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ABSTRACT

Transfer functions with finite zeros giving the
minimum product of the impulse response duration and
the frequency bandwidth are considered. The impulse
response spread is characterized by the higher order
moments. For the frequency spread measure, the second
order moment is used. Minimizing products of the
moments, causal systems with the largest energy
concentration in time for a given bandwidth are obtained.
The resulting impulse response is quasi Gaussian with
small and short ringing. The transfer functions' poles and
zeros suitable for the filter design, up to the tenth order,
are given.
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1 INTRODUCTION

In many applications, the systems with small time
spread of the impulse response for a given bandwidth are
required. The real systems of the finite order typically
have ringing. The general requirement is to make the
ringing small and short. In the optimization procedure, all
these aspects should be present in the goal function. To
have them all in an integral criterion, the use of higher
order moments for characterization of the response spread
is proposed. The moments have simple relations to the
system function parameters. Therefore, the optimization
can be carried out in the complex domain by varying pole-
zero locations.

The frequency occupation of the band is determined
by the signal shape and its time duration. To obtain the
best shape, an optimization of the product

mnnmP βα= (1)

of the time αn and the frequency βm spread should be
carried out.

For the spread αn and βm various measures might be
used [1]. The n-th central moment around delay td of the
squared impulse response h(t) normalized to the impulse
response energy
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has been used here for the time spread. The m-th moment
of the squared amplitude response normalized to the
energy

∫

∫

∞

∞−

∞

∞−

ωω
π

ωωω
π

=β

d)(H
2
1

d)(H
2
1

2

2m

m
m ,   m=2, 4, 6, ...  . (3)

has been used for the frequency spread measure.

As it is well known, the second order moments n=2
and m=2, have been used in the uncertainty principle for
noncausal [1] and causal signals [2]. Here we use higher
order moments n=2, 4, 6 and 8 for the impulse response
characterization αn and the second order moment β2 for
frequency response characterization. Motivation for such
a decision is based on the fact that parabola (t-td)n is a
weighting function in (2). In this way the contribution of
the impulse response ringing in the spread measure αn
will be increased by n. Minimizing the product (1) with
such a measure, one can expect small and short ringing.

All pole transfer functions with minimum time-
bandwidth product have already been analyzed [3]. In this
paper we are extending the proposed system class by one
pair of finite zeros.

The frequency response spread can be expressed by
the second and higher order moments. The speed in which



the frequency response of a real system approaches to
zero is determined by number of poles and zeros.
Therefore, higher order moments will not be able to
modify significantly the frequency response form in the
stopband. Thus, for the measure of the frequency response
spread, the second moment will be sufficient. Also, the
use of the second order moment has another important
consequence. Namely, the integral (3) will converge for
all system orders N≥2+M, where M is the number of
zeros. The integral (2) will converge regardless of used
moment order for N>M.

2 MOMENTS AND TRANSFER
FUNCTIONS

Time spread and bandwidth definitions (2) and (3),
are suitable for causal functions as well. In that case the
lower limit in (2) equals to 0, and H(ω) is Fourier
transform of a causal function h(t). Thus, we define a
measure of the impulse response spread by the n-th order
central moment, and bandwidth as the second order
moment, both normalized to the impulse response energy.

For optimization procedure in the complex domain,
the criterion (1) should be expressed by the transfer
function poles pj, and zeros, zi. The system function of the
N-th order, with M zeros is given by
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If the poles are simple, and M<N, the impulse response is
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where Kr, r=1,2,...,N are the pole residues. Now, the n-th
order moment of the squared impulse response,
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can be expressed as a function of poles and residues:
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Impulse response energy can be obtained from (7) with
n=0.

The second order moment of the frequency response
can be expressed by the impulse response derivative,
using Parseval's relation
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Expression (8) can also be computed from (7) using Krpr
that are residua of the impulse response derivative, i. e.
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Thus, the second order moment of the amplitude response
(8) is equal to zeroth moment of the impulse response
derivative (9)
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To ensure convergence of the moment integral (3), the
number of zeros and poles should satisfy inequality

2N22M2 −≤+  or 2MN +≥  . (11)

3 OPTIMIZATION PROCEDURE

Pole and zero positions of causal filters with
minimum time-bandwidth product can be found by
solving the problem

[ ]ji2n
p,z
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, i=1,..,M and j=1,...,N. (12)

It is more practical to use goal function with real
variables. Therefore, the complex poles and zeros in (4)
were separated into their real and imaginary parts;
zi=zσi+i⋅zεi and pj=pσj+i⋅pεj. Using this notation, the
optimization problem was formed as
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for even and odd systems order, respectively. The
complex poles and zeros of real systems come in
conjugate pairs. Therefore, the indexes i and j in (13) and
(14) are running to M/2 and N/2 only.



For searching minimum Quasi-Newton method with
BFGS formula for Hessian matrix update [4] was used.
Analytic expressions for gradients were used in order to
avoid numerical errors that finite difference
approximation might have caused. Gradient was
calculated using forward mode of automatic
differentiation, as it can be found for example in [5].

To get causal filters with minimum time-bandwidth
product, the optimization is carried out for systems up to
tenth order and moment orders n=2, 4, 6 and 8.
Optimization will force impulse response to concentrate
around td and practically extend to 2td. The parameter td is
chosen to be 1. This will not change the generality of the
solution.

4 OPTIMIZATION RESULTS

The numerical values of poles and zeros are given in
Table I - IV for systems of the fourth up to the tenth order,
with one pair of complex zeros.

For rational transfer functions with td=1, the
examples of zero-pole positions are shown in Figure 1. It
is interesting to note that the poles are very nearly placed
on ellipses with ellipses center located at the complex
plane origin. The imaginary parts of poles are nearly
equidistant. The deviation of equality is 10%, 6.8%, 3.1%
and 1.7% for the moment order n=2, 4, 6 and 8,
respectively. Such properties are typical for linear phase

systems and systems with symmetric impulse response
[6].

4.1 Systems based on the fourth order
moment

The impulse responses of the optimum systems
based on the fourth order moment order are shown in
Figure 2. It is a quasi Gaussian response, with small time

Table I. Poles and zeros of the systems based on
the second order moment, td=1.

Table II. Poles and zeros of the systems based on
the fourth order moment, td=1.

  
Figure 1. Pole-zero positions of the optimum

systems based on the fourth and the
eighth order moment, normalized to td=1.



spread, and small and short ringing. Undershoots are
smaller than 0.7% for N≥5. Higher system orders
apparently give the response with smaller time spread and
higher symmetry. The step response, Figure 3, is
practically monotonic with overshoots smaller than 0.1%
for N≥5. Generally, the impulse response undershoots and
step response overshoots are few times smaller than in the
all pole case given in [3].

Amplitude and group delay responses are shown in
Figure 4 and Figure 5, respectively, in a form suitable for
comparison with classic filter approximations, given, for
example, in [7]. The amplitude response is quasi
Gaussian. The group delay curves illustrate an
approximation of a constant.

4.2 Properties of the obtained systems

The time bandwidth products, i. e. magnitude of the
goal function (1) in optimum, obtained by the use of
various moment orders are given in Figure 5. The curves
in the diagram are given for all-pole systems presented in
[3] and new results obtained with one pair of complex
zeros. They show an asymptotic approach to the values
0.5, 0.648, 0.753 and 0.834 for n=2, 4, 6 and 8
respectively. It is obvious that time-bandwidth product is
practically constant for systems with order N≥7. The

presence of zeros reduces the time-bandwidth product.
However, the contribution of the second pair of zeros is
negligible. This is the reason why we found sufficient to
give here the complete data for systems with one pair of
zeros only. We also found that the finite real zeros can not
improve the time-bandwidth product. Namely, the
optimization procedure gives their position very far from
the origin, i. e. far from the rest of poles and complex
zeros.

The contribution of the complex zeros is also visible
on Figure 6 where impulse responses are shown for eighth
order fourth moment systems with various numbers of
zeros. Adding one pair of complex zeros significantly
reduce undershoot compared to the all pole case, while the
reduction caused by the second pair of zeros is negligible.

Impulse response undershoots and step response
overshoots are much smaller than in classical linear phase
approximation. The data for various system orders
together with the data for Bessel filters are shown in
Figure 7 and Figure 8. Impulse response undershoots of
the optimum filters are smaller than 1%, and generally
decrease for higher system order. The similar behavior
can be notices in the step response overshoots, which are
smaller than 0.12% for N≥5. The obtained product Pn2 is a
measure for the optimization performance. The
conventional and more practical value for the time and
frequency spread is for example the rise-time tr (10%-

Table IV.Poles and zeros of the systems based on
the eighth order moment, td=1.

Table III. Poles and zeros of the systems based on
the sixth order moment, td=1.



90%) and bandwidth f3dB=ω3dB/(2π). The product is
practically constant and it equals to trf3dB=0.339 to
trf3dB=0.348. An example can be seen from Table II and
Figure 3.

Amplitude attenuation in the stop band ω>>ω3dB is
smaller for higher order moments. In that band the
attenuation slope is generally smaller than in the all pole
case, but before zero dip the slope is higher.

5 CONCLUSION

By the minimization of the time-bandwidth product
using higher order moments, a new class of finite order
systems has been obtained. Here we considered the
influence of zeros, which we found useful for

improvement of the time bandwidth product. We have
shown that only one pair of complex zeros is practically
interesting. Obtained systems have the largest energy
concentration in time for a given bandwidth. The impulse
response and step responses have small and short ringing.
Time domain properties of the obtained filter families can
be favorably compared to similar filters with linear phase.
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Figure 2. Impulse response of the optimum
systems based on the fourth order
moment, normalized to td=1.

Figure 3. Step response of the optimum systems
based on the fourth order moment,
normalized to td=1.

Figure 4. Amplitude response of the optimum
systems based on the fourth order
moment, normalized to ω3dB=1.

Figure 5. Group delay of the optimum systems
based on the fourth order moment,
normalized to ω3dB=1.
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Figure 5. Time-bandwidth products of the
optimum systems based on various
moment orders.

Figure 8. Step response overshoots of Bessel
filters and the optimum filters based on
various moment orders.

Figure 6. Impulse response of the optimum
systems for various numbers of zeros,
N=8, n=4, td=1.

Figure 7. Impulse response undershoots of Bessel
filters and the optimum filters based on
various moment orders.


