CASE d.o.0.

RAZVOJ[POSL'OVNIH
ININEORMATICKIHISUSTAVA

CASE 2
foi

INFODOM

D

©

Broncani pokrovitelji

By
fonr
ODJEL ZA
plei et 1 INFORMATIKU
Citus - - SVEUEILISTE U RUECI

02.06.-03.06.2014, Zagreb




ORGANIZATOR
CASE d.o.o.

ORGANIZACIJSKI | PROGRAMSKI ODBOR

TOMISLAV BRONZIN mag. ing. el.
ANTE POLONIJO
MISLAV POLONIJO
IVAN POGARCIC mr.sc.
ZLATKO SIROTIC univ.spec.inf.
ZLATKO STAPIC mag.inf.

lzdavac:
CASE d.o.0., Rijeka

Urednik:

Mislav Polonijo

Priprema za tisak:

CASE d.o.0., Rijeka

Tisak:
CASE d.o.0,, Rijeka

ISSN 1334-448X
UDK 007.5 : 621.39 : 681.324

Copyright ©"Case”, Rijeka, 2014

Sva prava pridrzana. Niti jedan dio zbornika ne smije se reproducirati u bilo kojem obliku ili na bilo kaji nacin,
niti pahranjivati u bazu podataka bez prethodnog pismenog dopustenja izdavaga, osim u sluajevima kratkih
navoda u stru¢nim ¢lancima. Izrada kopija bilo kojeg dijela zbornika zabranjena je.

Case d.o.o., Setaliste XlII divizije 28, 51000 Rijeka
tel: 051/217-875, tel/fax: 051/218-043, e-mail: case@case.hr, internet: www.case.hr



SADRZAJ

CASEdev

PROTOTIPNI RAZVOJ APLIKACIJA S POSEBNIM OSVRTOM NA ORACLE APEX
Dejan Drabi¢, prof. dr. sc. Vjeran Strahonja

» AGILNO UPRAVLJANJE - METODOLOGIJA AGILNOG UPRAVLJANJA PROCESIMA
Nino Sipina

» UPRAVLJANJE ZNANJEM U APIS IT
Ivan Zugaj

> WORDPRESS, JOOMLA, DRUPAL | DETEKCIJA WEB RANJIVOST!
Tamara Rojko, Marin Kaluza

» TREBAJU LI NAM DISTRIBUIRANE BAZE U VRIJEME OBLAKA?
Zlatko Sirotié

» DELAGACIJA KONTROLE U OBLACNOM RACUNARSTVU
Denis llijevi¢, lvan Pogarcic

> KOLIKO JE SIGURNOST PROBLEM OBLACNOG RACUNALSTVA?
Ida Panev, lvan Pogarci¢, Tamara Poli¢

» POTENCIJAL PRIMJENE AFEKTIVNOG RACUNALSTVA U MALOPRODAJI
Nikola Vlahovi¢, lvan Miskovic

CASEmobile

» NOVI PRISTUPI | MOGUCNOSTI U KITKAT ANDROID 4.4 API-JU
Zoran Kos, Zlatko Stapic

» PLATFORMA ZA RAZVOJ MOBILNIH APLIKACIJA — XAMARIN
Miljenko Cvjetko

» KORISTENJE ANDROID ANNOTATIONS | ACTIVE ANDROID RAZVOJNIH OKVIRA
Alen Huskanovié¢, David Ante Macan, Milan Pavlovié¢

» PRIMJENA | PREDNOSTI NOSQL BAZA PODATAKA
Mario Novoselec, Denis Pavlovi¢, Milan Pavlovié

» SOFTVER ZA MOBILNE UREPAJE U JAVNOM PRIJEVOZU
Samir Rizvi¢, Barbara Rudié¢, Ivan Pogar¢ic

» SUSTAV PREPOZNAVANJA SLIKOVNIH UZORAKA MOBILNIM UREDAJEM

v

Alen Huskanovi¢, David Ante Macan, Zoran Antolovié, Boris Tomas, Marko Mijac

NOVI KONCEPT RAZVOJA APLIKACIJE - ZA PROGRAMERE | ONE KOJI TO NISU
Ivan Curi¢, Tomislav Bronzin

KORISTENJE GOOGLE CLOUD MESSAGING SERVISA U ANDROIDU
Zoran Kos, Zlatko Stapic

13

19

25

33

49

57

63

71

79

83

89

95

107

115

119



CASEmobile 119

KORISTENJE GOOGLE CLOUD MESSAGING SERVISA U ANDROIDU

USING GOOGLE CLOUD MESSAGING SERVICE IN ANDROID

Zoran Kos, Zlatko Stapic

SAZETAK

Rad prikazuje mogudénosti koridtenja Google Cloud Messaging (GCM) servisa za Android platformu, te koji omogudéuje
developerima da pomocu web servisa Salju noltifikacije | podatke instaliranim aplikacijfama, na pametnim i mobilnim
uredajima ili tabletima. GCM prifom vodi brigu o stanju u kojem se mobilni uredaj nalazi, a asinkrona komunikacifa je
moguca | u suprotnom smijeru, to fest od mobilne aplikacife prema servisu. GCM raspolaZze s mnogo korismih znacajki
poput ,send to sync® i ,senddata® mogucnosti, podrske za multicast poruke, rada u slucaju mirovanja, uporabu
perzistentne veze (upotreba XMPP-a), upstream slanja poruka i sinkronizacije obavijesti na vecem broju mobilnih
uredaja. Takoder ova usluga se moZe iskoristiti za lociranje ukradenih tefefona, daljinsko podesavanje tefefona, slanje
poruka prilikom postizanja odredene razine u igrama itd. Ukratko, usluga GCM je odli¢an nadin za programere da
upravijanju s provjerenim aplikacijama, ali sa sobom nosi | odredene nedostatke fer fe u zadnje vrijeme postala predmet
raéunalnog kriminala

This article presents the possibility of using Google Cloud Messaging (GCM) service for the Android platform. GCM
provides programmers and developers the possibility to send notifications and data to smart phones’ or tablet’s installed
applications, by means of using the Web services. It also fakes care of the state in which the mobile device, and gives a
possibility of asynchronous communication in the opposite direction — from mobile application to the service. GCM has
many useful features such as: “Send to Sync” and “Send data” capabilities, support for multicast messages, delay while
idle, the use of persistent connections (by using XMPP), the upstream messaging and synchronization notification across
multiple android devices. Also, this service can be very useful for locating stolen phones, remote adjustment of the
mobile device sending a messages when user reach a certain level in the game, and so on. Shorly, the GCM is a great
way for Andraid developers to manage their applications, but it also has its disadvantages and it recently became the
subject of cyber-aftacks.

1. INTRODUCTION
Google cloud messaging (GCM) for the Android
platform is a service that provides applications’

programmers and developers to communicate with
applications installed on smart phones, tablets, Chrome

CA

Google

Run & Test

-\I

apps and extensions, from servers. GCM was officially
presented in 2012. at Google I/O conference in San
Francisco, California. The next year, at the same
conference, new improvements were introduced
(Google Developers, 2013). Through this service, it is
possible to send a wide range of information, from

bsits Dveaiigins €

Create a Project

GetF

Enable Google Cloud Messaging for Android

Get Server APl Key

Google Developers Console -

O —

ddy uap Wi °

Figure 1 - GCM life cycle flow (HMKCode, 2014)



120 CASEmobile

ordinary notifications to the commands that are
executed inside the application by providing fresh and
up-to-date data for users. This service has been
developed to assist developers in building apps whose
communication or data transfer goes asynchronous in
two directions, between service and applications on the
same connection (push notification). This data could be
a lightweight message telling the Android application
that there is a new data to be fetched from the server
(for instance, a "new email" notification informing the
application that it is out of sync with the backend), or it
could be a message containing up to 4KB of payload
data (so apps like instant messaging can consume the
message directly) (Android Developers, 2014a). Google
uses GCM for the processing and sending instant
notifications for many popular applications including
Twitter, Facebook and Gmail. This applications use
GCM to inform the users about: the friends that have
checked in nearby; the received a message; any related
notice with user profile.

The strength of this service can be seen in the fact that
it can serve more than 200,000 push notification every
secohd. This paper describes how the messaging
works, and it consists of five sections. After this
intraduction the second section describes the main
characteristics and components of which GCM is
composed. The third chapter describes initial steps that
have to be made on the client and the server side
implementation of the GCM. It also describes what are
user notifications and their role in the GCM. The fourth
chapter shortly writes about the wvulnerabilities and
attacks that were recorded on GCM. At the end of this
paper conclusion is given.

2. THE MAIN GCM CHARACTERISTICS

The GCM architecture is graphically presented in Figure

1 and it contains the three following main components:

# Client Application — receives the message from
GCM connection server initially sent by the
application server and sends the new message to
the same server.

» 3"party Application server — receives the client
app registration ID; based on the registration ID
records in the database sends the message to the
GCM connection server.

» GCM connection server — receives the messages
from the application server and sends these
messages to the GCM enabled android devices.

Before using GCM there was the Android Cloud to
Device Messaging (C2DM) service that helped sending
data from servers to applications on the mobile devices.
But with appearance of GCM, C2DM has been officially
deprecated, meaning that the C2DM stopped accepting
new users, denies new guota requests and has no new
available features. The reason for deprecation was that
GCM can be simply put to use. There is no signup form;
no quotas or client login token, it takes 4.7 ms to deliver
the messages, and all of this reduces battery usage and
gives a rich set of new APIs. GCM also provides a client
and server helper library which means that developers
can easily write code. The GCM service is completely
free and handles all aspeclts of queuing of messages
and delivery to the target Android application running on
the targel device. Considering these changes it is not
possible to establish interoperability between GCM and
C2DM. All GCM major features that are new and make
a difference in relation to C2DM are placed in Table 1:

GCM features and APls
Simple API key
Sender ID
Canonical registration ID
Json format
Multicast messages
Time-to-live messages
Messages with payload
Send-to-Sync messages
Upstream messaging
Seamless multi-device messaging
Multiple senders
Table 1 — GCM features and APIs

Key Concepts of GCM are components, entities of GCM

Armln ik et oo A tha sradastiasle iead far o assaes
arcnneciure andg Wie Coredentas used 10 actiess

authentication in different stages of GCM. Credentials
can ensure that all components have been properly
authenticated so that data transfer and messaging is
going to the correct place and without delay. Credentials
are the IDs and tokens used in different stages of GCM
which are listed below (Android Developers, 2014a):

# Sender ID — a project number given from API
console used in the registration process to identify
a 3"-praty app server.

» Application ID — located in manifest and identified
by the package name. This ID ensures that the
messages are targeted to the correct app.

» Registration ID — issued by the GCM servers to the
app that allows it to receive messages. This ID is
tied to a Jnarticular app running on a particular
device. 3"-party app server can identify each
device that has registered to receive messages for
a given app. If client app no longer wants to receive
messages it can unregister GCM.

> Google User Account — used only if use's Android

APl is lower than 4.0.4.

Sender Auth token — is an APl key that is saved on

the 3™ -party app server. It gives app server

authorized access to Google services. The token is
placed in the header of POST requests that send
messages.

v

If we put attention on Figure 1 we can see the lifecycle
flow of GCM which consists of three processes that are
described in more detail below:

> Enable GCM

¥ Send a message

» Receive a message

To enable GCM, client app that runs on mobile device
calls register method which returns the register ID in
order to receive messages. A 3"-party app server sends
messages to the device, and this process consists of
several steps (Android Developers, 2014a):

» Google checks and stores the message in case the
device is offline.

¥ When the device is online, Google sends the
message to the device.

* The system broadcasts the message to the
specified app via Intent broadcast with proper
permissions, so that only targeted app gets the
message.

= Ann nrocesses the message.
3 App processes the message

Process “receive a message” consists of a sequence of
steps starting from extracting the raw key/value pairs
from the message payload. After that system transmits
this key/value pairs to the targeted app as a set of



CASEmobile 121

extras to broadcast receiver. App then extracts raw data
from this intent and processes the data. The app server
sends a message to GCM servers. The described
processes make the life-cycle of GCM which is shown in
Figure 2:

Hereis the message
foryou.

Register me_ Here is my sender|d
register (sender_id)

—ﬂ *
<a
" - \ /]
You are registered. Here is your ¥
\ registration id.
&a /
Hereis my v

registration id. Save
ittothe database.

Send a message tothe

of registrationids and
message.

(5

o

Save (registration_id) Select _jds ()

v I
=
E
Figure 2 — GCM Life Cycle Flow (freelancersnepal, 2014)

3. IMPLEMENTATION OF THE GCM

This chapter provides short guidelines, the developers
should hold, in order to successfully implement the
GCM. Before GCM can be used in java project, some
steps should be taken. They are listed and explained
below:

1 Installation of Google Play services SDK —
provides the GoogleCloudMessaging methods and
it can be used in combination with Eclipse ADT
environment.

2  Creating a Google API project inside the Google
Developers Console — it creates project ID and
project number.

3  Enabling the GCM service API inside created
project.

4 Creating a Server key — with option to whitelist
specific IP addresses. This key is used by
developer's server app as a password when
connecting to Google’s Command and Control
server.

After successfully completing above steps GCM project
in the AP| Console is created and it's possible to start
implementing GCM. Developers can thereby decide
which of the available GCM connection servers will be
used (HTTP or XMPP). Then, it is possible to start
implementing an app server to interact with chosen
GCM connection server or GCM-enabled app that runs
on a device. Those who do not have own avaiiabie 3-
party app server can use upstream messaging (device-
to-cloud) feature or user nolification via Command and
Control server (CCS is an XMPP endpoint that
provides a persistent connection to Google server) by

applications. Here is the list

becoming trial partner with Google available at given
URL: https://services.google.com/ib/forms/gemi/.

3.1 How to implement GCM Client

As mentioned earlier in the previous chapter, the GCM
client is GCM-enabled app that runs on mobile device
which uses GeoogleCloudMessaging APIL It is also
possible to use the client helper library that was offered
in previous version of GCM but now it's not
recommended to be used because some methods in
this library are deprecated. The following example
shows how to implement GCM client in mobile device
that runs on Android platiorm. For purposes of better
presentation and programming, the next example parts
of the codes are taken and modified from publicly
available pages (tutorials) which can be found at
(Android Developers, 2014b) and (Cambell, 2013). To
implement a GCM client-side application, application
must include code to register (Registration ID) and
broadcast receiver to receive messages sent by GCM.
In order to do that we can use the form shown in Fig. 3:

i®! GCM Demo

Registration ID:

Field for retrieved register ID

Register

Figure 3 — Registration application form

Starting point is to include GoogleCloud Messaging

API (available within Google play services SDK) inta the

project. Without this API it is not possible to implement

GCM on client side. The second point is writing

permissions in the application manifest:

» com.google.android.c2dm.permission.REC

EIVE — app can register and receive messages.

com.google.androld.cZ2dm.intent.

RECEIVE — if set, only the GCM Framework can

send a message ta it.

» android.permission.INTERNET - for sending

registration ID to the 3" party server.

android.permission.GET ACCOUNTS - i

mobile device is running on lower AP then Android

4.0.4, GCM must require a Google account.

» android.permission.WAKE LOCK - client app
can keep the processor from sleeping when a
message is received.

¥ applicationPackage.permission.

# (2D MESSAG — prevents other apps from
registering and receiving the GCM message.

For a better understanding it is necessary to pay
attention to receive permission. Because, if client app
uses an IntentService (class for Services that
handle asynchronous requests on demand), broadcast
receiver should be an instance of
WakefulBroadcastReceiver (creates and manages
partial wake lock on client app). A service (typically an
IntentService) to which the
WakefulBroadcastReceiver passes the work of
handling the GCM message, while ensuring that the
device does not go back to sleep in the process codes
like this (Android Developers, 2014b):

>
»

v



122 CASEmobile

<recelver
android:name=".GcmReceiver"
android:permission="com.goocgle.android.
c2dm.permission. SEND"
>
<intent-filter>
<action android:name="com.google.
android.c2dm.intent .RECEIVE" />
<category android:name="com.
case?6.gemdemo" />
</intent-filter>
</receiver>
<service andrcid:name=
" .CemIntentService" />

Code 1 — Enabling send messages

Broadcast receiver performs operations automatically
when service starts with operations. The following code
snippet starts GcomService with the method
atartWakefulService ()inside the

GecmReceiver class:

// Explicitly specify that GemService
will handle the intent.
Componentliame comp=new
ComponentName (context.getPackagelName ()
,GemService.class.getName () ) ;

// Start the service, keeping the device
awake while it is launching.

startWakefulService (context,
(intent.setComponent (comp) ) ) ;

setResultCode (Activity.RESULT_CK);

Code 2 — Starting GCM Service

Client app cannot receive messages before it is
registered with the GCM servers. To achieve this,
developers must use class that extends the
GoogleCloudMessaging class with AsyncTask
ocbhiect so receiving process can be performed in the
background. AsyncTask class enables easy use of
the Ul thread and performing background operations.
Usually, registration should occur in the onCreate ()
method in main activity or using a dialog if we want to
give the user a choice about receiving GCM messages.
It is necessary to include values of variables
Sender TID and Apelication_ TD given by Google
Developers Console. Once the registration ID is
retrieved it is stored locally on the device
(SharedPreferences) and sent to 3" party server. It
is recommended to use HTTP connection so developers
can have an immediate answer if the registration went
well or not. The following code snippet shows short
registration process, described previously:

if{gem == null) {
gem=GoogleCloudMessaging.
getInstance (context);

N
!

reglD=gcm.register (Gleobals.
GCM SENDER 1ID):

// Send the registration ID to 3rd

1

(a2

part
sarver server via HTTP
sendRegistrationIdToBackend();

// PersistthereglD - no need to
registeragain

storeRegistrationld(context, regid);

Code 3 — Registers the app with GCM server
asynchronously

If the registration went well with no errors as the
feedback of Figure 4 on the screen of demo application
will be show the following:

€ ccM pemo

Registration ID:
APA91bEPh2BhjZfHuV6cRC..._5Nsem6SxgKcBwmzw3c

Register

Figure 4 — retrieved Register ID

Based on the obtained Reqister ID, client app can also
send messages to 3 party application server over
GCM server. The content of the message depends on
what the developer wants to get out of the user's
activities. It is important to point out that the GCM
message is a JSON object containing some required
and optional fields. There are several different formats
depending on the direction in which communication
goes:
» Request format - from a 3rd-party app server or
client app to CCS.
» Response format — from CCS to 3rd-party app
server (including ACK and NACK message
formats).

For each device message that the 3rd-party application
server receives from CCS it needs to send an ACK
message. 3rd-party application server never sends a
NACK message. CCS sends an ACK ar NACK for each
server-to-device message, if client app doesn’t send an
ACK for a message; CCS will just resend it again. The
following code snippet shows how request format of
JSON massage should look like:

"to" :"RECISTRATICN ID",

"message id":"m-453443534548",
"data":

{

"message":"caseZo",
"action":"com.caseZ6.gomdemo . ECHO",
}

"time to live":"500",

"delay while idle™: false

Code 4 — JSON massage, Request format

We could get specified format with following code
snippet which is written in java GemActivity class:
newhAsyncTask () {
@override
protectedsStringdoInBackground
(Void. . .params) {
String msg = "";
try{
Bundle data = newBundlel();
data.putString ("my message",
"caseZb");

data.putString ("my action



CASEmobile 123

com.case2b.gendemo . ECHO ") ;

String id =Integer.toString

(msgId.increment&ndGet ());

gem, send (SENDER_ID +"@gcm,

googleapis.con", id, data);

msg="3ent message"; }catch
(ICException ex){

msg="Error :"tex.getMessage();
b
return msqg;

1

} i
Code 5 — Upstream a GCM message up to the 3rd party
server

3.2 How to implement GCM Server

As mentioned previously, server side of GCM caonsists
of Google-provided GCM Connection Servers (HTTP or
CCS over XMPP) and 3" -party appllcahon server which
developer must implement. 3"-party server must be
able to communicate with client and GCM Connection
Servers with properly formatted requests and be able to
respond incoming requests to it. It's also important that
each exchanged massage have a unique message ID
that is located in the header of POST request. The first
step that developer has to do is to make a decision
which type of GCM connection server(s) to use. For a
better understanding differences between two types of
connection server(s) through the basic features are
listed (Android Developers, 2014c):
¥  Upstream/Downstream messages:

HTTP: Downstream only: cloud-to-device

CCS: Upstream and downstream (device-to-cloud,

cloud-to-device)
* Asynchronous messaging
HTTP: 3"-party app servers send messages as
HTTP POST requests and wait for a response
ccs: 3™ -party app servers connect to Google
infrastructure using a persistent XMPP connection
and send/receive messages to/from all their
devices at full line speed.
JSON messages
HTTP: sent as HTTP POST
CCS: encapsulated in XMPP messages.

v

Before we go on with implementing GCM Server, it is
important to pay attention to types of messages. Every
message sent in GCM has payload limit of 4096 byles
and by default it is stored by GCM server for 4 weeks.
There is two main types “send-to-sync” (collapsible
message) and “message with payload” (non-collapsible
message). Send-to-sync message tells a mobile device
to sync data from server, where the most recent
message is relevant. New message will replace the
preceding message.

GCM message parameter collapse key plays here
an important role because it's used to collapse a group
of similar messages when the device is offline. This
means that only the most recent message gets sent to
the client app. GCM allows a maximum of 4 different
collapse keys to be used by GCM server at given time.
More than four collapse keys could cause unpredictable
consequences.

Messages with payload are delivered every time;
collapse key is omitted; the payload the message
can be up to 4kb and after 100 stored messages, GCM
will discard old messages. For demonstration purposes,
we wil not use our own 3-rd-party server

implementation, because we can use “Push Bof
services APl for push messing described in next
chapter. Push Bot can push nctifications via XMPP to
feeds that support server-to-server PuBSUBHubbub
protocol. These Servers can get near-instant
notifications when a topic they're interested in is
updated (PushBots, 2012). To use this API, in the
Android project “Pushbots131beta.jar” library should be
included. With this library, inside the onCreate{(Bundle
bundle) method, developers can implement push
notification for mobile devices with a one single line of
code:
Pushbots.init (this, “Sender 1D,
“Pushbots

Code 6 — PushBot function

_App_ID7);

When the message is sent using the GCM on the
screen of android Mobile device, there will be the
following content in the notification area:

May 26, 2014

GCM demo

Figure 5 — Message sent fo device via 3rd party
application server

3.3 User notification

User notification is feature that enables 3™-pary app
server to send a single or multiple messages to client
apps and app instance that a user owns to reflect the
latest messaging state. The way this works is that
during registration, the 3-rd party server requests a
notification key which is used as an address to send
messages (Android Developers, 2014a). The notification
key maps a particular use to all of the user's associated
registration |Ds, allowing him to send message to all of
the user's reglDs. To create a user notification key, a
JSON request must be sent to GCM Notification
endpoint. The notification key for a user's device is only
stored on the server. This feature can be used with
either the XMPP or HTTP connection server. The Figure
shows how communication works with CCS console:

P o]
(%

Tom's Device #1  GCM Uver Notficatic
- o

Bill's Device #1  GCM User Norfeation
[ =]

Google GCM

P Cloud Connecton Server

CCS Applicaiton

Tom's Device #2

Figure 6 — GCM User Notification using CCS (Cambeil, 2013)



124 CASEmobile

To use these feature developers can perform
generate/addfremove operations, and send upstream
messages. To send a message, the application server
issues a POST request to URL
https://android.googleapis.com/gem/notifi
cation. And the following JSON format will be used:

//header, project 1D API key for
authentication

content-type: "application/json™

Header : "project id": <projectlD>

Header: "Authorization", "key=API KEY"

Request:

{
oo

“operation”: [VYereate”, "add”, “remove”],
“netification key name”:”userl hash”,
“registration ids”: [“XYZ"”, “ABC”]

}

Code 7 — Request Format to work with notification key
operations

Here is a code example that shows targeting a
notification key for sending the message, which Bundle
data consists of a key/value pair:
GoogleCloudMessaging gom =
GoogleCloudMessaging.get (context) ;
String to = NOTIFICATION KEY;
Atomiclnteger msgld = new
AtomicInteger();
Bundle data = new Bundle();
data.putString(,26", ,caseZ6™);
gom. send (to, id.toString(), data):

Code 8 — Upstream messaging

4. VULNERABILITIES AND THREADS

Last year at the end of July, Kaspersky Lab, computer
Security Company, has announced that they have found
a backdoor in GCM service. Backdoor is defined as
method of bypassing normal access to a program,
online service or entire computer system, securing
illegal remote access to a computer, while attempting to
remain undetected. In our case, the backdoor can be
used by criminals to send SMS messages to premium-
rate numbers, for stealing data from Android devices
and also to send messages which content includes links
to itself or other malware. Previously mentioned,
messages are sent in JSON format what enables
hackers to take advantage for malicious purposes. Once
gained a GCM ID, malware updates are distributed
exploiting directly the GCM services. Also the Command
to the malicious agent is sent is by exploiting the service
and using JSON format. Using GCM as Command and
Control server for Android Malware is already generally

References:

known concept. The top three most Android Trojans that
used JSON format are listed below:

» SMS.AndroidOS.OpFake.bo

» SMS.AndroidOS.Fakelnst.a

¥  SMS.AndroidOS.OpFake.a

“Trojan-SMS.AndroidOS.OfFake.bo is one of the most
sophisticated SMS Trojans. lts distinguishing features
are a well-designed interface and the greed of its
developers. When launched, it steals money from the
mobile device’s owner — from $9 ta the entire amaunt in
the user’s account. There is also the risk of the user’s
telephone number being discredited, since the Trojan
can colfect numbers from the contact list and send SMS
messages o alf of those numbers. The malware targets
primarily Russian-speakers and users in CIS countries.”
(Chebyshev and Unuchek, 2013)

Kaspersky Lab has reported Google about the
discovered vulnerabilities, and announced that the only
way to protect users against such attacks is through
blaocking developers’ accounts with 1Ds linked to the
registration of malicious applications. The number of
malware that exploits the GCM service is relatively low.
Most malware are prevalent in Western Europe
(particularly in Russia) and Asia.

5. CONLUSION

This paper briefly introduced Googie Cioud Messaging
for Android (GCM) which is defined as service that
allows developers to send data from 3" party server to
their users’ Android-powered devices, and also to
receive messages from devices on the same
connection. The GCM service handles all aspects of
queuing and delivery to the target Android application.
Key concepts of GCM are the components which make
the architecture of GCM and the credentials used for
access authentication in different stages of GCM.
Components include client app that runs on Android
device, 3“-party app server and GCM connection
server. Credentials are the IDs and tokens used in
different stages of GCM (Sender ID, application ID,
registration 1D, google user account and sender auth
token). GCM has many useful features such as: “Send
to Sync” and "Send data” capabilities, support for
multicast messages, delay while idle, and the use of
persistent connections (by using XMPP), the upstream
messaging and synchronization notification across
multiple android devices etc. The new CCS API for
GCM messages has made sending messages faster
than the HTTP API, but with the added complexity of an
asynchronous process. GCM is a great way for Android
developers to manage the communication with their
applications and users, but it also has important
disadvantages that should be taken in consideration.

1 Android Developers, 2014a. GCM Overview [WWW Document]. Google Cloud Messaging - Overview. URL
http://developer.android.cam/google/gem/gem.html (accessed 5.9.14).

2 Android Developers, 2014b. Implementing GCM Client [WWW Document]. Implementing GCM Client. URL
http://developer.android.com/google/gecm/client. html (accessed 5.9.14).

3 Android Developers, 2014c. Implementing GCM Server WWWW Document]. Implementing GCM Server. URL
http://developer.android.com/google/gcm/server.html#choose (accessed 5.12.14).

e b

i

—~ A AAdA ~ I T R ' P NPT . ar o
Larmpel, A., £U15. o00gIe Lioud MEsSsaging. ioud Lol LOn oerver

N i e T.A‘-_!-l PAMAIAL P oo o T L

utoriai WWW Document]. CapTech

consulting. URL http://captechconsulting.com/blog/antoine-campbell/google-cloud-messaging-cloud-connection-

server-tutorial (accessed 5.9.14).



CASEmobile 125

5 Chebyshev, V., Unuchek, R., 2013. Mobile Malware Evolution: 2013 - Securelist \WWW Document]. URL
http:/www.securelist.com/en/analysis/204792326/Mobile_Malware_Evolution_2013?print_mode=1 (accessed
5.19.14).

6  Freelancersnepal, 2014. Google Cloud Messaging (GCM) in Android using PHP Server (WWW Document].
Freelancersnepal. URL htitp://freelancersnepal. wordpress.com/2014/01/29/google-cloud-messaging-gecm-in-android-
using-php-server/ (accessed 5.9.14).

7 Google Developers, 2013. Google /O 2013 [WWW Document]. Google I/O 2013. URL
https://developers.google.com/events/iof (accessed 5.26.14).

8 HMKCode, 2014. Android Google Cloud Messaging Tutorial [WWW Document]. Android Google Cloud Messaging
Tutorial. URL http://hmkcode.com/android-google-cloud-messaging-tutorial/ (accessed 5.9.14).

9  PushBots, 2012. PushBots: communicate with your mobile app users in minutes (WWW Document]. PushBots. URL
https://pushbots.com (accessed 5.26.14).
Information on authors:

Zoran Kos B.Sc

e-mail: zoran.kos@foi.hr

Zoran Kos is 2™ year student of Information and Programming engineering of Faculty of Organization and Informatics in
Varazdin. Main interests are programming web, desktop and mobile application, new IT trends like cloud computing and

mobility, making and presenting business models for startup projects. While developing new apps he focused on front-end
development. He already has few smaller but successful projects behind him.

Zoran is the main contributor to this paper. He wrote the first version of the text and did coding of the presented examples.

Zlatko Stapi¢, PhD.
e-mail: zlatka.stapic@foi.hr

Faculty of Organization and Informatics
Pavlinska 2, 42000 Varazdin, Tel: +385 42 390 820, Fax: +385 42 213 413

Zlatko Stapié, PhD., works at the Information Systems Development Department at Faculty of Organization and Informatics
in Varazdin. He obtained his PhD in computer sciences from University of Alcala (Spain) and in information sciences from
University of Zagreb (Croatia) in cotutelled doctorate program. His scientific and research interests include software- and
mobile applications development methodologies. He participated in more than 15 scientific and professional projects and
published more than 30 scientific and professional papers. Currently he leads the Laboralory for Development and Transfer
of Mobile Technologies (FOI MT-Lab). Zlatko is putting a special focus in inclusion of students in his scientific and
professional activities. The published papers, projects, awards and other relevant information can be found on his personal
website: http://iwww.foi.unizg.hr/djelatnici/zlatko.stapic.

Zlatko's contributions to this paper are only of corrective nature. He mentored student Zoran Kos in defining the body, the
structure and the style of the paper. After the first version of the paper is written, he proof-read the text and made
necessary changes to make the text more focused and readable.



