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Abstract - In this paper the design of fourth-order
band-pass (BP) active-RC filters using a modified low-
pass to band-pass (LP-BP) frequency transformation,
applied to a second-order low-pass (LP) filter as a
prototype, is presented. It is shown that a BP filter can
be realized by substitution of resistors and capacitors of
the ladder in the low-pass prototype filter, by serial and
parallel RC circuits in the resulting BP structure. Such
a substitution results from a so-called, “lossy” LP-BP
transformation. The design procedure is simple, and the
closed-form design equations, starting from the
specifications of a 4th-order BP filter, are presented. A
complete step-by-step design procedure is verified on a
Chebyshev filter example and double-checked using
PSPICE..

1 Introduction

The design of BP filters is usually performed by
means of the well known LP-BP frequency
transformation applied to a LP prototype filter
transfer function [1-3]. The advantage of a passive-
LC filter realization lies in the existence of the
corresponding reactance LP-BP transformation,
which defines the BP filter structure enabling a
straightforward realization procedure, and the
calculation of the element values. The realization of
an active BP filter also usually starts with a
corresponding LP prototype transfer function, but
there is no direct element transformation which
would give a unique BP filter structure together with
its component values. Instead, a designer picks a
known BP active filter structure and calculates its
elements by comparing the corresponding transfer
function parameters with the parameters of the
chosen structure [1,2]. In this paper we present a new
procedure for the realization of an active-RC BP filter
directly from a given 2nd-order LP prototype, using
the prototype impedance transformation, which
corresponds to the so-called lossy LP-BP
transformation [3,4]. The transformation affects only
the passive components in the circuit, while the
active elements, i. e. their number and position within
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a circuit, remain unchanged. The procedure is applied
to the realization of 4th-order BP active filters, which
can be used as building blocks for higher-order BP
filter realizations [3,4]. Since the application of
discrete-component active-RC filters is generally
limited to systems in which power is at premium, we
choose a low-power filter structure using one
operational amplifier; thus a single-amplifier second-
order LP prototype [2,6] circuit is transformed into a
single-amplifier fourth-order BP filter circuit. Beside
the low power another advantage is that the resulting
circuit requires a minimum number of passive
components (i.e. four resistors and four capacitors) to
realize the transfer function poles. Since the passive
RC-network of the filter is in the positive feedback
loop, this filter circuit belongs to the so-called class-4
[1, 2] of single-amplifier active filter circuits. The
design procedure for the BP filter turns out to be very
simple. The closed-form design equations are given.
Realizability of the filter is verified by simulation
using PSPICE.

2 Design of Fourth-Order Band-Pass
Filters using the LP-BP Transformation

Consider the second-order low-pass filter shown in
Fig. 1. The filter is known as a class-4 or Sallen and
Key circuit [1,2,6].
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Fig. 1 Second-order low-pass filter.
The voltage transfer function T(s) for this circuit is

given by

22

2

01
2

0

1

2)(

p
p

p

pLP

LPLP

LPLP

s
q

s

K
asas

aK
V
VsT

ω+
ω

+

ω
=

++
== , (1)

where KLP=β, 
2121

0
1

CCRR
aLPp ==ω  and

1122211

2121

1 )( CRCRCCR
CCRR

a
q

LP

p
p β−++

=
ω

= (2)



and the gain GF RR /1+=β  represents the gain in the
class-4 filter circuit.

The LP-BP frequency transformation is defined by
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where ω0 is the center frequency and B is the
bandwidth of the BP filter. It doubles the filter order,
and from the second-order LP filter prototype a
symmetrical fourth-order BP filter with the following
voltage transfer function is obtained:
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If the coefficients ai (i=0,1,…,3) in (4a) are known,
we can calculate the LP filter prototype parameters
ωp, qp and LP-BP transformation parameters ω0 and
B, i.e. from (4b) we have
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Referring to Fig. 2a, it is assumed that the BP is
geometrically symmetrical, i.e. ωB1ωB2=ωs1ωs2=ω0

2.

 

Fig. 2 (a) BP filter, and (b) corresponding LP
prototype specifications.

In conventional filter design the BP specifications
given in Fig. 2a are transformed into the
corresponding normalised LP function shown in Fig.
2b. For this let
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where the frequencies ωx =2πfx [rad/s] are shown in
Fig. 2a. Various aids for the design of normalised
low-pass filters are given in the literature [2]. The
corresponding BP function can be found using (3).
The center frequency ω0 and the bandwidth B of the
BP filter follow from the specifications, thus:

21210 ssBB ωω=ωω=ω , 12 BBB ω−ω= . (7)
In this paper we present a modified design

procedure which prewarps the pole frequencies and
pole-Q factors of the normalised LP transfer function,
thereby permitting a simple LP-BP transformation to
provide a simple, single amplifier fourth-order
active-RC BP filter.

Let us assume that the LP prototype transfer
function (1) has poles s1 and s2 in the complex s-
plane, as shown in Fig. 3(a).

          

Fig. 3 Transformation of s-variable . (a) Pole shift for
δ. (b) New p-variable.

By introducing a new variable p=s+δ, where δ is a
real positive constant, we apply the transformation

s=p-δ (8)
to (1) and obtain a new transfer function T1(p)=T (s),
with poles p1 and p2 in the complex p-plane. The
poles of T1(p) are shifted to the right parallel to the
real axis, for an amount δ as shown in the Fig. 3 b).
The new LP filter prototype transfer function is
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The pole-Q value of poles p1 and p2 increase when
δ increases, i.e. when the poles move closer to the
imaginary axis. Since the constant δ can be freely
chosen, the poles may lie even in the right-half p-
plane, in which case the pole Q becomes negative,
and decreases as the poles move further to the right.
Note that poles in the right-half plane are permitted,
since the LP-BP transformation described below
maps the poles back into the left-half s-plane.

Application of (8) to (3), results by a “lossy”-
transformation in the variable p [3], given by
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The “lossy” LP-BP transformation (10), applied to
the transfer function T1(p) produces the same BP
filter transfer function as the conventional LP-BP
transformation (3), applied to the function T(s).

The shifted transfer function T1(p) is realized using
the circuit in Fig. 1. Introducing impedance scaling
factors r and ρ [1], as in Fig. 1, i.e.
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and the design frequency ωd=(RC)-1, we can rewrite
the transfer function (1) as follows
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Application of (10) to the shifted transfer function
T1(p) gives the BP transfer function (4). In order to
realize this BP filter transfer function we introduce
the impedance transformation which substitutes each
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resistor of the LP prototype filter by a series RC
circuit, and each capacitor by a parallel RC circuit, as
shown in Fig. 4, i. e.
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Fig. 4 RC impedance transformation.
This substitution replaces the expression p⋅RC in (12)
by a product of the admittance of a parallel RC circuit
and the impedance of a series RC circuit, i.e.,
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Dividing both sides of (14) by RC, i.e. scaling by the
design frequency of the LP prototype ωd=(RC)-1, we
obtain, after some calculations,
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The transformation (15) corresponds to the “lossy”
LP-BP transformation (10). A comparison of  (10)
and (15) gives
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The constant δ is not entirely free. It’s minimum
value is limited by the capacitance ratio C’b/C’a and
the resistor ratio R’a/R’b, which can be calculated
from (17), and they are
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The expression under the square root must be
positive, and the realizability constraint on δ is

B
02 ω≥δ (19a)

i.e.,
B

0
min 2 ω=δ . (19b)

It can be shown that the sensitivity of the filter
amplitude response to component tolerances is
minimal for δ=δmin. For this case:
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There is still one free parameter, and if, for
example, C’a is arbitrarily chosen, the rest of the
parameters can be easily calculated. If the
capacitance ratio is denoted as c, i.e. cCC ab ='' ,
then the parameters  ' and ' ,' abb RRC are
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We conclude that the “lossy” LP-BP transformation
(10), transforms resistors into series RC circuits, and
capacitors into parallel RC circuits. This procedure
results by a 4th-order BP filter shown in Fig. 5.
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Fig. 5 Fourth-order BP filter circuit.

3 Design Examples

Example 1) As an illustration of the proposed BP
filter design procedure, we consider the filter
specifications shown in Fig. 2 which require a 4th-
order BP filter for the realization. The specifications
in this case are fs1=100, fB1=150, fB2=200, fs2=300,
Rs=20, Rp=0.5 (frequencies in kHz, loss in dB). The
design can be carried out by the following step-by-
step design procedure:

i) Starting from the given filter specifications, find
the 2nd-order LP prototype filter parameters ωp, and
qp: Using (6) we obtain Ωs=4, which is satisfied by a
2nd-order Chebyshev LP filter with 0.5dB pass-band
ripple, having the normalized pole frequency
ωp=1.231342rad/s, and Q-factor qp=0.863721 [2].
From (7), the center frequency is ω0=1.0883⋅106

rad/s, and the bandwidth B=3.141⋅105 rad/s, or
normalized, Bn=B/ω0=0.2887, and the coefficients
from (4b) are: a0=1.4027⋅1024, a1=5.3044⋅1017,
a2=2.5183⋅1012, and a3=4.4787⋅105.

ii) Calculate δ such that (19) is satisfied: We
choose the minimum value for δ, i.e. δ=2ω0/B=6.928.

iii) Calculate the new LP prototype by shifting the
poles by δ: Applying (8), the new LP prototype
function T1(p) pole parameters are: Ωp=6.29594 and
Qp=-0.50648. Qp is negative, i.e., the poles lie in the
right-half p-plane.

iv) Realize the new LP prototype circuit
components: Applying the design procedure for the
filter circuit in Fig. 1, we choose: r=1, ρ=2 and
C1=C=1 [1,7]. From Ωp and Qp we calculate

1//1/)1( +ρ⋅−ρ+=β rQr p =3.39612, and the

normalized values R1= rCR p /)/(1 ρ⋅Ω= =0.22462,
R2=rR=0.22462, and C2=C/ρ=0,5. Let RG=1, then
RF=RG(β-1)=2.29612.

v) Calculate the transformed impedance
component: Let C’a=500pF, then from (20)
R’a=1837Ω; C’b=1732pF; and R’b=530.5Ω.

vi) Calculate the components of the fourth-order
BP filter: Using the normalized R and C values from



step iv), and (16) the element values are: Ra=412.8Ω;
Ca=2225.9pF; Rb=530.5Ω; and Cb=1732pF. The BP
filter components are R1=Ra=412.8Ω; R2=Rb=530.5Ω;
R3=rRa= 412.8Ω; R4=ρRb=1061Ω; C1=Ca=2225.9pF;
C2=Cb=1732pF; C3=Ca/r=2225.9pF; C4=Cb/ρ=866pF.
Note that the value of β remains the same as in the δ-
shifted LP prototype. A check of the resulting filter
circuit in the example is performed using PSPICE.
Fig. 6 shows the magnitude of the transfer function
α(ω)=20log TBP(jω) [dB] of the circuit in Fig. 5.

Fig. 6 Magnitude of 4th-order BP filter in example 1).
Example 2) In order to analyze the influence of the

shift-constant δ and to find a possible optimal value,
three different realizations of the Chebyshev BP
filter, with 0.5dB pass-band ripple (qp=0.86372,
ωp=0.88602rad/s), normalized center frequency ω0=1
and normalised bandwidth Bn=1, corresponding to
three values of δ, are considered. The first uses the
minimal value of δ as defined in (19), the second
uses the δ-value which gives R’a⋅C’a=1/(ωp1) and
R’b⋅C’b=1/(ωp2), and the third case the δ-value is
arbitrarily chosen to be equal to 3. The relevant
design parameters are presented in Table 1.

δ (R’aC’a)-1 (R’bC’b)-1 Ωp Qp β
2.0 1.0 1.0 1.653 -0.556 3.272

2.13 0.69486 1.43914 1.775 -0.547 3.292
3.0 0.38197 2.61803 2.590 -0.521 3.358

Table 1: Design parameters of 4th-order filter.

Fig. 7 Sensitivities of realized 4th-order BP filters.
A sensitivity analysis was performed. The standard

deviation (related to the Shoeffler sensitivities) of the
variation of the logarithmic gain ∆α=8.68588
∆|TBP(ω)|/|TBP(ω)|, with respect to zero mean and 1%

standard deviation of the components, was calculated
and shown in Fig. 7. As can be seen the best result is
obtained for the minimal value of the shift parameter
δ. Monte Carlo runs, carried out for the same
examples, confirmed this result.

4 Conclusions

A procedure for the design of low-power fourth-
order allpole BP active-RC filters is presented. The
design is based on a LP-BP transformation, which is
applied to a second-order LP filter prototype. The
single amplifier of the fourth-order BP filter provides
a low output impedance and supplies positive
feedback to the passive RC-network. The latter
requires only a minimal number of components to
obtain the transfer function. The initial design of the
second-order LP active-RC filter circuit, which is
used as the initial prototype, is well-known. It is
shown that a “lossy” LP-BP transformation
transforms the resistors of the LP prototype circuit
into series RC combinations, and capacitors into
parallel RC combinations, resulting by a new single-
amplifier 4th-order BP filter circuit. Detailed closed-
form design equations for this circuit are given. The
procedure is simple and can be extended also to
sixth-and higher-(even-)order BP filters.
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