqEditDistance decreases when

functionality is added in a random order instead of the generalized topological order. One of

the conclusions of snapshot evaluation is that the generalized topological order isn’t represen-

tative of the structure of synthetic compositions, which was observed by the lack of effect of

arcs in the input partial composition on the accuracy of the ComponentSeqEditDistance algo-

rithm in subsection 8.3.4. The results presented in the figure further confirm this conclusion

as all the algorithms, including ComponentSeqEditDistance, perform nearly identically under

corresponding topological and random simulation strategies.

On the other hand, accuracy of all structural algorithms increases consistently by about 10%

when moving from the top to the bottom row, i.e. when a guided strategy is employed over its

corresponding unguided counterpart. The increase in accuracy is achieved because more com-

ponents are candidates for accurate recommendations under guided simulation strategies. This

effect is about doubled on the Pipes dataset due to the significantly smaller set of components.

Specifically, the same absolute increase in the number of candidate components for accurate

recommendations makes the recommendation problem easier if there is a smaller total number
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Figure 9.6: Changes in recommender accuracy under different simulation strategies for R between 1
and 10 with BP = 10% and N = 1500 for the synthetic dataset.

of components to choose from. This difference can best be understood by examining the be-

havior of the WeightedRandom algorithm on the Pipes and synthetic datasets as it is basically

guessing useful components. While its accuracy increases by up to 35% when a guided strategy

is used instead of its corresponding unguided strategy on the Pipes dataset, only an increase of

up to 12% is observed on the synthetic dataset, and much smaller gains are achieved with lower

values of R.

9.3.2 Effects of the Composition Database Size N

The lack of change between a topological and its corresponding random simulation strategy

discussed in the previous subsection can be seen more clearly for the R = 3 case in figure 9.7

where accuracy is graphed against the composition database size. In fact, it can be observed that
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Figure 9.7: Changes in recommender accuracy under different simulation strategies for N between 100
and 7000 with BP = 10% and R = 3 for the synthetic dataset.

the accuracy graphs for all four simulation strategies are qualitatively identical to the intersec-

tion accuracy graph produced in snapshot evaluation. As the size of database composition in-

creases, GraphEditDistance and ComponentSeqEditDistance become more accurate while both

feature vector algorithms achieve their maximum accuracy potential with 1500 compositions in

the database.

Finally, response times under the AlwaysTopological simulation strategy are shown in figure

9.8. A similar change compared to snapshot evaluation is observed as on the Pipes dataset—

the response times of GraphEditDistance and both feature vector algorithms slightly increase

as more large input partial compositions are processed, while the ComponentSeqEditDistance

algorithm performs much better than in snapshot evaluation due to the change in the order of its

underlying component sequence model which allows edit distance computations to be continued
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Effects of composition database size on recommender response time for the synthetic dataset

Figure 9.8: Changes in recommender average and maximum response time under the AlwaysTopological
simulation strategy for N between 100 and 7000 with BP = 10% and R = 3 for the synthetic dataset.

from previous versions of the same partial composition.

9.4 Simulated Composition Evaluation Summary

Several interesting properties of the recommender algorithms are highlighted by the simu-

lated composition evaluation results presented in this chapter.

First, there is a systematic decrease in accuracy compared to previously discussed results

from snapshot evaluation, especially when the AlwaysTopological or AlwaysRandom simulation

strategies are used, up to 40% when three modules are recommended per query on the Pipes

dataset and up to 30% on the synthetic dataset. The most significant factor in this effect is

the reduced number of components that are considered accurate recommendations in simulated

composition evaluation. In particular, under both the AlwaysTopological and AlwaysRandom

strategies, only one component is considered an accurate recommendation for each query while

almost three components are considered accurate recommendations in snapshot evaluation.

Furthermore, a significant contribution to this decrease on the Pipes dataset comes from

the ubiquitous modules—in snapshot evaluation, these modules are often considered useful

recommendations, while they can be successfully recommended at most once per composition

in the simulated composition evaluation scenario. This is easily confirmed by observing the

accuracy of the MostPopular algorithm. It achieves almost 80% of intersection accuracy in

snapshot evaluation when only two modules are recommended per query. On the other hand,

under the AlwaysTopological simulation strategy, it reaches less than 30% accuracy withR = 2,
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9.4. Simulated Composition Evaluation Summary

and only comes close to 80% accuracy when 10 modules are recommended per query.

For intuition, it is easiest to consider recommendations of the output module. While it

is often considered an accurate recommendation in snapshot evaluation, it is actually always

added last under the AlwaysTopological simulation strategy. Therefore, while MostPopular

keeps recommending it at every step if R ≥ 2, only the last recommendation is considered

accurate.

This insight provides a useful tool to further analyze to what degree different algorithms

prefer these very popular modules over more niche recommendations. Of the structural algo-

rithms, the accuracy of the feature vector algorithms decreases the most, especially for smaller

values of R. This is expected as these algorithms are closely related to the MostPopular algo-

rithm due to their way of computing component scores, as explained in subsection 8.2.2. On the

Pipes dataset, the GraphEditDistance algorithm achieves almost 10% higher accuracy than the

feature vector algorithms under the AlwaysTopological strategy. Similarly, the ComponentSe-

qEditDistance algorithm outperforms the feature vector algorithms by 5%.

These differences between the way in which accuracy of different algorithms is affected

by the change in evaluation scenario from snapshot evaluation to simulated development is

due to two related factors. First, the edit distance algorithms use the matching information

obtained from computing edit distances to compute component scores in a more focused way,

with the aim to provide more relevant recommendations that are less affected by component

popularity. As seen in the results of snapshot evaluation, this allows the algorithms to achieve

higher coverage than the feature vector algorithms. Second, modules that are added by the

AlwaysTopological simulation strategy are directly connected to the input partial composition

and are therefore also more likely to be recommended by the edit distance algorithms.

However, both these factors are also present on the synthetic dataset, but the edit distance

algorithms do not perform any better in the simulated composition evaluation scenario. There

are several likely explanations for this fact. First, synthetic compositions are much denser, with

almost twice as many connections than found in pipes, on average. Therefore, the benefit of

more focused computation of component scores is diminished. Second, the higher structural

complexity of synthetic compositions significantly increases the number of possible general-

ized topological orderings of components, thus reducing the structural significance of any single

ordering. As observed in section 9.3.1, there is no significant difference between algorithm ac-

curacies under a topological and its corresponding random simulation strategy on the synthetic
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9.4. Simulated Composition Evaluation Summary

dataset, while these changes in strategy reduce the accuracy of edit distance algorithms by up

to 12% on the Yahoo Pipes dataset.

On both datasets, the accuracy of all structural algorithms increases when an unguided strat-

egy is replaced by its guided counterpart by up to 22%. This increase is more pronounced on

the Pipes dataset where there are fewer components to choose from and this change of strat-

egy increases the number of components that are considered useful recommendations for most

queries. In that sense, both the effect itself and the differences between the datasets are closely

related to the effect of the adjacent-useful definition of useful recommendations which was

analyzed in snapshot evaluation.

In terms of response time, the most significant change from what was seen in snapshot

evaluation is observed for the ComponentSeqEditDistance algorithm. Its average response time

decreases from one second in snapshot evaluation to 223 milliseconds, and its maximum re-

sponse time decreases from over 7 seconds to only 752 milliseconds. Similar decreases are

seen on the synthetic dataset. In simulated composition evaluation, the ComponentSeqEditDis-

tance algorithm is changed so that it stores components of the input partial composition in the

component sequence representation in the order in which components were added. With this

change, it is possible to reuse edit distance information computed for previous versions of the

same partial composition to significantly speed up the algorithm, at the cost of increased storage

requirements, as discussed in section 6.3.
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Chapter 10

Conclusion

The goal of this dissertation was to address the component discovery challenge in consumer

computing through a component recommender system based on structural similarity of compo-

sitions. The key scientific contributions of this thesis are: (1) a set of formal models of con-

sumer application structure, (2) a method for component recommendation based on analysis of

structural similarity of consumer applications, (3) a set of component recommender algorithms

for real-time assistance in composite consumer application development and (4) an extensive

evaluation of the proposed set of algorithms.

The hypothesis of the presented research was that composition knowledge stored in com-

pleted consumer applications can be used to make useful component recommendations by an-

alyzing the structural similarity of these compositions and a partial composition that needs to

be completed. Four formal models of consumer application structure were defined in chapter

5 to explore how different levels of structural information impact the quality of the recom-

mender (1). The most general model which preserves most of the structural information about

a composition is based on a directed graph with vertex labels. As components carry most of

the functionality of composite applications in general and especially consumer applications, a

simpler model where a composition is represented by a sequence of its components is also con-

sidered. Finally, as is common in many recommender systems, feature vector models were also

considered as they are simple and easy to compare for similarity. Two feature vector models

were defined, one representing only components of a composition and one representing both

components and connections between them. Both representations were employed to explore

the impact of connection information on recommender quality.

A general method for component recommendation based on structural similarity of compo-
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sitions (2) is defined in chapter 6. Through this method, the basic functional requirements for

a component recommender algorithm are defined. When defining a component recommender

based on this method, three decisions are most important. First, composition structure needs

to be represented in some way. Second, the algorithms should define how two compositions

represented in the chosen model are compared for similarity. Third, having computed the sim-

ilarity of two compositions, the algorithm needs to define how this similarity affects which

components are recommended. Specifically, the algorithms assign scores to components, and

the components with the highest scores are recommended to the consumer.

Four component recommender algorithms are defined in this way (3) in chapter 6: a proba-

bilistic algorithm based on graph edit distance over the digraph model (GraphEditDistance), a

component sequence edit distance algorithm (ComponentSeqEditDistance) and two algorithms

based on cosine similarity of feature vectors, one including only components (ComponentVec-

torCos) and one including both components and connections (StructureVectorCos) in the vec-

tors. Besides the different representations and similarity measures, the edit distance algorithms

and vector algorithms are significantly different in the way they compute component scores. The

edit distance algorithms use the additional structural information obtained from the edit distance

process to focus recommendations to those components that are often connected to components

in the consumer’s input composition in similar compositions in the database. On the other

hand, the feature vector algorithms recommend components that are simply used frequently in

compositions similar to the input partial composition. By comparing these two classes of algo-

rithms, it is possible to explore if this additional structural information provides any benefit in

recommender quality.

The defined algorithms are evaluated through a comprehensive set of experiments (4). As

commonly seen in evaluation of recommender systems, every recommender should be directly

compared to simple intuitive approaches that qualify the problem domain. It can often be the

case that one of these simple approaches outperforms a complex algorithm. To that end, three

baseline algorithms are defined: an algorithm recommending the most popular components

(MostPopular), a random recommender (WeightedRandom) and an algorithm that recommends

components that are most often directly connected to components of the input partial composi-

tion (MostFreqConn).

Evaluation was conducted on two sets of compositions: one extracted from Yahoo Pipes and

a synthetic set of compositions. The synthetic set was defined with the goal of exploring how
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the algorithms perform for structurally more complex and diverse compositions as Yahoo Pipes

compositions are very linear in nature as they have no concept of control flow.

The five key evaluation results are as follows. First, results of all experiments clearly in-

dicate that the proposed approach to component recommendation is effective for both Yahoo

Pipes and the synthetic dataset. On the Pipes dataset, all structural algorithms perform simi-

larly in terms of accuracy, achieving slightly over 90% intersection accuracy, 45% precision and

60% recall when three components are recommended per query. Comparatively, the baseline

algorithms perform between 10 and 40 percent worse in all measures.

In coverage, the edit distance algorithms significantly outperform feature vector algorithms,

by up to 15% in both total and successful coverage. GraphEditDistance, which is the best

performer in coverage in general, achieves 57% catalog coverage and 52% successful coverage.

This means that more than half of the available Pipes modules are recommended successfully at

least once in 2000 recommendations made during the experiment. Furthermore, an analysis of

coverage curves shows that the coverage of GraphEditDistance is also the best qualitatively in

the sense that it recommends less popular components more frequently than other algorithms.

This disparity in coverage results between the edit distance and vector algorithms is at-

tributed to the difference in the way component scores are computed by the algorithms. The

more focused component selection process based on additional structural information allows

the algorithms to recommend less popular components more often.

On the synthetic dataset, similar qualitative behavior is observed, with two significant dif-

ferences. First, due to the diversity of the dataset and a much larger component set (762 versus

55 components in the Pipes dataset), the baseline algorithms MostPopular and WeightedRan-

dom perform very poorly on the synthetic dataset, with accuracy results well below 10% in all

experiments. On the other hand, the structural algorithms are grouped around 70% intersec-

tion accuracy, with GraphEditDistance 5% above. These results are lower than on the Pipes

dataset, but that is to be expected as the component recommendation problem is significantly

more difficult on the synthetic dataset.

The second significant difference is the performance of the baseline MostFreqConn algo-

rithm which matches feature vector algorithms in both accuracy and coverage, but is outper-

formed by GraphEditDistance. MostFreqConn performs better on the synthetic dataset than

on the Pipes dataset because is it specifically crafted to exploit the regularity in component

connectivity that is present in the synthetic dataset.
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GraphEditDistance achieves 48% total coverage and 36% successful coverage on the syn-

thetic dataset, outperforming the other structural algorithms by between 5 and 10 percent. Cov-

erage results are lower than on the Pipes dataset due to the fact that the number of available

components is more than an order of magnitude greater. Furthermore, to put these coverage

results in proper context, due to the way the experiment was set up, an ideal recommender that

had 100% precision would only achieve 64% successful coverage.

Overall, the results on the synthetic dataset suggest that the proposed approach generalizes

well to more complex composition systems where there is regularity in the way components are

connected.

The second significant evaluation result pertains to the concept of similarity filtering which

is regulated by the BP algorithm parameter. Extensive evaluation shows that optimal accuracy

and coverage are achieved when only 10% of all database compositions that are most similar to

the input partial composition are used for making recommendations.

Third, the optimal balance between precision and recall for all structural algorithms is ob-

tained when two or three components are recommended per query, which is regulated by the

R parameter. For these two values, the F1 score achieves a global maximum. As the cost of

false positive component recommendations in consumer computing can be expected to be low,

it is suggested that three or four components be recommended per query by default, although

further experimentation on this issue is necessary.

Fourth, all four proposed algorithms are suitable for design-time interactive use in current

consumer computing composition systems as they respond to queries in up to a few seconds.

Furthermore, several approaches for further improving performance are discussed in section

8.4.3.

Fifth, all four structural algorithms perform nearly identically when no connections are

present in the input partial composition. This is especially important for consumer comput-

ing as one of the frequently used ways to create applications is to first add all the necessary

components to the composition workspace, and only then define the application logic. This

effect can be observed througout all experiments on the feature vector algorithms which per-

form nearly identically in every experiment, with the more complex representation containing

connections only occasionally providing marginal benefits in accuracy and coverage. A compo-

nent recommender algorithm should ideally be able to use additional connectivity information

to obtain better results, but none of the proposed algorithms achieve this goal.
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To conclude, evaluation results confirm the hypothesis of the presented research. However,

the described approach to component recommendation has several limitations. First, in this

dissertation, a simple view on component identity was adopted, where two components can be

matched only if they are instances of the same exact component. While extending this definition

to include components that are not identical but only similar in functionality provides further

challenges in designing algorithms to address this task and evaluating them, such a broader

definition would likely provide better results in some composition systems in practice. This

issue is a major area for further research.

Second, scaling the approach to composition databases beyond several tens of thousands

compositions also requires further research. While current compositions systems have an order

of magnitude smaller databases, this can be expected to change in this decade.

Third, the usefulness of a component recommender in Yahoo Pipes can be questioned.

With only 55 modules to choose from, Pipes users will quickly understand what each mod-

ule does which certainly diminishes the usefulness of a module recommender. Therefore, such

a recommender would primarily be useful to novice users. However, there are two benefits to

more experienced Pipes users. First, an accurate recommender provides a faster and more user

friendly way of getting required modules onto the workspace than the currently used module

menus. Second, the structural approach to component recommendation provides a high degree

of explainability in that users can be given an opportunity to browse through the most simi-

lar database compositions that the recommendations were based on. If users were able to find

pipes that already completely solve their problem, duplication of functionality, which has been

identified as a problem in a study of Pipes [131], could be significantly reduced.

Yahoo Pipes were used as the main evaluation dataset as no other similar dataset of sufficient

size is publicly available.

As stated above, the results on the synthetic dataset show promise that the approach will

also be effective in other composition systems. While this dissertation focuses on examples

from composition systems where components are composed through their GUIs, the presented

approach can be applied to any composition system where it is possible to automatically identify

the basic structure of the composition as it is being developed and to component-based design

environments.
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