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ABSTRACT: In this paper the design of low
sensitivity band-pass (BP) active resistance-capacitance
(RC) filters using impedance tapering is presented. 4th-
order band-pass filters are considered. The design
procedure for low-sensitivity low-pass (LP) prototype
second-order class 4 Sallen and Key active-RC allpole
filters, using impedance tapering, has already been
published. In this paper a low-pass to band-pass (LP-
BP) transformation is applied to an impedance tapered
2nd-order LP filter, and a 4th-order BP filter is
constructed. The component values, selected for
impedance tapering, account for the considerable
decrease in sensitivity to component tolerances for the
LP as well as for the BP filter. As an example, a
Chebyshev 4th-order BP filter is realized, and the
sensitivities are analysed. Schoeffler sensitivity
measure is used as a basis for comparison, and Monte
Carlo runs are performed as a double-check. A
considerable improvement in sensitivity is achieved,
both for the BP filter as well as well as for the original
LP prototype.
Index Terms: Allpole filters, BP filters, LP-BP
transformation, low-sensitivity active filters

1. INTRODUCTION
A procedure for the design of class-4 Sallen-and-Key
[3] low-sensitivity allpole filters is presented in [1].
The class-4 filter circuit has an RC-ladder network in
the positive feedback loop [3, 4]. The design presented
in [1] uses “impedance tapering” and it is applied to
2nd- and 3rd-orderLP filters.
In this paper we apply impedance tapering to a 4th-
order BP filter in order to decrease its sensitivity to
component tolerances. The 4th-order BP filter is
obtained applying a “lossy” LP-BP transformation [2]
to a 2nd-order LP filter circuit. It is shown that the
application of this transformation to a low-sensitivity,
i.e. impedance tapered, 2nd-order LP filter, results by a
4th-order BP filter with low sensitivities as well. In
other words sensitivity to component tolerances of the
BP filter is decreased in the same way as the sensitivity
of the original LP prototype.
The improvement in sensitivity of a BP filter transfer
function, achieved by impedance tapering, can be
obtained indirectly by impedance tapering the original
2nd-order LP filter. The improvement comes with no
additional cost, i.e. it requires only the selection of
appropriate component values. This is demonstrated by
the use of Schoeffler sensitivity measure, and double-

checked using Monte Carlo analysis using PSPICE
simulation.

1.1. Impedance tapering of 4th-order BP filter
Consider the 2nd-order LP filter shown in Fig. 1. As
described in [1], L-sections of the RC ladder in this
circuit are successively impedance-scaled upwards,
from the driving source to the amplifier input. This is
called “impedance tapering” and it significantly
decreases the sensitivity of the filter to component
tolerances. .
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Fig. 1 Second-order LP filter circuit.
The voltage transfer function TLP(s) for this circuit is
given by
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Referring to Fig. 1, we introduce impedance scaling
factors r and ρ, i.e.

R1=R, R2=rR, C1=C, C2=C/ρ. (2)
In this paper we present the influence of “impedance
tapering” to the fourth-order BP circuit, obtained as a
result of the so-called lossy LP-BP transformation
applied to an impedance-tapered 2nd-order LP filter [2].
The design procedure for the BP filter is simple, and
closed-form design equations are given in [2].
The LP-BP frequency transformation doubles the filter
order, thus from a 2nd-order LP filter prototype we
obtain a symmetrical 4th-order BP filter. The
transformation is given by:
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It is shown in [2] that application of the “lossy” LP-BP
transformation, which means adding a constant δ to s in
(3), transforms resistors in the ladder network of the LP
circuit into series RC circuits, and capacitors into
parallel RC circuits. This substitution, together with
impedance scaling factors r and ρ, is shown in Fig. 2.
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Fig. 2 Impedance scaling factors r and ρρρρ by LP-BP
transformation.
As a result we obtain the 4th-order BP filter shown in
Fig. 3.
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Fig. 3 Fourth-order BP filter circuit.
The voltage transfer function T(s) for this circuit,
expressed in terms of the coefficients ai, is given by
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The transfer function (4) can be represented as a
product of two 2nd-order transfer functions with equal
pole Q, i.e. by
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The relationships between (4) and (6) is given by:
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where ωp and qp are pole frequency and pole Q of the
2nd-order LP prototype filter, respectively.
In the sequel we investigate the influence of impedance
tapering to the sensitivity of the resulting filter.
Consider, for example, a 4th-order Chebyshev BP filter
with 0.5dB pass-band ripple, a normalized center
frequency ω0=1, and a normalized bandwidth B=1. The
corresponding 2nd-order LP prototype pole parameters
are ωp=0.886021rad/s and qp=0.863721. Applying the
frequency transformation (3) to the 2nd-order LP
transfer function, we obtain, using (7) and (8), BP
transfer function parameters ωp1=0.69486,
ωp2=1.43914, q=2.08029.
Fig. 4 shows the transfer function magnitude
α(ω)=20log TBP(jω) [dB] of the filter circuit in Fig. 3.

Fig. 4 Magnitude of the 4th-order BP filter.
BP filter circuit is designed using the procedure
described in [2]. Various methods of impedance
tapering, i.e. changing the values of the parameters r
and ρ, are applied. The resulting component values are
given in Table 1. The impedance tapering is applied to
the BP filter from [2], which is sensitivity optimized
with respect to the “lossy” design parameter δ.

Nr. Filter R1 C1 R2 C2 r ρ β
1) Non Tapered 0.605 1.653 1 1 1 1 4.80
2) Impedance Tap. 0.605 1.653 1 1 4 4 4.05
3) C – Tapered (r=1) 1.21 0.827 1 1 1 4 2.40
4) R – Tapered (ρ=1) 0.302 3.307 1 1 4 1 9.60
5) Strongly Imp-Tap. 0.605 1.653 1 1 10 10 3.90
6) Strongly C-Tap. 1.913 0.523 1 1 1 10 1.77

Table 1 Normalized Component Values of BP Filters
applying Various Tapering Techniques.
The remaining BP filter component values are:

R3=rR1, C3=C1/r, R4=ρR2, C4=C2/ρ. (9)

Fig. 5 Sensitivities of 4th-order BP filter circuit.
A sensitivity analysis was performed assuming the
relative changes of the resistors and capacitors to be
uncorrelated random variables, with a zero-mean
Gaussian distribution and 1% standard deviation. The
standard deviation (which is related to the Shoeffler
sensitivities) of the variation of the logarithmic gain
∆α=8.68588 ∆|TBP(ω)|/|TBP(ω)|, with respect to the
passive elements, is calculated for the filter examples in
Table 1 and shown in Fig. 5.
Observing the standard deviation σα(ω)[dB] of the
variation of the logarithmic gain ∆α in Fig. 5 we
conclude that the ideally impedance-tapered filter (No.
2) has considerably decreased sensitivities, compared
to the non-tapered standard circuit version (No. 1). By
tapering only the capacitors, while keeping the resistor
values equal (r=1), (No. 3), the filter sensitivities are
decreased even more. The resistively tapered filter (No.
4) has the highest sensitivities, for the reason explained



below. Furthermore, a strong ideally-tapered filter
circuit (No. 5), with a tapering factor r=ρ=10, has
higher sensitivites than the capacitively tapered filter
(No. 3) with a medium capacitive scaling factor ρ=4,
and equal resistors. Thus the best results are obtained
with capacitivelly tapered filters and equal resistors
(circuits No. 3 and 6).
The reason for the lower sensitivity, of the equal
resistors and tapered capacitors case, is the same here,
for the 4th-order BP case, as for the 2nd-order LP in [1].
In both cases the expressions for the coefficient-to-
component sensitivities ia

xS  are partially proportional†

to the resistive scaling factor r but exclusively inversely
proportional to the capacitive scaling factor ρ. Thus,
the coefficient-to-component sensitivities can be
significantly reduced by choosing r=1 and increasing
only ρ. In fact, in all cases, capacitive tapering with
equal resistors (r=1) results by a stronger
desensitisation than ideal impedance tapering (r=ρ).
Monte Carlo runs, carried out for our example, shown
in Fig. 9, confirm the above conclusions.
In summary, for the general 4th-order allpole Class-4
BP filter designed by means of lossy LP-BP
transformation, ideal impedance tapering provides low
sensitivity circuits. Capacitive impedance tapering with
equal resistors (ρ=1), provides circuits with the lowest
sensitivity to the component tolerances of the circuit.

2. COMPARISON OF 4th-ORDER
FILTER WITH 2-BIQUAD CASCADE

In this section we compare the performance of our new,
single operational amplifier, 4th-order BP filter to a
cascade of two 2nd-order BP filter “biquads” as shown
in Fig. 6. They are compared with respect to sensitivity
to component tolerances, and to thermal output noise.
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Fig. 6 (a) 2nd-order BP filter block. (b) BP Cascade.
We apply impedance tapering, to minimize sensitivity,
to both the single-amplifier (1-OA) filter and to the two
biquads in cascade (CAS).
The circuit in Fig. 6a is a 2nd-order BP filter type B [6]
with positive feedback, i.e. class 4 circuit [4, 5].

                                                          
† By “partial proportionality” we mean that r will
appear partially in the numerator, partially in the
denominator of the sensitivity expressions.

The normalized component values for the two biquads
are calculated, and given in Table 2.

Nr. Filter—Blocks) R C ξ1 r ρ β
1) 0.6949 1 2 1 1 5.03861) Non Tapered 2) 1.4391 1 2 1 1 5.0386
1) 0.6949 1 2 4 4 3.53862) Impedance

Tapered 2) 1.4391 1 2 4 4 3.5386
Table 2 Component Values of 2nd-order BP Sections.
The remaining component values follow from

R1=ξ1R, R2=ξ2R, R3=rR, C1=C, C2=C/ρ. (10)
using tapering factors as presented in Table 2.
The sensitivities for both the 1-OA and CAS 4th-order
BP filters, are presented in Fig. 7, where “T” stands for
tapered.

Fig. 7 Sensitivities of 4th-order BP filter circuits.
To investigate the noise performance, we perform a
simulation of output noise with PSPICE, using the
Texas Instruments TL081 TX as the operational
amplifier model. For this purpose the real values of
resistors and capacitors are calculated, using the
denormalization procedure

nRRR ⋅= 0 , 
00R

CC n

ω
= , (11)

where ω0=2π⋅f0 is the center frequency of the BP,and
R0 is the denormalisation impedance.
As an example, for the center frequency f0=1kHz, and
the capacitors value C=5nF, we obtain the resistance
R0=1/(2π⋅103⋅5⋅10-9)=31.831kΩ. Using (11) the
denormalized component values for circuits Nr.1) “Non
Tapered” and Nr.3) “C–Tapered (r=1)” are obtained
from Table 1, for the 1-OA BP filters, and for the CAS
BP filters from Table 2. We chose RG=10kΩ.
The noise characteristics, for both 1-OA and CAS BP
filters, are presented in Fig. 8.

Fig. 8 Noise spectral density of 4th-order BP filters.
From Figs. 7 and 8 we conclude that the fourth-order
BP filter with single operational amplifier (1-OA),
which is capacitivelly tapered with equal resistors
values (r=1), has worse performance, both with respect

(a)

(b)



to the sensitivity and thermal output noise, then a
cascade of two second-order BP filter blocks. However,
the Figs. 7 and 8 also confirm that impedance tapering
improves filter performances from both aspects. Thus
our new single operational amplifier (1-OA) is a
reasonably good filter in the sense of sensitivity to
component tolerances and noise performances if we

wish to minimize power by halving the number of
opamps, and significantly reduce the passive
components count. In any event, capacitive impedance
tapering with equal resistors (ρ=1), provides circuits
with lower noise and lower sensitivity to component
tolerances than that of non-tapered circuits.

Fig. 9 Results of Monte Carlo runs carried out on 4th-order BP filter with ωωωω0=1 and B=1.

3. CONCLUSIONS
A procedure for the design of allpole low-sensitivity,
low-power 4th-order BP active RC filters using
impedance tapering is presented. The filters are
constructed using a LP-BP (LP-BP) transformation [2].
The filter uses only one operational amplifier, and a
minimum number of passive components. The design
procedure using impedance tapering adds nothing to
the cost of conventional circuits; component count and
topology remains the same. Using the appropriate
impedance tapering factors r and ρ, we can influence
the sensitivity to component tolerances. Whichever
tapering method is used, the circuit performance is
improved with regard to thermal output noise and
sensitivity. The improvement in sensitivity of the BP
filter is the same as that of the corresponding LP
prototype filter [1]. Ideal impedance tapering invariably
provides circuits with low sensitivity and low noise.
However, for reasons related to the filter topology,
capacitivelly tapered circuits with equal resistors (ρ=1)
have minimum sensitivity to component tolerances.
Furthermore, the reduction in power and component
count achieved with the single-amplifier fourth-order
BP filters is obtained at a price: a cascade of two
impedance-tapered biquads is better on both counts.
Thus the decision on which way to go is typically one
of tradeoffs: low power and component count versus

low sensitivity and noise. Incidentally, the method can
be extended to higher-even order BP filters, of which
time the tradeoff question may look very different.
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