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Abstract. Boolean functions play a central role in security applications
because they constitute one of the basic primitives for modern cryp-
tographic services. In last decades research on Boolean functions has
been boosted due to the importance of security in many diverse pub-
lic systems relying on such technology. A main focus is to find Boolean
functions with specific properties. An open problem in this context is to
find a balanced Boolean function with an 8-bit input and nonlinearity
118. Theoretically, such a function has been shown to exist, but it has
not been found yet. In this work we investigate the use and integration
of algebraic constructions and evolutionary computation (EC) to tackle
this problem. Results indicate that various combinations of methods give
better results although not reaching 118 nonlinearity.
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1 Introduction

Cryptography is crucial in most security applications by helping cryptographic
services to achieve secure communication through unsecured channels. The main
goal is to secure messages so that only the relevant parties can read them. A
message (plaintext) is transformed into an incomprehensible form (ciphertext)
by a process called encryption, while an encrypted message is mapped to its
original form through a process called decryption. Encryption and decryption
are performed using symmetric key algorithms. Boolean functions constitute one
of the basic primitives for symmetric key algorithms, most notably in stream ci-
phers [1]. Stream ciphers, based on an input key, generate a sequence of random
bits which is used as keystream that will never be used again during the run
of the cipher. Boolean functions for cryptography must satisfy various possi-
bly contrasting properties, such as being balanced, highly nonlinear, correlation
immune, t-resilient. Therefore, it is typically hard if not impossible to find an
optimal function [1, 2]. Finding Boolean functions for cryptography is clearly a
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challenging problem, because there are 22
n

possible Boolean functions of n in-
puts (for instance, when n equals 8 which is usual size in today cryptography,
this gives 2256 candidate solutions). There are three main approaches to gener-
ate Boolean functions for cryptography: algebraic construction, random genera-
tion and heuristic construction. Algebraic construction employs well established
mathematical procedures that give very good results [3]. Random generation
of Boolean functions has its advantages, most prominent one being easy and
fast construction, but the resulting Boolean functions usually have suboptimal
properties for cryptography [4]. Heuristic methods provide a relatively easy and
efficient way of producing large number of Boolean functions with very good
cryptographic properties [2]. In particular, Evolutionary computation (EC) has
been successfully applied to evolve Boolean functions for cryptography as listed
below. So far, researchers on Boolean function generation for cryptography have
focused on the optimization of some cryptographic properties. In this work we
focus on specific classes of Boolean functions, and analyze the “landscape” of
results generated using and integrating algebraic and EC based approaches, in
an effort to gain deeper insights on their individual and joint performance.

Specifically we focus on an open problem in cryptography: find a balanced
8-bit Boolean function with nonlinearity 118. Although theoretically it has been
proved that such a function exists, no one has succeeded in finding it. Our goal
is to investigate properties of EC methods based on the integration of the above
mentioned approaches, in particular how difficult is to find Boolean functions
with certain set of properties (for instance bent Boolean functions of a specific
size) and what is the influence of a specific initial population (consisting of
previously evolved bent Boolean functions).

1.1 Our Contributions

Besides evolving balanced function with 118 nonlinearity, our experiments in-
vestigate hardness of evolving bent Boolean functions and functions that can be
used in algebraic constructions. As far as the authors know, we are the first to
investigate the evolution of 7-bit functions and to give insights about the hard-
ness of that problem and distribution of resulting functions. Our hybrid methods
prove to be much more successful in evolving highly nonlinear balanced functions
than simple evolution methods.

The remainder of this paper is organized as follows: after a short overview
of related works, in Section 2 we describe the problem and relevant properties
of Boolean functions. In Section 3 the considered methods are described, and in
Section 4 experimental setup and results are given. Finally, Section 5 concludes
with some suggestions for future work.

1.2 Related Work

We distinguish two main categories of methods for generating Boolean functions
with properties of interest: those dealing with algebraic constructions based on
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mathematical results and those dealing with heuristic methods. For each of these
categories we give only a short overview of work related to our investigation.

Algebraic Constructions. Sarkar and Maitra propose new construction
methods which were used to obtain functions that were not known earlier [5].
In the same year, those authors also presented a theorem that states stricter
upper bound on nonlinearity of resilient Boolean functions [6]. Zheng and Zhang
improved upper bound of the nonlinearity of high order correlation immune
functions [7]. Pasalic et al [8] constructed several functions that were not known
before that have upper bound on nonlinearity. Those functions were stipulated
to exist due to the paper of Sarkar and Maitra [6].

Evolutionary Computation. Aguirre et al. used evolutionary multiobjec-
tive approach to evolve Boolean functions that have high nonlinearity [9]. Clark
et al. used simulated annealing to find Boolean functions that satisfy several
properties desired for cryptographic usage [10]. Burnett et al. created two heuris-
tic methods to evolve Boolean functions for usage in cryptography. Picek et al.
used genetic programming and genetic algorithms to find Boolean functions with
cryptographic properties [11].

2 Preliminaries

In this section we describe relevant cryptographic properties of Boolean functions
and theoretical results that inspired our investigation. In the sequel a ·b denotes
the inner product of vectors a and b defined as ⊕n

i=1aibi, where “ ⊕ ” denotes
addition modulo 2.

2.1 Representations and Properties

A Boolean function f on Fn
2 can be uniquely represented by a truth table (TT),

which is a vector (f(0), ..., f(1)) that contains the function values of f , ordered
lexicographically [1].

Walsh transform is a second type of unique representation of a Boolean func-
tion. It measures the similarity between f(x) and the linear function a · x [1].
Walsh transform of a Boolean functions f equals

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x. (1)

Third unique representation of an Boolean function f on Fn
2 is by means of

a polynomial in F2 [x0, ..., xn−1] /(x2
0 − x0, ..., x

2
n−1 − xn−1). This form is called

algebraic normal form (ANF) [1]. Algebraic normal form is the multivariate
polynomial P defined in [1] as:

P (x) = ⊕a∈Fn
2
h(a) · xa. (2)

The following properties of Boolean functions play an important role in
security algorithms: nonlinearity, bent, correlation immunity, balancedness, t-
resiliency, algebraic degree.
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The nonlinearity NLf of a Boolean function f can be expressed in terms
of the Walsh coefficients as [1]

NLf = 2n−1 − 1

2
maxa∈Fn

2
|Wf (a)|. (3)

Boolean function f is bent if it has maximum nonlinearity equal to [1]

NLf = 2n−1 − 2
n
2−1. (4)

Boolean function f is correlation immune of order t - CI(t) if the output
of the function is statistically independent of the combination of any t of its
inputs [1]. Boolean function f is t-resilient if it is balanced and with correlation
immunity of degree t [1].

A Boolean function is balanced (BAL) if its weight is equal to 2n−1 [1].
From this point on, when we talk about Boolean functions we consider them

t-resilient (i.e. balanced). In the cases when that is not true we specify that.
Algebraic degree deg(f) of a Boolean function f, is defined as the number

of variables in the largest product term of the functions’ algebraic normal form
(ANF) having a non-zero coefficient [2].

2.2 Theoretical Background

Sarkar and Maitra showed that if a t-resilient Boolean function f has an even
number of inputs n and t + 1 ≤ n

2 − 1 then its nonlinearity NLf is bounded as
follows [6]:

NLf ≤ 2n−1 − 2
n
2−1 − 2t+1. (5)

From the formula it follows that the maximum nonlinearity for n = 8 and
t = 0 equals 118.

In that same paper the authors gave a second theorem that inspired one of
our experiments.

Suppose f is a Boolean function with 8 inputs, resilience 0 and nonlinearity
118. Then degree deg of f must be 7 and it is possible to write

f = (1⊕X8)f1 ⊕X8f2 (6)

where f1 and f2 are Boolean functions with 7 inputs, nonlinearity 55 and alge-
braic degree 7 [6].

An interesting implication of this result is that if it is not possible to construct
an 8-bit Boolean function with nonlinearity 118, degree 7 and resilience 0 by
concatenating two 7 inputs Boolean functions with nonlinearity 55 and degree 7
then the maximum nonlinearity of 8 inputs Boolean function is 116 [6].

3 Approach and Methods

Recall that we focus on the open problem of finding an 8-bit Boolean function
with nonlinearity 118. We adopt a methodology consisting of two main phases.

In the first phase, we consider EC methods and their hybridization with
algebraic constructions.
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– Simple evolution. To analyze the effectiveness of EC methods we apply
them directly to evolve 8-bit Boolean function with nonlinearity 118.

– Bent functions. Because bent functions have high maximum nonlinearity
(see Equation (4)), in this setting we search for 8-bit bent functions. We
do this in two ways: (a) using EC methods to directly evolve 8-bit bent
functions, and (b) using EC methods to evolve 6-bit bent Boolean func-
tions and use them to construct 8-bit bent functions by means of algebraic
technique [12]. Furthermore, we use the resulting bent functions to seed the
initial population of a EC algorithm for finding an 8-bit Boolean function
with nonlinearity 118. This allows us to can gain insight in the influence of
the bent functions as initial population.

– Algebraic concatenation. In this setting we evolve 7-bit functions with
nonlinearity 55 and degree 7. Then we combine and concatenate those func-
tions using Equation (6). Note that 7-bit functions are not balanced.

In the second phase, we select the best performing algorithm and investigate
algorithmic hybridizations based on combinations of the algorithms and bent
Boolean functions.

The above methodology allows us to address the following questions related
to the effectiveness of EC for evolving Boolean functions.

– How difficult is to find bent Boolean functions of various sizes?
– What is the influence of the initial population in the evolution of balanced

Boolean functions?
– How hard is to find Boolean functions with certain set of properties that are

useful in further search process?

We describe below the techniques employed in our investigation.

3.1 Algorithms, Representations, and Fitness Functions

We consider three EC methods, namely genetic algorithms (GAs), genetic pro-
gramming (GP) and genetic annealing (GAn). All the employed methods are a
part of the Evolutionary Computation Framework (ECF) [13].

Genetic Algorithm. We use a simple genetic algorithm with 3-tournament
selection [14], where in each iteration 3 solutions are selected randomly, and
the worst of those is replaced with the crossover offspring of the remaining two.
Mutation is performed on the offspring, using randomly simple mutation, where
a single bit is inverted, and mixed mutation, which randomly shuffles the bits in
a randomly selected subset. The crossover operators are one-point and uniform
crossover, performed at random for each new offspring.

Genetic Programming.
The function set for genetic programming in all the experiments consists of

Boolean functions OR, XOR, AND (taking two arguments), NOT (one argu-
ment) and IF, which takes three arguments and returns the second argument if
the first one evaluates to ’true’, and the third one otherwise. The terminals cor-
respond to n Boolean variables. Genetic programming has maximum tree depth
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of 11. Boolean functions can be expressed only in XOR and AND operators, but
it is quite easy to transform from one notation to other. Genetic programming
uses the same selection as the GA, with simple subtree crossover and subtree
mutation.

Genetic Annealing. Genetic annealing is an evolutionary extension of the
Simulated Annealing algorithm (SA) [15]. The SA operates on a single potential
solution, which is locally changed in each iteration and its new fitness value
is recorded. The new solution is accepted if it is an improvement, but a worse
solution can also be accepted provided a certain level of global energy bank, which
depletes with worse and increases with better solutions. The GAn is a simple
extension in which the whole process is performed on a population of individuals.

Local Search Algorithm. For local search algorithm we chose strong hill
climbing (HC) algorithm where all possible combinations of changes of 2 com-
plementary bits are investigated. This process is repeated until there is no more
improvement for every individual in population. Hill climbing algorithm uses
truth table representation which means when using GP, individuals need to be
transformed from tree representation to truth table representation. Additionally,
we change 2 bits since initial solutions are balanced and we need to preserve it
by changing one bit from 0 to 1, and other bit from 1 to 0.

Representations. As mentioned in Section 2, there are several ways how
to uniquely represent Boolean functions. For genetic algorithms and genetic an-
nealing we decided to represent the individuals as strings of bits where values
are truth tables of functions, and for genetic programming, individuals are trees
of Boolean primitives which are then evaluated according to the truth table they
produce.

Fitness Functions. To evolve bent functions of different input sizes we
consider the maximization of the following simple fitness function.

fitness = NLf . (7)

When looking for 7-bit functions with nonlinearity 55 and degree 7 we con-
sider the maximization of the fitness function:

fitness = NLf + deg. (8)

In the case when we look for 8-bit balanced function with as good as possible
nonlinearity we use following fitness function where the objective is maximiza-
tion:

fitness = BAL + NLf . (9)

When calculating balancedness property, we assign it to a value 1 when it is
balanced, otherwise we assign it the difference up to the balancedness multiplied
with constant 5 (based on the results from tuning phase).

4 Experimental Setup and Results

Parameters that are common for every algorithm are the following: the size of
Boolean function is 8 (the size of the truth table is 256) and the population size
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is 500. Mutation probability is set to 0.3 per individual. The number of inde-
pendent runs for each experiment is 2000; we are aware that 30-50 is sufficient
for statistical purposes, but our main concern is not a statistical comparison of
algorithms, but finding the best possible solutions. Furthermore, we use the rate
of successful runs (finding the optimum), rather than the average fitness, as a
metric for algorithm comparison.

4.1 Results

Due to the lack of space we give only short overview of results from phase 1. We
mention that some of those results deserve additional experiments on its own;
EC methods are not often used to generate bent functions and there is a clear
lack of literature of how difficult it is or what methods perform the best. Further-
more, we are not aware that anyone before tried to evolve 7-bit functions with
nonlinearity 55 and degree 7. In Table 1 we give results for phase I experiments.
Column SUCCESS represents the percentage of runs that the algorithm reaches
maximum value and column NLf represents maximum nonlinearity reached by
the algorithm. Naturally, we tested a random search method on all these prob-
lems but got no SUCCESS results. Based on this results we selected GP as the
algorithm of choice for phase 2 as we can see that GP has best results when
looking for functions with 8 inputs.

Table 1. Phase 1 experiments

Algorithm, fitness, size NLf Min Max Mean Stdev SUCCESS(%)

GA, (8), 6-bit 28 26 28 26.141 0.512 7.1
GAn, (8), 6-bit 28 28 28 28 0 100
GP, (8), 6-bit 28 26 28 27.382 0.924 69.1

GA, (8), 8-bit 116 112 116 113.157 0.975 0
GAn, (8), 8-bit 114 112 114 113.9 0.1 0
GP, (8), 8-bit 120 112 120 114.5 2.318 13.8

GA, (9), 7-bit 55 60 62 61.97 0.22 98
GAn, (9), 7-bit 55 60 62 61.63 0.77 81.6
GP, (9), 7-bit 55 60 62 60.06 0.33 3

GA, (10), 8-bit 114 113 115 113.524 0.879 52.4
GAn, (10), 8-bit 114 113 115 113.03 0.25 3.2
GP, (10), 8-bit 116 109 117 112.23 1.01 0.5
HC, (10), 8-bit 112 103 113 108.02 1.43 0.5

From the results for Equation (9) we see that evolving functions with non-
linearity 55 and degree 7 is easy. However, our experiments show that the level
of unbalancedness differ significantly as shown in Figure 1. Therefore, it is not
easy to find two unbalanced 7-bit functions that produce a balanced 8-bit func-
tion. For example, if we find a function with desired properties that has 69 zeros
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and 59 ones, then the other function needs to have 59 zeros and 69 ones (this
function should not be affine equivalent to the first one since then it will have
nonlinearity of 110) to produce a balanced 8-bit function. Since there were no
prior experiments on this topic, these levels of unbalancedness present signifi-
cant guideline for future work. With the concatenation method we obtained a
balanced function with maximum nonlinearity of 110.

Fig. 1. Distribution of 7-bit unbalanced Boolean functions

In the second phase we use the best algorithm (GP) from the first phase
when looking on the ways to further improve solutions. In this phase we con-
centrate only on Eq. (10) and function size 8. As the first experiment (I) in
the second phase we run GP algorithm that has initial population made from
bent functions from phase one. We do not distinguish here between bent func-
tions that are directly evolved from those that are evolved and then algebraically
expanded to 8-bit size. The second experiment (II) uses results from the first ex-
periment and performs the hill climbing algorithm. In the last, third experiment
(III) we run GA on the results from the first experiment. In Table 2 we give
results for hybridizations of algorithms where we can see that these approaches
improve algorithm behavior and percentage of the obtained maximum values.
The approach that combines solutions from GP with bent functions as initial
population and GA gives the best result.

Table 2. Phase 2 - algorithm combinations

Experiment NLf Min Max Mean Stdev SUCCESS(%)

I (GP+seed) 116 113 117 113.55 1.379 13.8
II (GP+seed+HC) 116 113 117 113.8 0.91 19.6
III (GP+seed+GA) 116 113 117 115.32 0.43 67.1
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Using EC methods to find 8-bit balanced Boolean function with nonlinear-
ity 118 did not succeed in our experiments which is somewhat expected since
this problem is very hard. When looking at the results from the evolutionary
process in our opinion GP performs best. Not only did it find solutions with
highest nonlinearity but it also resulted in final population with greatest diver-
sity. Bent functions are not suitable for the use in cryptography and therefore not
usually defined as the goal of evolutionary search. Previous works that evolved
bent Boolean functions include [4,16]. Our results show that evolving 6-bit bent
Boolean functions is relatively easy where each of the algorithms obtained numer-
ous global optimums. Here, GAn behaves interestingly since it always reached
optimum but we mention that many of those solutions are same. When consid-
ering 8-bit bent functions, only GP finds them successfully.

When looking at 7-bit unbalanced functions and Eq. (9), we see that GA
performs best. However, it is not possible to concatenate every of those solutions
since constructed functions need to be balanced. Prior to this research, as far
as the authors know, there were no reports on the level of unbalancedness these
functions can reach or on their distribution. From that perspective, we expect
that this research will help in future work.

When setting bent Boolean functions as the initial population for GP, we
see that we are still not able to reach nonlinearity 118 but the percentage of
the population with the best currently known nonlinearity (116) significantly
increases. Also, with larger population we also have a larger number of unique
solutions. We recommend this procedure for the researchers that need to use
functions that are not previously known with nonlinearity 116.

The rationale behind HC algorithm was not only to show the feasibility of
improving solutions previously obtained with GP, but also to confirm that there
is no 118 nonlinearity in “proximity” of solutions with nonlinearity 116. We see
that average value of the final population slightly improved. When repeating
same experiment, but using GA instead of HC we see that this setting was also
unable to find 118 nonlinearity function. However, from statistical values it is
obvious that this setting performs much better. Therefore, it seems prudent to
combine multiple EC algorithms where the initial population for one algorithm
is the final population of other EC algorithm.

5 Conclusions and Future Work

In this research we had two goals; one was to find balanced Boolean function
with 118 nonlinearity and the second one was to investigate the strength of EC
methods when producing high quality solutions. Although we did not find an
8-bit function with nonlinearity 118 our results present significant new insights
in the area of evolving Boolean functions. As future work we plan to repeat
the experiments with 7-bit functions with several different fitness functions and
algorithms. Additionally, we are interested in fitness functions where variable is
also Hamming distance between the solutions.
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