Advantages of UML-based object-oriented system development

Sasa Desi¢, Darko Gvozdanovié, Mario Kusek*, Darko Huljeni¢
Ericsson Nikola Tesla d.d.
Krapinska 45, HR-10000 Zagreb, Croatia
tel.: +385 (0)1 365-3857 , faks: +385 (0)1 365-3548, email: {sasa.desic, darko.gvozdanovic, darko.huljenic}@etk.ericsson.se

*Department of Telecommunications
Faculty of Electrical Engineering and Computing
University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia
tel.: +385 (0)1 612-9748 , faks: +385 (0)1 612-9802, email: mario.kusek@fer.hr

Abstract - UML stands for Unified Modelling Language, a
general-purpose notational language for specifying and
visualising complex systems, especially for large, object-
oriented projects. This article considers usability of UML in
software projects. It is especially interesting to look for
impact that UML has on newcomers in the world of object-
oriented software development. An experiment with two
groups of students (one group was trained for UML) was
made. Groups’ goal was to develop solution for particular
software system. UML’s advantages and disadvantages are
also commented according to user’s level of knowledge,
application type (e.g. protocol oriented or GUI oriented
applications) and requirements detail level.

I. INTRODUCTION

The good news for software developers is that world
development and modern style of living depends
increasingly on software. Software-intensive systems that
technology makes possible and society demands are
expanding in size, complexity, distribution and importance.
But, expansion of these systems pushes the limits of what
software industry know how to develop. The final result is
that building and maintaining software is hard and getting
harder.

Different software development projects fail in different
ways, but it is possible to extract common symptoms.
Some of them are: inaccurate understanding end-user
needs; inability to deal with changing requirements;
software that’s hard to maintain or extend; late discovery
of serious project flaws. If symptoms are analysed, root
causes could be find: ad hoc requirements management;
ambiguous and imprecise communications; overwhelming
complexity; undetected inconsistencies in requirements,
designs and implementations; uncontrolled change
propagation; insufficient testing.

Some of problems and their root causes could be
resolved by implementing more rigorous development
process. Also, deployment of notification language like
UML will help communication between all participants in
development process. This is just one of the reasons for
UML usage in process of software development. This
article analyses aspects of UML using in development
process.

The second section explains root, causes and purposes of
UML. UML diagrams are explained briefly. Next section
introduces one software development process that utilises
UML. Examples and aspects of UML utilisation are shown

in fourth section. In the fifth section, experiments with
UML and inexperienced developers are described. Final
section summarises the results.

II. UML

The unified modelling language (UML) is graphical
language for visualising, specifying, constructing, and
documenting software-intensive systems. The UML
provides a standard way to write a system's blueprints,
covering conceptual things, classes written in a specific
programming language, database schemas, and reusable
software components. UML is standard notation, which is
used by anyone involved in production, deployment, and
maintenance of software.

UML includes nine diagrams for describing system:

- Class diagram describes set of classes, interfaces, and
their relationships. It shows static design view of a system.
This diagram is very useful in modelling object-oriented
systems.

- Object diagram shows set of objects and snapshots of
instances of the things found in class diagrams.

- Use case diagram shows a set of use cases, actors and
their relationships. This diagram is especially important in
organising and modelling the behaviour of a system.

- Sequence and collaboration diagrams are interaction
diagrams, which describe interaction between objects.
They show their relationships including messages between
objects. Interaction diagrams explain dynamic view of the
system. A sequence diagram emphasises the time ordering
of messages. A collaboration diagram emphasises the
structural organisation of objects in interaction. Both
diagrams are isomorphic, which means that sequence
diagram can be transformed into collaboration and vice
versa.

- Statechart diagram shows a state machine consisting of
states, transitions events, and activities. It addresses
dynamic view of system. This diagram is very important in
modelling behaviour.

- Activity diagram is special kind of statechart diagram. It
emphasises a flow from activity to activity within system.
It is very useful in finding concurrent activities in system.

- Component diagram describes organisation and
dependencies among a set of components. It is related to
class diagrams in a way of mapping component to one or
more classes, interfaces, or collaborations.

- Deployment diagram explains configuration of run-time
processing nodes and components on them. It shows static
deployment view of architecture.

III. DEVELOPMENT PROCESS

The UML is modelling language, not a method. But for
successful project, modelling language is not enough.
There are several developing methods existing worldwide
(e.g. Extreme programming, Feature Driven
Programming). Creators of UML made Rational Unified
Process (RUP) and it utilises UML the most. Best practices
of different projects are incorporated in it. This section
briefly explains the Rational Unified Process.

The Rational Unified Process is iterative and
incremental development process (Figure 1.). Software,
through process, is carefully built step by step,
functionality by functionality. After every iteration, subset
of functionality will be designed, implemented and tested.

Construction

— £ —

Inception
Elaboration
Transition

23],

Figure 1. The Rational Unified Process

During inception, first meetings about goal and the
scope of project are held. Also, business case (roughly how
much it will cost and how much it will bring in) is created.

In elaboration, more details about requirements and
technologies involved must be caught. Also, high-level
analysis and design for creating baseline architecture is
done. In this phase, plan for construction phase is also
created.

The construction phase consists of many iterations, in
which each iteration builds production-quality software,
tested and integrated that satisfies a subset of requirements
of the project. The delivery may be external, to early users,
or purely internal. Each iteration contains all the usual life-
cycle phases of analysis, design, implementation and
testing.

The transition includes beta testing, performance tuning
and user training. Optimisation reduces the clarity and
extensibility of the system in order to improve
performance.

IV. UML IN PRACTICE

Enthusiastic approach toward UML has been questioned
in a real world through an experiment. Two software
systems had to be designed using UML along with the
appropriate tool. Results should have shown UML
usability regarding different types of systems and different
required detail level. Therefore, two systems were chosen:
= agent system - requirement are fairly general and
architecture is accented,

= communication application (implementing specific
protocol) — there is detailed requirements
documentation and accent is on behaviour.

After having those systems designed, conclusion that we
already had remained: UML is superior in early phases of
development. Requirement analysis is heavily supported,
but two types of diagrams distinct themselves. Use-case
and sequence diagrams provide everything needed for
capturing all the systems features, yet retaining simplicity
needed for customer to understand designed behaviour.
Misunderstanding between designers and customers is
excluded if you use UML, and misunderstanding itself
usually leads projects into failure. Negotiation with
customers (they often have a tendency to change their
mind), if not good design praxis itself, forces us to design
system to be resilient to moderate change in requests.
Another good side of having use-cases is that they are
valuable source for creating test-case scenarios for testing
and validating partly or fully implemented systems.

One could not expect miracles from use-case diagrams.
Maybe most difficult task in design is to “draw right” use-
cases. Use-case diagrams give means to express ideas, but
ideas come from great experience. Less experienced
designers maybe would not understand reasons behind
particular design made by senior designer (they will notice
its simplicity and beauty though), but they will understand
it and surely be able to upgrade on it. In fact UML,
inheriting only the best features of many modelling
languages, can really help while acquiring object-oriented
way of thinking. “I can’t express it with UML” in most
cases means that there is something wrong with your
design (regarding object-orientation). So, using UML is
very helpful to all categories of designers.

Another important issue has been tackled by UML.
Parallel design of different parts of a system is almost
obligatory except for very simplest ones. Precondition for
that is proper system division, which comprises two things:
= definition of relatively independent subsystems,

having appropriate functionality,
= ensuring full collaboration of those subsystems, once
they are designed.

The way that UML addresses these questions is by
packages and interfaces. There are no package diagrams
but one can use class diagrams for that purpose. In that
way, not only implementation but also design is hidden
behind interfaces, facilitating later changes and
maintenance. It is even possible to develop particular parts
of the system using different tools (without any UML), and
than reverse-engineer it back to UML design (Figure 2).
This particularly refers to GUI design. As redesign or
adding new functionality is often the case (it’s not always
about brand new system), using legacy code can make
substantial savings.

Reverse

Engineering

Figure 2. Reverse engineering of GUI to UML diagram

It was obvious that UML handles architectural problems
well. Defining behavior is it’s less good part. There is
whole bunch of diagrams (sequence, collaboration, activity
and state-chart diagrams), but designer can use it only for
it’s own needs. They don’t contribute to the automatic
code generators at all. So, one can say that a lot of trouble
about capturing behavior of mentioned communication
application is worthless. It isn’t just like this, but designers
would definitely like if there had been some reflection of
the captured behavior in the code. Therefore, big step
ahead is UML to SDL (Specification and Description
Language [4]) converter offered by some vendors. SDL is
suitable for in-depth system design and verification. Also,
SDL can be successfully used to express system dynamic
behavior. So, by using translator, a lot of information from
UML is kept and transferred into SDL. Consequently,
visual design along with all the possibilities of system
verification and validation offered by the tools remains
available to designers.

V. EXPERIMENTS WITH INEXPERIENCED
DEVELOPERS

A lot of articles about UML describe its tremendous
features but little of them show exact results from
experiments with UML in real projects. It is hard to
quantitatively express advantages of UML comparing to
common way of software development. To clear picture
about UML usefulness, an experiment with group of
students were made.

Students were separated into two groups. First group
(UML group) were listened presentation on UML. For that
time, second group (Non-UML group), which was
separated into three smaller groups, tried to design three
small systems: web service for exam appliance, cache
machine and automatic door opening system. They had not
any information about UML and they were left to design
systems with their previous knowledge and sense. Here,
it’s key issue that all students were actually with no
experience with object-oriented system design and
development.

It is hard to quantitatively measure design and to
compare progresses of two different groups. But, as a one
of the elements, amount of created diagrams and materials
can be used. The non-UML group has created a few
roughly descriptions of the system operating and flow
diagrams (Figure 3). Most of the time they were trying to
catch up with internal structure and architecture of the
system. UML group made more. They mostly created Use
Case, Sequence (Figure 4), and Activity diagrams. They
even created Class diagrams that show classes, methods
and attributes. According to an amount (quantity) of
created documents, it is obvious that UML has extremely
helped in design efforts (especially to capture requirements
and to see overall system architecture).

Implementation as final goal of every development
process requests a lot of details to be defined. A level of
details can also be a parameter to compare two groups and
their work. The non-UML group and its designs are on
very high level of abstraction and with little of details. A
programmer, who is responsible for implementation, will
be very sad with such kind of input documents. On other
side, UML group with class diagrams containing a lot of
details (attributes and methods) has a very good basic for
implementation. Other created documents will be also

useful for system visualisation and understanding how it
works and that will certainly help programmer.

=2)
INSERT
cARD
IWSERT
)

DATABASE U POATE
RRANT REPORT

Figure 3. Flow diagram created by Non-UML group

From non-UML documents, it is obvious that group
were a lit bit confused and disoriented. Contrary, UML
group was leaded with UML diagrams and became more
concentrated and effective. Logical flow of diagram usage
helps sustaining main design effort in right direction.

To determine system classes and their methods and

attributes, the non-UML group has been used only power
of their brains. In a bigger systems that becomes
practically impossible to handle. The UML has used
powerful tools like a sequence and class diagrams (Figure
5). On that way, developers are driven to find appropriate
solution for system classes and communication among
them.
In early stages of development process, it is very important
to examine different possibilities and irregularities in the
system. As in the previous case, for the non-UML group
that was only a mental process. But, analysis with use case
and sequence diagrams can help to find, develop and
explain system states where more then one option is
possible. Unfortunately, UML group didn’t pay attention
on that problems and options. That is probably happened
because this is their first project in UML. Second reason
can be lack of time, because both of groups were time
limited.

E CardReader MainUnit ‘ Database ‘ Displa H Keyboard H Door ‘
User
insertCard(—3{
[-cardinserted()—>]
|—checkCar()
K——cardOK()
s
f—checkPING)
K<——pinOKD)
K—unlockCard(]
penDaor(
Wait 10seconds LT loseDoor(

Figure 4. Sequence diagram created by UML group

i K Uiiios epatts Go Hob

=lolalsl ¢ [rlelx] Zlola] ala) «[»
Te e 2 11/ knal .5/ ps

Keyboard

enterPING

MainUnit

Display

currentText
PINOK()
cardOK() displayEnterPIN(

pinEntered()
cardinserted)

1

1

Database

cardsList

creckCard()
checkPIN()

Figure 5. Class diagram created with UML tool

To capture requirements and divide system into smaller
parts isn’t such a big problem if we have small system to
design. The non-UML group was lucky and avoided big
trouble. But, UML gives opportunity to handle a huge
system by analysing them and dividing them into several
packages. Package diagrams also were not used.

The non-UML group has used flow diagrams that help
for system visualisation. It is very useful method that
makes development process easier and more organise. All
UML diagrams also help to visualise system but not only
its behaviour like flow diagrams but from all system’s
aspects. It is especially handy when some UML tool is
used.

CONCLUSION

It can be concluded that UML has a lot of power to
offer. New projects have better chances to survive if UML
is used. The experiment with students shows that UML has
a very strong impact on newcomers and it can strongly
increase their working/designing capabilities.

Usage of UML tools can additionally improve software
design process. With those tools documentation process
will be included into development process because
documentation is created during design time.

Using UML in practice proved to be good. Requirement
analysis and architectural design are great to do with UML.
Additionally, advent of UML to SDL translators gave
strength to process of systems’ dynamic structure design,
too.

REFERENCES

[1] G. Booch, J.Rumbaugh, 1. Jacobson, The Unified Modeling
Language Use Guide, Addison-Wesley, 1999.

[2] M. Fowler, Kendall Scott, UML Distilled, 2™ edition
Addison-Wesley, 2000.

[31 P. Kruchten, The Rational Unified Process, 2" edition
Addison-Wesley, 2000.

[4] J. Ellsberger, D. Hogrefe, A. Sarma, SDL Formal Object-
oriented Language for Communicating Systems, Prentice
Hall 2000.

[5] O. Laitenberger, C. Atkinson, M. Sclich, K. El Amam, 4n
Experimental Comparison of Reading Techniques for Defect
Detection in UML Design Documentation, Fraunhofer,
Kaiserslautern, 1999.

