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Abstract. A method of characteristics for solving one-dimensional model of fluid flow in 
pipe networks with tree-like structure is developed. The method is validated in the case of 
flow with no wave reflections where the analytical solution is known. The method is applied 
to the fluid flow in a branching tube in cases of pure elastic and viscoelastic wall. The effects 
of wall stiffening and tube tapering were investigated. It is concluded that neither stiffening 
nor tapering can cause the effect of pressure wave steepening toward the periphery. 

 
 
1 INTRODUCTION 

Numerical simulation of blood flow in arterial tree is challenging, due to the difficulties in 
describing the geometry, nonlinear wall viscoelasticity, and non-Newtonian rheological 
properties of blood. One-dimensional models present a good compromise between 
Windkessel and three-dimensional models [1, 2]. Numerical simulation of arterial flow is very 
useful for the thorough understanding of pressure and flow waves propagation phenomena. 
Mathematical models differ in the modeling of friction term and constitutive relationship for 
the arterial wall. The simplest models use: (i) for friction, Hagen-Poiseuille law which is valid 
for the steady state flow; (ii) for arterial wall, the pure elastic model; and (iii) neglect the 
nonlinear convection term in the momentum equation. Such simplified, linear models may be 
reduced to the transmission line models and they are usually solved in the frequency domain. 
When nonlinearities are included into the model, it should be solved numerically in time 
domain. Method of characteristics is a natural numerical method for solving wave propagation 
in elastic pipes, although the finite difference, finite volume and finite element methods are 
also used. 

The goal of this paper is to develop a method of characteristics for solving a nonlinear one-
dimensional model in a branching tube with an elastic and viscoelastic wall. The proposed 
method will be tested in the case of reflectionless tube. The influence of the viscous resistance 
of the tube wall will be estimated by comparison of the results obtained for the pure elastic 
and viscoelastic tube. Also the effect of tube wall stiffening and tube tapering on the pressure 
wave steepening will be analyzed. 
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2 MATHEMATICAL MODEL 

One-dimensional model of blood flow in a pipe with viscoelastic wall reads [3]: 
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where x, t are the space and the time coordinate, respectively, A is the cross-sectional area 
(A=D

2π/4), Q is the volume flow rate, and v=Q/A, C is the areal compliance of the wall 
(C=dA/dp), η is the viscous resistance of the wall, ρ is the fluid density, and f is the friction 
coefficient. A0 is the constant cross-sectional area at constant pressure p0.  
For the friction coefficient we use Hagen-Poiuseuille law for the steady state flow, which 
gives: 
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where µ is the fluid viscosity. 

3 NUMERICAL METHOD 

The artery is discretized into a number of elements of length ∆x. Fig. 1 shows two typical 
elements (denoted by j and k) bounded by nodes (I, J, and K). The pressure is defined at the 
nodes, A is defined in the middle of each element (and it is considered to be constant along the 
element) and Q is defined at each end of each element. Thus, four unknowns are stored for 
each element. For example, the unknowns related to the element j are Jp , jLQ , jDQ  and jA , as 

shown in Fig. 1. 

 
Figure 1: A part of discretized tube with arrangement of variables. Squares denote interpolation points. 
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Equations (1) to (3) may be transformed into ordinary differential equations that are valid 
along characteristics C+ and C- defined by ξ + =dx/dt = v + c and ξ – = dx/dt = v –c, in the form: 
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where /( )c A Cρ=  is the wave speed. Along the third characteristic C0 (applied for each 

element), defined by ξ 0=dx/dt=0, the following relationship holds:  
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The fourth equation, related to each node, is the continuity equation. For example, at node J 
this equation reads: 

jD kL TJQ Q Q= +  (7) 

where TJQ  is the transversal blood flow (the branching flow from the large artery into a small 

one). In each node, TJQ  is modeled by the inertial four element Windkessel as depicted in Fig. 

2. In this model, LJ is the inertance, rJ is the resistance, CTJ is the capacity of branching 
arteries and RJ is the peripheral resistance at node J. Differential equation of this model is: 
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We discretized equation (8) by applying a second order formula that uses the values of Jp  and 

TJQ  from three old time steps, and the final relationship between Jp  and TJQ  at the new time 

instant n, where TJa  and TJb  are coefficients that can be easily calculated. 

 
Equations (5) and (6) are discretized by replacing differentials with finite differences, e.g. for 
pressure along the ξ + characteristic: J Id np p p= − , and along ξ + characteristic: J Kd np p p= − . 

Fig. 3 illustrates the interpolation practice along C+  defined by dx/dt = v + c. It is known that 
the explicit method of characteristics is stable when the Courant number Co = (v + c)∆t/ ∆x is 
less or equal to 1 (see points B, C and D in Fig 3). When Co is greater than 1 (see point A in 
Fig. 3) we apply the time linear interpolation at node I between values in instances n and n-1. 
In that way the method retains stability, but becomes implicit. Since the proposed method is 
already implicit due to viscous resistance of arterial wall, it is acceptable to have Courant 
number greater than 1. Of course, it is known that the accuracy of the results decreases when 
Co number increases above 1, so it is recommended to keep it less than 1. In the proposed 
method, it is necessary to keep the values of variables from several old time steps. Normally, 
we apply linear time interpolation at node I, between two successive instances (see points B 
and C in Fig. 3). If the Courant number is so small that the characteristic line intersects the 
oldest saved time step (see point D in Fig. 3), the linear space interpolation is applied between 
nodes I and J in the oldest saved instant. Generally, the interpolated values may be defined by 
the following expressions: 
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I j+ I j+pp a p b= +  ,  j+ j+ jL j+QQ a Q b= +   and j+ j+ j j+AA a A b= +   (9) 

where the interpolation factor j+a  takes a nonzero value only if Co>1. The analogue 

expressions are valid for the interpolation along the characteristic C-. 
 

  
Figure 2: Electrical analogue scheme of the 
Windkessel model which defines QT from pJ 

Figure 3: Interpolation practice along C+ 
characteristics 

To obtain a linear system of equations, all coefficients in equations (5) and (6) are discretized 
using the known variable values from the previous instance (n-1). The part of the source term 
related to the viscous resistance of the wall is discretized as (in all discretized equations that 
follow we will omit the superscript n – denoting the values from current instance, and 
superscript n-1 will be replaced by o): 
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For the element j, the discretized form of equation (5) along C+ is: 
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and along C-: 
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From equation (6), it follows for the element j: 
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When applying equations (7) and (11) to (13) to all elements, the system of linear algebraic 
equations arise. One row of this system, written in the matrix form reads: 
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For any arterial network with a tree-like structure, an efficient direct solver for solving the 
system of linear algebraic equations may be constructed, which uses the procedure similar to 
the one for solving a system with tri-diagonal matrix. Boundary conditions (prescribed 
pressure or flow rate at the input node of the network) may be easily implemented through the 
modification of coefficients in matrices A and D. 
 

4 RESULTS AND DISCUSION 

The described method was applied to a branching tube schematically shown in Fig. 4. 

 
Figure 4: Scheme of the analyzed branching tube (the node numbers are encircled) 

The branching tube is divided into 38 elements of length ∆x=6 cm. The first 10 elements 
have a uniform cross section area A0=5 cm2 (at pressure p0=0), and the cross-section area of 
each branching tube is A0/2. The characteristic impedance of the mother vessel is Z0=ρc/A0, 
and the characteristic impedance of the daughter vessels is two times greater. At the tube inlet 
(node 1), we prescribe the flow rate, and at the tube outlet (nodes 25 and 39), the peripheral 
resistances R25 and R39 are set. In all calculations, we consider two cases: a pure elastic (η=0), 
and a viscoelastic tube wall with η defined by the time constant τ=C·η =C·Z0/20, where T is 
the period of the prescribed inflow. The input flow rate is designed as half sine wave at T/3 
(T=0.3 s) of amplitude 50 ml/s. In all cases, the total integration time was 10T. 
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4.1 Test case (matching characteristic impedance and peripheral resistance) 

We chose the terminal resistances R25= R39=2 mmHg·s/ml, the constant c=10 m/s, and ρ 

was selected to match 2R25 with characteristic impedance ( )0 0 0/ /Z A C c Aρ ρ= = . Fluid 

viscosity was zero and integration was performed at Co=1. Fig. 5 shows the results for the 
pure elastic wall, and it is obvious that the pressure and flow are in phase at each point of the 
tube, i.e. there are no wave reflections in the tube. Fig. 6 shows results for the viscoelastic 
wall (τ=C·η =0.005). At the inlet node, the pressure is similar to the one obtained in the elastic 
tube, but there are great differences in flow rates and pressure profiles at distal nodes. This 
can be explained by wave reflections which are a consequence of arterial wall viscous 
resistance. It is interesting to note that an incisure appears in the inlet pressure profile, like in 
the real aortic root pressure. Also η causes the less steep pressure profile, which is opposite to 
the observations in the arterial tree. 
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Figure 5: Results for pressure and flow rate at 

different locations for pure elastic tube with Z0=2R25 
Figure 6: Results for pressure and flow rate at 

different locations for viscoelastic tube with Z0=2R25 
 

4.2 Influence of wall stiffening with the distance from the inlet 

In this test case, we introduced a variable tube compliance, by prescribing linearly varying 
wave velocity. At the inlet (element 2), c=4 m/s, at element 11, c=9. 4 m/s, at elements 12 and 
26, c=10 m/s and at elements 25 and 39, c=17.8 m/s. Fluid viscosity was zero, and the 
integration time step was two times smaller than in the previous case. Fig. 7 and 8 show 
results for the pure elastic and viscoelastic wall, respectively. Due to the increased compliance 
at the tube inlet, the pressure is significantly lower than in the previous case. Obviously the 
viscous resistance increases the inlet pressure and decrese distal pressure with respect to the 
pure elastic case. 
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Figure 7: Results for pressure and flow rate at 

different locations for pure elastic tube with variable c 
Figure 8: Results for pressure and flow rate at 

different locations for viscoelastic tube with variable c 
 

4.3 Influence of the tube tapering 

In this test case, we introduced the linearly varying tube diameter. The inlet diameter is 
2.76 cm (area is about 6 cm2), the parent tube has the diameter 2.29 cm (area is about 4.12 
cm2) at junction, while daughter tubes are 1.7 cm in diameter (area is 2.27 cm2), and at the 
outlet diameter is 1.13 cm (area 1 cm2). Fluid viscosity was zero and the integration was 
performed at Co=1. Since the wave speed is constant, the tube compliance is greater at the 
elements with greater diameter. This explains the fact that in pure elastic case (Fig. 9), the 
inlet pressure is less than the distal one, and the slope of the inlet pressure rise is small. In the 
case of viscoelastic wall, the inlet pressure rise is due to the viscous resistance of the wall. 
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Figure 9: Results for pressure and flow rate at 

different locations for pure elastic tube with variable D 
Figure 10: Results for pressure and flow rate at 

different locations for viscoelastic tube with variable D 
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5 CONCLUSIONS 

 
- We proposed the method of characteristics for solving the one-dimensional model of 

fluid flow in a network of pure elastic or viscoelastic tubes with tree-like structure. In 
the case of viscoelastic tube, the proposed method is still physically clear and 
efficient, the same as in the case of an elastic tube. 

- We applied the developed method to the branching tube, and analyzed the effects of 
pipe stiffening and tapering. In all analyzed cases, the stiffening and tapering do not 
cause the steepening of the pressure wave traveling towards the periphery, which 
exists in real circulatory systems. 
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