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ON THE SPECIAL SURFACES THROUGH THE ABSOLUTE CONIC
WITH A SINGULAR POINT OF THE HIGHEST ORDER

Sonja GORJANC and Ema JURKIN
University of Zagreb, Croatia

ABSTRACT: In this paper we observe a special class of surfaces in the Euclidean space E3 which
touch the plane at infinity through the absolute conic and have a singular point of the highest order.
We study their properties and visualize them with the program Mathematica.
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1. INTRODUCTION
In this paper we will study one special class of
surfaces in the Euclidean space E3 so let us start
by recalling some definitions and facts about the
surfaces. In the real three-dimensional projec-
tive space P3(R), in homogeneous Cartesian co-
ordinates (x : y : z : w), (x,y,z ∈ R,w ∈ {0,1},
(x :y :z :w) 6= (0:0 :0 :0)), the equation

Fn(x,y,z,w) = 0,

where Fn is a homogeneous algebraic polyno-
mial of degree n, defines an nth order surface Sn.
This equation can be written as

fn(x,y,z)+w fn−1(x,y,z)+ ...

...+wn−1 f1(x,y,z)+wn f0(x,y,z) = 0,

where fi, i = 0,1, ...,n, are homogeneous alge-
braic polynomials of degree i.

Any straight line, not lying on Sn, intersects
Sn in n points and any plane intersects Sn in the
nth order plane curve.

A point T of the surface Sn for which at least
one partial derivation of Fn is not equal to zero is
called the regular point of Sn. All tangents to the
surface at that point lie in one plane - the tangent
plane of Sn at T .

A point T of the surface Sn for which all par-
tial derivations of Fn are equal to zero is called
the singular point of Sn. The tangents to Sn at
this point form an algebraic cone with vertex in

T . If the tangent cone is of order k, the point
T is the k-fold point of the surface Sn. Every
plane through T intersects Sn in the nth order
plane curve with the k-fold point in T .

If the origin O(0:0:0:1) is the k-fold point of
Sn, then Sn has the equation

fn(x,y,z)+w fn−1(x,y,z)+...+wn−k fk(x,y,z)=0,
(1)

and the tangent cone at O is given by

fk(x,y,z) = 0. (2)

In the paper [2] the author studied the quartics
Φ4 in E3 which have a triple point and touch the
plane at infinity through the absolute conic. The
surfaces were classified according to the type of
the tangent cone T at the triple point. The fol-
lowing cases were observed: T is a proper 3-
order cone, T splits into a proper 2-order cone
and a real plane, T splits into three planes. In
this paper we give the generalization of the third
class of surfaces Φ4.

2. SURFACES S2n WITH A (2n− 1)-FOLD
POINT TOUCHING THE PLANE AT IN-
FINITY THROUGH THE ABSOLUTE
CONIC

In the real projective space P3(R) the Euclidean
metric defines the Euclidean space E3 with the
absolute conic given by the equations: x2 + y2 +
z2 = 0,w = 0.



Theorem 1 A surface S2n given by the equa-
tion

A2(x,y,z)n +wH2n−1(x,y,z) = 0, (3)

where A2(x,y,z) = x2+y2+z2 and H2n−1(x,y,z)
is a product of 2n−1 linear homogeneous poly-
nomials, is a surface of order 2n which has a
(2n− 1)-fold point in the origin and intersects
the plane at infinity only in the absolute conic.

Proof. By comparing (3) with (1) it is evidently
that the origin O(0 : 0 : 0 : 1) is the (2n− 1)-fold
point of S2n at which the tangent cone splits into
2n− 1 planes. The intersection of the plane at
infinity (w = 0) and the surface S2n is given by
A2(x,y,z)n = 0. It is the absolute conic with the
intersection multiplicity n. �

Theorem 2 There are only 2(2n− 1) straight
lines through the origin lying entirely on the sur-
face S2n. They are the intersections of cones
given by A2(x,y,z)n = 0 and H2n−1(x,y,z) = 0.
They are imaginary in pairs.

Proof. Let a line p through O(0 : 0 : 0 : 1) be
spanned by O and a further point P(a :b :c :1) 6=
O. The line p is parametrized by

p ... (x :y :z :1) = (at :bt :ct :1), t ∈ R.

It lies on S2n if and only if

A2(at,bt,ct)n +H2n−1(at,bt,ct) = 0,

for every t ∈ R. This is precisely when

t2n−1[tA2(a,b,c)n +H2n−1(a,b,c)] = 0,

for every t ∈ R. It follows that A2(a,b,c)n = 0,
H2n−1(a,b,c) = 0. Therefore, A2(at,bt,ct)n = 0,
H2n−1(at,bt,ct) = 0, for every t ∈ R. Evidently
the line p lies on the cones given by equations
A2(x,y,z)n = 0 and H2n−1(x,y,z) = 0. We con-
clude: the only lines through the origin that lie
on S2n are the isotropic lines in the tangent
planes at the origin. �

Theorem 3 The surface S2n has only one real
singular point.

Proof. Let us suppose that there is a k-fold point
T 6= O of S2n, k≥ 2. The real line OT intersects
S2n in the point O with the intersection multi-
plicity 2n− 1 and the point T with the intersec-
tion multiplicity k, or entirely lies on S2n. The
first option is not possible because the order of
the S2n is 2n < 2n−1+k, while the second op-
tion is in contradiction with Theorem 2. �

Theorem 4 The surface S2n touches the plane
at infinity through the absolute conic.

Proof. In Theorem 1 it stated that the absolute
conic is the intersection of S2n and the plane
at infinity with the intersection multiplicity n.
It is left to show that the absolute conic is not
the singular line of S2n. If the absolute conic
was the singular line of S2n, its every point
would be the singular point of S2n and every
isotropic line through the origin O would lie
on the surface S2n. This is not possible since
there are only 2(2n− 1) straight lines through
the origin lying entirely on S2n. �

According to Theorem 3 there is no real dou-
ble point on the surface S2n and therefore there
is no selfintersections of S2n. Hence, the sur-
face consists of the separated parts sharing only
(2n− 1)-fold point O. These parts we will call
petals.

Theorem 5 The maximum number of petals of
the surface S2n in the (2n−1)-fold point equals
2n2−3n+2.

Proof. Each petal of S2n lies on one side of one
tangent plane at the (2n−1)-fold point O(0:0:0:
1). Therefore, the number of petals is twice less
then the number of parts into which space is di-
vided by 2n-1 planes passing through one point.
Let us first show that the maximum number of
parts of space divided by k copunctal planes
equals k2−k+2. The number of the parts will be
the largest when no three planes contain a com-
mon line. We will assume that this condition is
fulfilled. The plane is divided by k concurrent
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lines into 2k parts. Let the number of parts of
the space divided by k plane be denoted by k.
The additional (k+1)st plane intersects the first
k planes into k lines which divide the plane into
2k regions. Therefore, k+1 = k+2k. We have

1 = 2
2 = 1+2

...
k = k−1+2(k−1). (4)

By summation of these equations we obtain
the following: k = 2+ 2+ 4+ ...+ 2(k− 1) =
2 + 2 · (k−1)k

2 = k2 − k + 2. By substituting k
with 2n− 1, we get 2n−1 = 4n2− 6n+ 4 and
obtain the claimed result. �

Remark. If no three tangent planes at the ori-
gin share a common line, the number of petals
equals 2n2− 3n+ 2. If three planes intersect at
a line, the number of petals decreases. Let us
prove that if l planes pass through the same line,
the number of petals is decreased by (l−1)(l−2)

2 .
Let us first take into consideration k− l planes
such that no three planes share a common line.
Than we add two of l planes with a common line,
and at the end we add remaining k− l−2 planes.
The list of equations (4) now becomes

1 = 2
2 = 1+2

...
k− l = k− l−1+2(k− l−1)

k− l +1 = k− l +2(k− l)
k− l +2 = k− l +1+2(k− l +1)

k− l +3 = k− l +2+2(k− l +1)
= k− l +2+2(k− l +2)−2

k− l +4 = k− l +3+2(k− l +1)

= k− l +3+2(k− l +3)−4
...

k−1 = k−2+2(k− l +1)

= k−2+2(k−2)−2(l−3)

k = k−1+2(k− l +1)

= k−1+2(k−1)−2(l−2).

Therefore, k = 2 + 2 · (k−1)k
2 − 2 · (l−2)(l−1)

2 =

k2− k+2− (l−1)(l−2). Since the number of
the petals of S2n is two times less then the num-
ber of the parts into which space is divided by
the tangent planes at the origin, we can conclude
the following: if l of 2n− 1 tangent planes in-
tersect in one line, the number of the petals is
decreased by (l−1)(l−2)

2 .

2.1 Parametric equations of surfaces S2n
By substituting ω = 1 into the equation (3) we
get the following equation of the surface S2n:

A2(x,y,z)n +H2n−1(x,y,z) = 0. (5)

If we use the spherical coordinates (ρ,φ ,θ):

x= ρ cosφ sinθ , y= ρ sinφ sinθ , z= ρ cosθ ,

the equation (5) takes the following form:

ρ
2n−1 (ρ+H2n−1(cosφ sinθ ,sinφ sinθ ,cosθ))=0.

For every point of of the surface S2n, except for
the (2n−1)-fold point O(0,0,0), it holds

ρ =−H2n−1 (cosφ sinθ ,sinφ sinθ ,cosθ) ,

and therefore the surface S2n is given by the
parametric equations:

x(φ ,θ)=−H2n−1(cosφsinθ,sinφsinθ,cosθ)cosφsinθ,

y(φ ,θ)=−H2n−1(cosφsinθ,sinφsinθ,cosθ)sinφsinθ,

z(φ ,θ)=−H2n−1(cosφsinθ,sinφsinθ,cosθ)cosθ,

φ ,θ ∈ [0,π]× [0,π]. (6)

H2n−1(x,y,z) is the product of 2n− 1 linear
polynomials in x,y,z and therefore determined
by 3(2n−1) coefficients.

2.2 Visualization of surfaces S2n
Based on the equations (5) or (6), we can visu-
alize any surface S2n with the program Mathe-
matica.
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Figure 1: Three surfaces S2n, where n = 2,3,4, are shown in this figure. The tangent cone at the
origin splits into 2n−1 planes that intersect through the axis z. Each tangent cone has 4n−1 planes
of symmetry, and corresponding surface S2n has 2n−1 petals and 2n planes of symmetry.

Figure 2: This figure shows one surface S4 and its tangent cone at the origin that splits into three
coordinate planes. The surface is given by the following implicit equation: A2(x,y,z)2 + xyz = 0.
Since three tangent planes at the origin have only one common point, the surface has 4 petals.

Figure 3: This figure shows one surface S6 and its tangent cone at the origin that splits into 5 planes
which have only one common points. The surface has the largest number of petals, i.e. 11 petals.
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Figure 4: This figure shows one surface S8 and its tangent cone at the origin that splits into 5 planes,
where 4 planes share the common axis z. Therefore, the largest number of petals (11) decreases to 8.

Figure 5: This figure shows one surface S8 and its tangent cone at the origin that splits into 7 planes
and there exist 6 lines which are the intersections of 3 tangent planes. Therefore, the largest number
of petals (22) decreases to 16.

Figure 6: This figure shows one surface S10 and its tangent cone at the origin that splits into 9 planes.
There exist 3 lines that are the intersections of 4 tangent planes, and 4 lines which are the intersections
of 3 tangent planes. Therefore, the largest number of petals (37) decreases to 24.
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3. CONCLUSIONS
In this paper we observe a special class of sur-
faces S2n in the Euclidean space, given by the
equation of the form

A2(x,y,z)n +wH2n−1(x,y,z) = 0,

where A2(x,y,z) = x2+y2+z2 and H2n−1(x,y,z)
is a product of 2n−1 linear homogeneous poly-
nomials. We show that S2n is a surface of or-
der 2n which has a (2n− 1)-fold point in the
origin and touches the plane at infinity through
the absolute conic. The surfaces consists of the
separated parts (petals) sharing only one real
(2n− 1)-fold point. We prove that the largest
number of petals of S2n equals 2n2−3n+2 and
show how this number decreases if some tangent
planes at the origin pass through same straight
line.
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