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Abstract: In the paper a new procedure based on the simple arithmetic operations for location and quantification of damage in beams 
using incomplete static information is presented. The grey system theory is employed to locate damage in beam structure using static 
displacements for two structural stages. Once the location of damage is known, the damage quantification can be done by comparing the 
displacement curvatures of intact and damage stage of structure. The set of numerical simulations on simply supported beam is conducted to 
determine the damage quantification reliability of proposed procedure for different damage severities. Also, the results of laboratory test are
employed to verify results obtained by numerical simulations.
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1. Introduction 
In the past decades a lot of researches dealt with damage 

detection, damage localization and damage quantification in 
different structures such as beams [1,2], plates [3,4], frames or 
trusses [4]. In general, the damage detection methods can be 
categorized as: methods based on static structural responses [1,5,6]
and methods based on dynamic structural responses [2,4,7]. Also, 
some researchers combine foregoing structural responses [3]. Some 
of developed methods can detect and locate the damage [1,8,9] and 
some of them, beside detection and location, are able to determine 
the damage severity (quantified the damage) inside the damaged 
section [2,5,7]. The main problem in both, static and dynamic
damage detection methods is incompleteness of structural response
information (displacement, mode shape, etc.) i.e. sparseness of 
measurement [8,9]. Often, algorithms for damage quantification 
using sparse measurement include solving complicated inverse 
problems, solving nonlinear optimization problems or using 
iterative methods [10]. In this paper a new procedure based on the 
simple arithmetic operations for location and quantification of 
damage in beams using incomplete (sparse) static displacement is 
presented. Results of the numerical study and laboratory test are 
used to determine the damage quantification reliability of proposed 
procedure for different damage severity. 

2. Theoretical formulation of damage detection 
and quantification method

Damages in the structures may cause a degradation of structural 
properties which manifest itself as a change in static responses of a 
structure. It can be concluded that if there is damage present in the 
structure its static response will not be the same as the response of
an intact structure.

In bent beams, where influence of transversal force on curvature 
may be neglected, the relationship between curvature, bending 
moment and bending stiffness can be written as: 
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where M(x), EI(x), (x), Md(x), EId (x), d (x) are bending moment, 
bending stiffness and curvature for intact and damaged state of 
structure. In statically determinate beam, where bending moment is 
not dependent of the bending stiffness, M(x)=Md(x), equating the
equations (1) and (2) gives relationship between bending stiffness
and curvatures for two stages of the structure:
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If damage is defined as EId=(1- )EI , the decrease in bending 
stiffness can be express as:
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The curvature of a geometrically and materially linear intact and 
damaged beams can be written as:
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where w(x) and wd(x) are displacement lines of intact and damaged 
structure, respectively.

Due to limited number of measurement equipment, only a 
limited number of displacements can be measured on the structure, 
i.e. structure may be treated as it is divided in limited number of 
segments j between measured displacements in positions i=1 to n
(Figure 1).

x

i-2      i-1 i        i+1

j-1 j j+1

xi-1
xi

xi+1

1 n
n-1 n0 1

w
Fig. 1 The beam's segments “j” and measuring positions “i”

The decrease in bending stiffness j inside the segment j, can be 
now rewritten as:
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where j and j
d are intact and damaged curvature of the segment j.

Unfortunately, j and j
d cannot be calculated directly from known 

discrete values of displacement.  

The curvature of discrete values of displacement can be 
calculated at the point xi using next equation:
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where w(xi) is the value of displacement at the point xi, w(xi-1) and 
w(xi+1) are the values of displacement at the points xi-1 and xi+1,
respectively.

Similar equation can be written for displacement curvature of 
damaged structure d(xi) using values wd(xi), wd(xi-1) and wd(xi+1).



As it can be seen form Eq. (7), the curvatures (xi) and d (xi), at 
the position xi (i=1 to n-1) are calculated taken into account the 
values of displacement in positions xi-1, xi, xi+1. Bearing that fact in 
mind the curvature at the position xi can be treated as average 
curvature at the adjacent segments j and j+1
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Measured or calculated values of displacements usually 
contained some errors due to different causes, thus, theoretical 
assumption of zero curvature difference in intact segments will not 
be fulfilled. Hence, the grey relation coefficient (xi) is employed to 
detect the position of significant changes in curvature associated 
with the damage position [1, 10]
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where R(xi) = (xi)- d(xi) .

In the points where (xi) 0.6 it will be assumed that there is no 
significant changes in curvatures, i.e. 0)( ix [1,10]. 

Suppose the damage is situated within a single segment j. The
grey relation coefficients at the point xi-1 and xi, which are situated 
at the beginning and at the end of the damaged segment j, will be 
less than 0.6, i.e. (xi-1) and (xi to Eq. (10)
calculated vales (xi-1) and (xi) shows the average value of 
decrease in bending stiffness in segments j-1 to j and j to j+1, 
respectively. As we know that there are no damages in segments j-1
and j+1 the decrease of bending stiffness in segments j=2 to n-1 can 
be calculated as follows:
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Determination of decrease of bending stiffness in edge elements 
(j=1 and j=n) can be obtained by using following equations 
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because the curvatures in the points i=0 and i=n cannot be
determined according to Eq. (7). 

Based on the previous considerations, the following damage
quantification algorithm is proposed:

a) define (xi) and d (xi)

b) R(xi) = (xi)- d(xi) .
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3. Numerical examples
The analysis has been carried out for simply supported beam

with different damage severities inside the damaged section of the 
beam. The span length of the beam is L=9.955 m. The cross section 
area of the beam is A=2.19 10-3 m2, the moment of inertia of intact 
beam is I=3.83 10-6 m4 and Young's modulus is E=2.1 108 kN/m2.
The applied force at 4.252 m from the left support is F=0.484 kN.
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Fig. 2 The beam model

The beam is modelled using beam finite elements with knots at 
both ends of the element (Figure 2). The model has 11 finite 
elements (1-11) of 0.905 m length and 12 knots (0-11). The 
displacement have been computed at every finite element knot for 
both the intact and the damaged state. The bending stiffness of 
damaged section is reduced by reducing the moment of inertia of 
intact section for 9 damage scenarios: DS1=10%, DS2=20%, 
DS3=30%, DS4=40%, DS5=50%, DS6=60%, DS7=70%, 
DS8=80% and DS9=90%. 

3.1 Example 1

The damage has been simulated by reducing the bending 
stiffness of the whole 5th finite element (at the distance of 3.62 m to
4.525 m from the left support) as it can be seen in Figure 3.
According to the proposed algorithm in Chapter 2 the values of 
decrease of bending stiffness for each finite element are calculated.
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Fig. 3 The position of damage (example 1)

Comparison of identified (calculated) and present (simulated) 
damage for all damage scenarios can be seen in Figures 3-7.
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Fig. 3 Damage quantification for DS1 (left) and DS2 (right) – 
example 1
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Fig. 4 Damage quantification for DS3 (left) and DS4 (right) – 
example 1
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Fig. 5 Damage quantification for DS5 (left) and DS6 (right) – 
example 1
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Fig. 6 Damage quantification for DS7 (left) and DS8 (right) – 
example 1
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Fig. 7 Damage quantification for DS9 – example 1

3.2 Example 2

The damage has been simulated by reducing the bending 
stiffness of a 1/2 of 5th finite element (at the distance of 3.846 m to 
4.298 m from the left support) as it can be seen in Figure 8. 
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Fig. 8 The position of damage (example 2)

According to proposed algorithm in Chapter 2 the values of 
decrease of bending stiffness for each finite element are calculated.
In Figures 9 to 13, the comparison of identified and present damage 
for all damage scenarios is presented. Present values of damage are 
expressed as the mean values of damage in the whole 5th element 
(i.e. for DS1 the mean value of damage in the whole element is 
5%).
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Fig. 9 Damage quantification for DS1 (left) and DS2 (right) – 
example 2
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Fig. 10 Damage quantification for DS3 (left) and DS4 (right) – 
example 2 
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Fig. 11 Damage quantification for DS5 (left) and DS6 (right) – 
example 2
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Fig. 12 Damage quantification for DS7 (left) and DS8 (right) – 
example 2
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Fig. 13 Damage quantification for DS9 – example 2

3.2 Example 3

The damage has been simulated by reducing the bending 
stiffness of a 1/3 of 5th finite element (at the distance of 3.922 m to 
4.223 m from the left support) as it can be seen in Figure 14. 
According to proposed algorithm in Chapter 2 the values of 
decrease of bending stiffness for each finite element are calculated.

In Figures 15 to 19, the comparison of identified and present 
damage for all damage scenarios is presented. Present values of 
damage are expressed as the mean values of damage in the whole 



5th element (i.e. for DS3 the mean value of damage in the whole 
element is 10%).
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Fig. 14 The position of damage (example 3)
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Fig. 15 Damage quantification for DS1 (left) and DS2 (right) – 
example 3
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Fig. 16 Damage quantification for DS3 (left) and DS4 (right) – 
example 3  
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Fig. 17 Damage quantification for DS5 (left) and DS6 (right) – 
example 3 
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Fig. 18 Damage quantification for DS7 (left) and DS8 (right) – 
example 9
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Fig. 19 Damage quantification for DS9 – example 3

4. Test examples 
Experimental validation is done by using results of measured 

deflection on simply supported intact and damaged beam presented 
in paper [8]. The properties of the test intact beam are the same as 
those of the numerical example described in Chapter 3. The 
deflections due to force F=0.484 kN acting at 4.252 m from the left 
support were measured at every 0.905 m from the supports (at 
positions N2-N11 in Figure 20). 

The damage was introduced by subsequently grinding cuts 
inside the 5th segment as it is shown in figures 20, 21 and 22 [8]. 
The decrease in bending stiffness in damaged cross section is about 
60% in comparison to intact cross section in both test damage
scenarios. 

Fig. 20 Test beam specimen [8] 

Fig. 21 Test damage scenario 1 [8] 

Fig. 22 Test damage scenario 2 [8] 

The identified values of decrease of bending stiffness calculated 
using the proposed algorithm and real decrease of bending stiffness
are shown in Figure 22 for test damage scenario 1 and 2 (TDS1 and 
TDS2), respectively.
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Fig. 23 Damage quantification for TDS1 (left) and TDS2 (right) – 
test example
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Fig. 23 Damage quantification for TDS1 (left) and TDS2 (right) – 
test example



The real value of decrease in bending stiffness due to grinding 
cuts of 60% of intact bending stiffness at the 60% of segment of 
0.905 m for TDS1 is expressed as the mean value of damage to the 
whole segment. 

5. Discussion and conclusion
As it can be seen form conducted numerical and test examples

the damage is successfully located in all cases.

The comparison of identified and present/real values of 
decrease in bending stiffness are shown in Tables 1 and 2 as 
deviation of identified values to present/real values of decrease in 
bending stiffness.  

As it can be seen from Chapter 3 and Table 1, all identified 
values in numerical examples are greater than present/real values of 
decrease in bending stiffness. Generally, proposed method give 
overestimated values of damage severity. In Chapter 3.1, in case of 
damage scenarios DS7-DS9, as well as in Chapter 3.3 in case of 
DS9, identified decrease in bending stiffness is greater than 100% 
what is fiscally impossible. This phenomena is a result of using 
algorithm based on simple arithmetic operation and insufficient 
number of structural response data.

Tab. 1 Deviation of identified and present values of decrease in 
bending stiffness for numerical examples [%]

Damage scenario Example 1 Example 2 Example 3

DS1 8 12 9 

DS2 15 21 24

DS3 21 34 38

DS4 28 48 56

DS5 38 64 77

DS6 46 87 106

DS7 56 115 147

DS8 69 153 206

DS9 83 211 306

In cases where a present damage is the smallest (10%) the 
deviation of identified over present damage is approximately 10%. 
In cases of the greatest damage severity of 90% the deviation of 
identified over present damage is between 83 and 306%. If we 
compare the same damage scenario it can be seen that 
overestimation of damage is greater in case where damage is 
situated on the smallest section, i.e. overestimation of damage is 
greater if sparseness of data is greater. 

Tab. 2 Deviation of identified and real values of decrease in 
bending stiffness for test examples [%]

Damage scenario Test Examples

TDS1 96

TDS2 45

The results of using test data confirm numerical conclusion. 
Test damage scenario 1 (TDS1), where damage covers 
approximately 60% of length of 5th segment can be compared with 
damage scenario 6 in numerical example 2 (DS6-2) while test 
damage scenario 2 (TDS2), where damage covers approximately 
the whole 5th element can be compared with damage scenario 6 in 
numerical example 1 (DS6-1). The deviation of identified and 
present/real values of decrease in bending stiffness for TDS1 is 96% 
and for DS6-2 is 87%. The deviation of identified and present/real
values of decrease in bending stiffness for TDS2 is 45% and for 
DS6-1 is 46%. 

If we suppose that overestimation up to 50% of identified over 
present/real damage is acceptable in engineering purposes it can be 
concluded that presented method can be successfully used in
detection and quantification of those damages where decrease of
bending stiffness is not greater than 40%.
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