
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

HOMOGENIZED ELASTIC PROPERTIES OF GRAPHENE
FOR LARGE DEFORMATIONS
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Lučića 5, 10000 Zagreb, Croatia, {eduard.marenic, jurica.soric}@fsb.hr

2 Ecole Normale Supérieure de Cachan, Lab. of Mechanics and Technology, 61 avenue du
Président Wilson, 94230 Cachan, France, adnan.ibrahimbegovic@ens-cachan.fr

Key words: Graphene, molecular mechanics, atomistic-to-continuum modelling, Cauchy-
Born rule.

Graphene [1] is the name given to a flat monolayer of carbon atoms tightly packed into
a two-dimensional honeycomb lattice, thus often abbreviated as Single Layer Graphene
Sheet (SLGS). Its discovery started a real revolution related to the graphene-based mate-
rials and devices due to its remarkable properties [2]. However, prior to the practical usage
of these novel materials, a good knowledge of their mechanical properties and ability to
model their performance is needed. The main challenge is that parts of graphene-based
devices modelled with discreet models such as molecular mechanics (MM) typically con-
tain extremely large number of particles, even though the actual physical dimension may
be quite small. Thus, we reach for a substitute, continuum model which simulates the
average behaviour of atomic system. Equivalent continuum, i.e., hierarchical atomistic-
to-continuum modelling of large deformations of SLGS goes beyond what linear theory
can handle [3]. We seek to adopt the nonlinear membrane theory which includes, as a
special case, the hyperelastic model in terms of strain energy density (SED), W , as a func-
tion of principal stretches W (λ1, λ2). This is an elegant alternative for the construction
of the elastic constitutive response that satisfies the material indifference and isotropy
restrictions, and which was often used to characterise rubberlike materials, see [4].
In order to construct SED potential Wfit(λ1, λ2), we determine the equilibrium potential

energy of atomistic system driven by modified Morse potential [5] for the series of biaxial
loading cases. These loading cases are designed to form the uniform grid in the space of
λ1, λ2 resulting with the cloud of points shown as dots in Fig. 1 (right). These results are
further used to perform a polynomial surface fitting given as
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where i and j are the the degree in λ1 and in λ2, respectively. With this result in hand, we
can calculate the second Piola-Kirchhoff stress tensor (S) and the elastic tangent modulus
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Figure 1: Scheme of the lattice sample with symmetry BCs used for biaxial tensile tests. The envelope
of the sample is composed of lines L1 to L4 which coincides with boundary atoms (left). The polynomial
surface fit W of SED obtained by series of biaxial tests performed by molecular mechanics simulation.

(C) in a closed form, see (2). Note that the matrix representations of these results can
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further be directly used for the calculation of the internal force vector and the element
tangent stiffness matrix of the standard 2D large displacements elastic membrane finite
element. Moreover, this procedure obviates the Cauchy-Born (CB) rule (common link
between atomistic and continuum scales) to be valid, and we plan to confront this approach
based on the numerical homogenization procedure with the CB based approach from [6].
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