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Abstract. Boolean functions are important primitives in cryptography.
Accordingly, there exist numerous works on the methods of constructions
of Boolean functions. However, the property specifying the resistance
of Boolean functions against Differential Power Analysis (DPA) attacks
was until now scarcely investigated and only for S-boxes. Here, we evolve
Boolean functions that have higher resistance to DPA attacks than oth-
ers published before by using two well-known evolutionary computation
methods where genetic programming shows best performance.
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1 Introduction

In the area of private-key cryptography, one common division is to block ciphers
and stream ciphers [7]. In both areas the nonlinear elements often represent the
key part of the algorithm. The usual nonlinear elements are Boolean functions
and S-boxes (vectorial Boolean function, i.e. a generalization of a Boolean func-
tion). In accordance with their importance, over the years there have been nu-
merous works on constructing those nonlinear elements. Methods used in those
works can be divided into algebraic constructions [5], random search [3] and
heuristic methods [11] where each method has its drawbacks and benefits. Main
advantages of heuristic methods are in a relatively easy addition of cryptographic
properties to the evaluation functions and in results comparable with algebraic
constructions. From this point on, we will concentrate only on Boolean functions
and conduct the research accordingly. Here we note that if a Boolean function
has n inputs, then there are 22

n

Boolean functions possible. For n larger than
4 it is impractical to do an exhaustive search. Therefore, generating Boolean
functions with desirable cryptographic properties is a hard problem.

1.1 Related Work

Here we mention only a small number of papers where the goal was to find
optimal Boolean functions considering certain cryptographic properties.



Simulated annealing is used by McLaughlin and Clark to evolve Boolean func-
tions that have several cryptographic properties with optimal values [10]. Aguirre
et al. use evolutionary multiobjective approach to evolve Boolean functions with
high nonlinearity [1]. Picek et al. use genetic programming and genetic algo-
rithms to find Boolean functions that have good cryptographic properties [13].
Genetic algorithms are also used by Picek et al. to evolve S-boxes with good
DPA (Differential Power Analysis) resistance for the AES case [12].

1.2 Our Contribution

To our best knowledge we are the first to consider a property that concerns
the resistance of a Boolean function to side-channel attacks - transparency or-

der [14]. Up to now, transparency order has been only vaguely investigated in
the case of S-boxes but never for Boolean functions [9]. Furthermore, we give a
comparison between some of the currently designed Boolean functions by means
of evolutionary computation techniques and a Boolean function created by an
algebraic method, used in an actual cryptographic algorithm. In our research we
use genetic programming (GP) and genetic algorithms (GAs) to evolve Boolean
functions with good transparency order values. Since there are no prior attempts
to evaluate the resistance of a Boolean function to side-channel attacks, that
makes a fair comparison more difficult.

In Section 2 we give some preliminary information on side-channel attacks
and cryptographic properties of Boolean functions. Evolution of Boolean func-
tions with GAs and GP when considering the transparency order is described
in Section 3. In Section 4 we present experimental results and discussion about
them. Finally, conclusion and future research is given in Section 5.

2 Preliminaries

In this section we present background details about cryptographic properties of
Boolean functions and introduce basic notions of side-channel analysis.

2.1 Side-channel Analysis

Small devices on which cryptographic algorithms are implemented, such as smart
cards, have become pervasive in our lives and lots of our security and privacy-
sensitive data is stored on those constrained platforms. These devices typically
provide unintentional output channels, often called side channels releasing some
physical leakage that relates to the operations and/or even data being processed.
There are several side channels possible when considering unleashed physical
information, such as power consumption or electromagnetic emanation, and we
refer an interested reader to [8].



2.2 Boolean Functions

A Boolean function is in mathematics usually defined as a mapping from {0, 1}
n

to {0, 1}.
A unique representation of a Boolean function is a truth table (TT) [2]. When

the total lexicographical order is assigned, Boolean function f with n inputs has
a truth table with 2n elements, where each element a fulfills a ∈ {0, 1}.

A Boolean function is uniquely represented by its Walsh transform which is
a real-valued function defined for all ω ∈ F

n
2 as [2]

Wf (ω) =
∑

x∈F
n

2

(−1)f(x)⊕x·ω
, (1)

where x · ω is the scalar product of vectors x and ω.
Here, Fn

2 is an n-dimensional vector space over Galois field with two ele-
ments [2].

The Hamming weight HW (f) of a Boolean function f is the number of ones
in its binary truth table [2].

Boolean function f with n inputs is balanced if its Hamming weight equals
2n−1, i.e. the number of ones equals the number of zeros in the truth table [2].

The nonlinearity NLf of a Boolean function is its minimum Hamming dis-
tance to any affine function and it can be calculated as [2]:

NLf =
1

2
(2n −max|Wf (ω) |) . (2)

In 2005, Prouff introduced a new cryptographic property of S-boxes: trans-
parency order, which can be defined for an (n,m)-function as follows [14].

Tf = maxβ∈Fm

2
(|m− 2HW (β)| −

1

22n − 2n∑

a∈F
n∗

2

|
∑

v ∈ F
m

2

HW (v) = 1

(−1)v·βWDaf (0,v)|).
(3)

Here, WDaf represents Walsh transform of the derivative of f with respect to
a vector a ∈ F

n
2 . This property is special since it is related with the resistance of

the S-boxes to the differential power analysis attacks where higher transparency
order value means lower resistance to DPA attacks [14]. Since Boolean functions
are a special form of S-boxes with one output variable (therefore, m = 1) maxi-
mum (and the worst) possible transparency order for a Boolean function equals
1 [14].

For a Boolean function to be usable in cryptography it needs to be balanced,
with high nonlinearity, high algebraic degree and high correlation immunity. For
further information about these properties we refer readers to [2]. Furthermore, if
one aims at better resistance against side-channel analysis then the transparency
order should be as low as possible. However, Prouff showed that minimal trans-
parency equals 0 and is achieved only in case of linear or affine functions which



are not suitable for cryptography [14]. Therefore, there are two problems when
creating Boolean functions with improved transparency order. The first problem
is to determine an appropriate level of nonlinearity from a cryptographic per-
spective. The second problem is to find a Boolean function with at least that
level of nonlinearity and with transparency order as good as possible.

3 Evolving Boolean Functions

To capture good cryptographic properties, we need to devise an appropriate
fitness function to guide the evolution process. In our experiments, fitness func-
tions incorporate properties mentioned in Sect. 2 (balancedness, nonlinearity
and transparency order). There exist more properties, but since there is a trade-
off between some of the them we decided to go for as simple as possible fitness
function [2].

The balancedness property is the only one which is always strict as a part
of the fitness function, since unbalanced Boolean functions are not appropriate
for cryptography. The balancedness property (BAL) is used as a penalty, and
presented in pseudo-code it calculates as

if (HW (TT ) > 2n

2 ) then

BAL = 2n−HW (TT )
HW (TT ) ·X

else

BAL = HW (TT )
2n−HW (TT ) ·X

end if

where we experimentally find that X = - 5 scales well for Boolean functions
with n = 8 inputs. Balancedness is rated gradually, so that a balanced function
receives the value 1, and unbalanced functions receive a negative value corre-
sponding to the level of unbalancedness in the range r, where r ∈ [−1275,−5].
Minimum value is given when the number of ones is either 0 or 2n.

A balanced Boolean function has an upper bound on nonlinearity as given
in [2]:

NLf = 2n−1 − 2
n

2
−1. (4)

This bound can be achieved only when n is even. Functions that have maximal
nonlinearity are called bent functions, but they are not appropriate for use in
cryptography since they are not balanced. Therefore, we expect to find functions
with nonlinearity below 120 for n = 8 case.

As mentioned in Section 2, the worst possible transparency order equals 1.
Based on the results fromMazumdar et al. who show 0.1 decrease in transparency
order over the AES example as 8×8 vectorial Boolean function, we conclude that
it is possible to expect the improvement in transparency order of around 1/8th
of 0.1 which amounts to 0.0125 [9]. Therefore, on the basis of the data from
above, we see that the nonlinearity is in range [0, 120] and transparency is in
range [0, 1] for a balanced Boolean functions with 8 inputs.



3.1 Fitness Functions

We present here the two settings we are interested in from the experimental
perspective. In the first setting the goal is to find as high as possible nonlinearity
value and for that nonlinearity level the best corresponding transparency order.
This is represented with the following fitness function:

fitness1 = BAL+NLf + (1− Tf ). (5)

Given Equation (5), the optimization problem considers the maximization

of the fitness function. Note that, once the balancedness is achieved, the main
driving force of fitness is the nonlinearity, with values in excess of 100. Since the
nonlinearity NLf can only assume integer values, and transparency Tf assumes
values in [0, 1], it is clear that transparency is used as a secondary objective, to be
able to perform selection of different solutions with the same level of nonlinearity.

Since there are three different properties to optimize, one possible approach
would be the use of multiobjective optimization. We do not use that approach
for several reasons; first of all, the balancedness is an absolute requirement and
should not be included as an independent measure. On the other hand, we have
to differentiate the unbalanced solutions in the evolution and allow them to
improve, so a part of the fitness function (BAL) is devised to produce the greatest
penalty. The second most important property is nonlinearity, for which we want
it to be as high as possible. Since we do not know in advance what nonlinearity is
achievable, the algorithm should be driven to find the maximum value, regardless
of the other properties. Only when this is evolved, we need to find solutions
with the transparency order as good as possible. Since the nonlinearity can only
assume a fixed number of levels, the search can be adjusted to suit those values,
which is investigated in the following setting.

In the second setting the goal is to find low transparency order values for a
certain nonlinearity level. Here we reiterate that the lowest possible transparency
order is achieved for linear and affine functions, but since they are not appropri-
ate for the use in cryptography we do not consider them as a viable choice [2].
Because it is difficult to say what would be an appropriate nonlinearity value,
we decided to set several levels as a constraint. Therefore, we look for the best
transparency order with a target minimum nonlinearity level, NLt. We set 4
levels of nonlinearity, at the values of 86, 92, 98 and 104. Fitness function for
the second set of experiments is defined as:

fitness2 = BAL + (1− Tf)− pos (2× (NLt −NLf )) , (6)

where the function pos(x) returns x if x > 0 and zero otherwise.

3.2 Algorithms, Representations and Parameters

As previously mentioned there are several ways to uniquely represent Boolean
functions. For GA we decided to represent the individuals as strings of bits where
values are truth tables of functions, and GP individuals as trees of Boolean



primitives which are then evaluated according to the truth table they produce.
We use two selection mechanisms, namely steady-state with tournament operator
(SST) and generational with roulette-wheel (RW) selection. In the first one, 3
solutions are selected at random and the worst among them is replaced by the
offspring of the remaining two. The offspring is mutated with a given probability
(0.3).

The RW selection uses the fitness proportional roulette-wheel operator ap-
plied to the whole population to select the new generation of survivors, to which
crossover and mutation are then applied; in this scenario, the offspring replaces
the parents. The same two selections are applied both to GA and GP. All
the employed methods are a part of the Evolutionary Computation Framework
(ECF) [6].

In the experiments we initialize population with random individuals where
we do not require that the solutions are balanced. That is opposite from what
is usually done [4, 11], but we expect that the evolution process would benefit
from that additional diversity.

In an effort to find the differences in the performance of the algorithms, we
also compare the best algorithms with the balanced random search algorithm.
Balanced random search uses random sampling of solutions, but only consider-
ing balanced Boolean function as a solution candidate, as opposed to a purely
random choice of solutions. Stopping criterion for the random search algorithm
is 200 000 evaluations.

GA Variations. For GA representation, mutation is selected uniformly at ran-
dom between simple mutation, where a single bit is inverted, and mixed muta-
tion, which randomly shuffles the bits in a randomly selected subset. Addition-
ally, we use a balanced mutation that preserves balancedness of the solution by
changing 2 bits of the individual if it is already balanced.

For all mutation operators we experiment also with an adaptive mutation

rate. In the beginning, the mutation is given as a fixed probability (0.3), but as
the evolution starts to stagnate (i.e. no improvement in the best solution), the
mutation probability raises. The probability is increased linearly with the num-
ber of generations without improvement, until it reaches a predefined maximum
level (0.8) after a given maximum number of generations without improvement
has passed. If a new best solution is found, the mutation rate is reset to initial
value. The crossover operators used in GA are one-point and uniform crossover,
performed at random for each new offspring.

GP Variations. Of the modifications in the previous section, with GP we
employ only the adaptive mutation rate, in the same manner as for the GA. The
function set for genetic programming in all the experiments is OR, NOT, XOR,
AND, IF, and terminals correspond to 8 Boolean variables. Genetic programming
has maximum tree depth of 11. For the Boolean functions we are interested only
in XOR and AND operators, but it is quite easy to transform the function from
one notation to the other.



Common Parameters. Parameters that are in common for every round of the
experiments are the following: the size of Boolean function is 8 (the size of the
truth table is 256) and the population size is 500. In the roulette-wheel selec-
tion the crossover probability is 0.5 and the ratio of the probability of survival
of the best and the worst individual is scaled to 10. Mutation probability for
non-adaptive variations is set to 0.3 per individual. The parameters above are
the result of a combination of a small number of preliminary experiments and
our experience with similar problems; no thorough parameter tuning has been
performed.

Unlike in the traditional optimization case, our main goal is not to compare
different approaches we implement, but rather to find the best possible solutions.
In that case, we do not limit the algorithms with a fixed number of evaluations
(and compare the averages), but allow the algorithms to run as long as something
useful might occur. That is why the stopping criterion is set to a given number of
generations without improvement, rather than a fixed maximum number, which
is a reasonable criterion for researchers trying to find an adequate solution.

Further information regarding experimental setup is listed when needed.

4 Results and Discussion

When presenting the best achieved results, we also compare them with some of
the existing results from the literature. For previously published Boolean func-
tions, we use the following notation: for the Boolean function from the Burnett
et al. paper we use the name Function 1 [4], from the work by McLaughlin and
Clark we abbreviate Boolean function with Function 2 [10]. For the Boolean
function from the work by Picek et al. we abbreviate it with Function 3 [13],
and finally, for Rakaposhi Boolean function we abbreviate it with Rakaposhi [5].

Here we emphasize that Boolean function in Rakaposhi cipher is obtained
through algebraic construction, more specifically the finite field inversionmethod.
Rakaposhi stream cipher is an example of a modern, state-of-the-art stream ci-
pher that uses Boolean function as a nonlinear element. The algorithm names
presented in tables are abbreviated in the following way: after the abbreviation
of the algorithm we write in the subscript the distinguishing properties of the al-
gorithm: SST represents steady state tournament selection, RW roulette wheel
selection, balanced means balanced mutation operator and variable represents
variable mutation rate.

With the objective to find the best individuals, the stopping criterion is set to
50 generations without improvement for all algorithm variations and the number
of independent runs is 400. In Table 1 we give the best result for each of the
experiments conducted, as well as for random search algorithm and Boolean
functions from related works. Here, evolutionary algorithms use fitness function
as defined by Equation (5). All solutions are balanced so we did not specifically
write that property.



Table 1. Best Boolean functions, fitness1

Algorithm NLf Tf Algorithm NLf Tf

GPSST 116 0.962 GPSST,variable 112 0.919

GPRW,variable 112 0.965 GASST 112 0.934
GASST,balanced,variable 112 0.931 GASST,balanced 112 0.938
GARW,balanced 112 0.935 Random search 110 0.934
Function 1 100 0.927 Function 2 116 0.969
Function 3 116 0.976 Rakaposhi 112 0.946

Based on the related work, we choose nonlinearity levels of 112 and 116
as the most interesting ones. The best (lowest) transparency results for those
nonlinearity levels are in bold style.

When optimizing the second fitness function (6), we concentrate on 4 pre-
defined nonlinearity levels. Here we do not compare this results with literature
since previous works did not investigate transparency property (and therefore
those works can have better nonlinearity in general, but when looking at both of
those properties related works have worse results). In this case we are interested
in the lowest transparency value that can be obtained with a given minimum
nonlinearity. For fitness2 equation the best results are presented in Table 2.

Table 2. Best Boolean functions, fitness2

Algorithm 86 92 98 104

GPSST,variable 0.774 0.815 0.866 0.898

GASST,balanced,variable 0.78 0.817 0.822 0.866

Random Boolean 0.887 0.894 0.905 0.915

The space of possible Boolean functions is huge and therefore it is impractical
to do an exhaustive search for Boolean functions with the number of inputs
relevant in cryptography. However, the space of Boolean functions with “good”
cryptographic properties is also large. In such a large space it is difficult to find
Boolean functions with excellent cryptographic properties. This is an obvious
example of the convergence of the algorithm towards the local optima. In an
attempt to search beyond those local optima we employ different algorithms
and modifications.

In the experiments we use two different selection methods where we expected
that the roulette-wheel selection should be the best one, because preliminary re-
sults (also the results from other researchers) showed that all algorithms display
very quick convergence. However, algorithms with the steady-state tournament
selection consistently found the best solutions among all the algorithms.

A simple fitness function, that includes only a subset of the desired properties,
has the advantage that there are no conflicts between variables, and some high



quality properties inherently mean that other properties will also be good. In our
previous experiments, preliminary results show that it is not trivial to combine
many properties in a single fitness value because of varying magnitudes (scaling
issues) of different property values.

Statistical analysis (not presented in the paper) shows that all GA varia-
tions give similar results with smaller standard deviation than in GP variations.
We also conducted pairwise comparison between GP algorithm with steady-
state tournament selection and all other algorithms where the results show there
are no statistically significant differences. However, genetic programming with
steady-state tournament produced the single best result when considering the
nonlinearity value. For a nonlinearity level 112 the best result was achieved with
GPSST,variable algorithm. In this case we can also see that this Boolean function
has better transparency order value than the Rakaposhi Boolean function.

As evident form the results, we found Boolean functions with better trans-
parency order values but the improvements are rather small. One could ask if
such small improvements make a difference. We consider this to be true, since
we did not expect obtaining a big difference if the analogy with S-boxes (where
0.1 is a significant improvement) is valid. Furthermore, side-channel analysis of
stream ciphers is more difficult and therefore even small improvements are rele-
vant. Naturally, further investigation of the relevance of the transparency order
property is needed in order to put these results in proper perspective. Our new
Boolean functions present viable choice for future implementations since they
are offering improvement in the properties while not bringing additional area or
speed drawbacks.

5 Conclusions and Future Work

Finding Boolean functions with improved DPA resistance is a difficult problem,
not only because of the huge search space, but also due to the lack of previous
work. As far as we know, we are the first to experiment with the transparency
order property for Boolean functions and additionally to use evolutionary al-
gorithms to find suitable functions. Our experiments showed that it is possible
to find Boolean functions with better transparency order than that in reference
work. From cryptographic perspective, genetic programming achieve the highest
nonlinearity level with an improved transparency order value. However, from the
evolutionary point of view, the results show no statistically significant difference
with respect to the genetic algorithm. Due to the lack of prior work on this topic,
results obtained here should be also regarded as a baseline for future research.

As future research directions we plan to experiment with other algorithms like
Cartesian GP or Estimation of Distribution. Initial experiments give promising
results.
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