
Shape-Specific Adaptations for Level-Set Deformable 
Model-Based Segmentation 

Marko Subasic1, Sven Loncaric1 and Erich Sorantin2 

1 Faculty of Electrical Engineering and Computing, University of Zagreb  
Unska 3, 10000 Zagreb, Croatia 

2 Dept. of Radiology, University Hospital Graz, Auenbruggerplatz 34, A-8036, Austria 

Abstract. In this paper we present two modifications to the original level set 
algorithm for implementation of deformable models. The modifications are 
motivated by difficulties that we have encountered in application of deformable 
models to segmentation of abdominal aortic aneurysm from computed 
tomography images. The level set algorithm has some advantages over the 
classical snake deformable models but it has difficulties with large gaps in the 
boundary of segmented region. Such boundary gaps may cause inaccurate 
segmentation that requires manual correction by the user while our goal is to 
keep user assistance at a minimum level. The proposed modifications have a 
form of additional stopping criteria. The first modification utilizes shape 
constraints and is less general than the second modification, which utilizes 
feature-based tracking of curve segments. These two modifications are 
developed for our specific application but we believe that they could be utilized 
in any similar application.  

1 Introduction 

Segmentation is an important and challenging step in image analysis procedures. 
Deformable models [7] have recently become one of the most studied techniques for 
segmentation, due to their ability to adapt to the specific shape of the object of 
interest. Following the original snake algorithm described in [8], new approaches to 
deformable model-based segmentation have been proposed in literature, including the 
level set algorithm implementation for evolution of a deformable model developed by 
Osher et al. [10]. 

The original level set algorithm, among advantages it has over classical 
(parametric) deformable models, has a disadvantage that it does not perform well in 
presence of large boundary gaps. Several modifications to the level set algorithm have 
been proposed [7] trying to solve this problem. These modifications alter the level set 
speed function utilizing energy minimization. Such speed functions can prevent 
deformable contour leaking trough small boundary gaps, but large boundary gaps can 
still cause problems for them.  

In this paper we propose two modifications to the original level set algorithm for 
deformable models. These two modifications are designed in order to overcome the 
problem that the level set method has with large boundary gaps and are in form of 



additional stopping criterions. The modifications are motivated by our work in 
segmentation of medical images that always present great challenge because of high 
noise and imaging artifacts. More precisely, we are involved in segmentation of 
abdominal aortic aneurysm (AAA) from CT volume data for which we use level set 
deformable model [12]. AAA is a serious disorder where aortic wall becomes thicker 
and its physical characteristics deteriorate. Such conditions can lead to rapture of 
aortic wall, which presents a great danger for patient's life. AAA can be treated using 
minimally invasive techniques. Interest has emerged among physicians for accurate 
measurements of aneurysm. This information can be used in diagnostics, procedure 
planning, or in postoperational evaluation and condition tracking. This is the place in 
which the application we are developing makes its contribution by providing a 3-D 
model of abdominal aorta on which all necessary measurements can be performed. 
Often, there are large border gaps present in AAA image data, presenting difficulties 
to the original level set technique. The modifications we propose address this problem 
of AAA segmentation, but they can be useful for other classes of objects, too. 

2 Level-Set Method for Deformable Model-Based Segmentation 

The original active contour algorithm that is a parametric deformable model type [8], 
uses active contours (snakes). Parametric deformable models are very popular and are 
successfully used in image segmentation for some time. However they have several 
disadvantages. Most significant are the difficulties with segmentation of topologically 
complex structures. Other significant disadvantage is that implementation in 3-D is 
nontrivial.  

To overcome these difficulties, geometric deformable models were introduced 
which are based on the level set method proposed by Sethian et al. [10], [11]. In this 
section, we will give a short description of level-set method in 2-D segmentation. 
Extension to 3-D case, which we use, is straightforward. 
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Fig. 1. Level-set algorithm illustration 

In this approach for shape modeling, a 2-D curve γ is represented by a 2-D function 
Ψ (Figure 1). The value of the Ψ at some point x is defined as a distance d of the point 
x to the 2-D curve γ according to Equation 1 where x∈R2 are points in image space. 



The sign in Equation 1 determines whether the point lies outside or inside the 2-D 
curve γ(t=0). In this manner, γ is represented by the zero level set γ(t)= {x∈R2 | Ψ(x, 
t)=0} of the level set function. The level set method then evolves the 2-D function Ψ 
instead of the original 2-D curve. The evolution of Ψ is described by means of a 
partial differential equation (PDE) shown in Equation 2. 
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For numerical solution of the Equation 2 it is necessary to perform discretization in 
both space and time domains. For this purpose space coordinates are discretized using 

a uniform mesh of spacing h, with grid nodes denoted by indices ij. Let 
n
ij?  be the 

approximation to the solution Ψ(ih,jh,n∆t ), where ∆t is the time step. The expression 

for 
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ij?  can be derived using the upwind finite difference method, which gives us 

the final iteration expression in Equation 3. The speed term F  depends on the 
curvature K and is separated into a constant advection term F0 and the remainder 
F1(K). The advection term F0 defines a uniform speed of front in normal direction, 
which corresponds to inflation force in classical snake models. The diffusion term 
F1(K) depends on the local curvature and smoothes out regions of high curvature thus 
corresponding to internal force in classical snake models. We use the following 
expression for the speed term where ε is the entropy condition which regulates the 
smoothness of the curve and k  is the stopping criterion based on the image gradient as 
denoted in Equation 6. 
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where Gσ*I denotes image convolved with Gaussian smoothing filter whose 
characteristic width is σ. This stopping criterion allows deformable model to stop on 
high image gradient by reducing speed function to zero, thus aligning it to the object 
border. 

The curvature is obtained from the divergence of the gradient of the unit normal 
vector to front, that is  
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We use the narrow band extension as proposed by Malladi et al. [11] where the 
front is moved by updating the level-set function only at a small set of points in the 
neighborhood of zero level-set called the narrow band. The narrow band is δ wide. 
During a given time step the value of Ψ outside the narrow band is stationary and zero 
level-set cannot move past the narrow band. After a given number of iterations the 
curve γ, the level-set function, and the new narrow band are recalculated. We then 
calculate image-based term only inside narrow band and each Ψ point have image-
based term based on its corresponding Gaussian gradient point. 

Trading evolving curve for evolving function makes things more complex, but in 
return, the level-set method introduces some new qualities and resolves some 
problems found in the classical snake method. An important property of the level-set 
method is that as long as the function Ψ stays smooth, its zero level set can take great 
variety of shapes, change topology, brake and merge. Another advantage is that it is 
easy to build accurate numerical schemes to approximate the equations of motion. 

In the above text, we have described the level set method for segmenting two-
dimensional images. Extension to three dimensions is straightforward by extending 
the array structures and gradient operators. 

3 Modifications to the Level Set Algorithm 

First we would like to describe in few words our application for segmentation of 
AAA so that our modifications to the original level set algorithm and problems that 
were motivation for their development, could be more easily understood.  

The input data to our application is a consecutive series of images obtained by 
spiral CT scanning, which together form the volume of human abdomen. The images 
are obtained by angiography technique, which means that contrast agent is inside 
aorta during image acquisition. Use of a contrast agent during imaging provides 
images with high gradient at inner aortic wall (between blood flow and aorta). This is 
important since the utilised deformable model uses image gradient as stopping 
criterion. For this reason segmentation of inner aortic wall can be performed 
successfully with no great difficulties. A 3-D deformable model has been used for 
segmentation of inner aortic wall.  

In addition to the inner aortic wall it is necessary to segment the outer aortic wall, 
too. For this task we utilise data gathered from segmentation of inner aortic wall. This 
task is the challenging one because surrounding tissue has similar optical density as 
aortic wall. In several places this surrounding tissue is leaning on aorta making it very 
difficult to distinguish border between them. These are the places where large 
boundary gaps occur. The fact that we use thresholding to eliminate internal aortic 
border so it would not interfere with outer aortic border segmentation only makes 
things worse. To restrict contour leaking to only one slice we use a 2-D deformable 
model on each slice in volume.  



Our modifications are made to 2-D level set algorithm for deformable models that 
we use in segmentation of outer aortic border, although they could theoretically be 
extended to 3-D. 
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Fig. 2. Block diagram of the application 

3.1 Adding Shape Constraints Using Contour-Based Shape Description 

This particular additional stopping criterion is based on a prior knowledge of the aorta 
3-D shape: its surface is smooth and round. Based on this fact we assume that the 
outer aortic boundary has same surface features in areas where it is difficult to 
recognize. The starting point for deformable model evolution is a circle placed over 
the center of inner boundary contour. This way we incorporate the presumption of 
aortic round shape and now the center point of inner aortic boundary estimates the 
center point of outer aortic boundary, which has yet to be segmented. The deformable 
model algorithm is then run until a predefined percentage of contour points has met 
outer aortic border and has stopped moving. At that point of time the additional 
stopping criterion is applied (Table 1.). The additional stopping criterion is basically a 
curve based on the original evolving curve at that point in time. The stopping criterion 
curve is built in the following way: point Cγ is calculated as the center of mass of the 
inner aortic boundary contour γ (Figure 2.). Then distance r from each γ point from Cγ 
is calculated. A predefined number of distances rα is chosen based on corresponding 
point’s angles. Distances rα are then transformed using Fourier transformation. A 1-D 
low-pass filtering is then performed to eliminate higher frequency spectral 
components. Low frequency Fourier coefficients are then transformed back into 
distances rift, which are then increased by a constant amount. Distances rift define a 
stopping criterion curve. This way we incorporate the presumption of smooth aortic 
surface. In this way the stopping criterion curve estimates aortic border where it is not 
distinguishable in the image. 

After the additional stopping criterion is calculated, evolving curvature γ will stop 
at aortic borders and on additional stopping curve. 
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Fig. 3. Incorporation of knowledge of aortic shape into the algorithm 

Table 1. The level set algorithm for outer aortic boundary segmentation 

1: repeat for all slices 

2:  Calculate initial surface γinit and initialΨ 

3:  repeat 

4:   for i =1,...,Niter do 

5:    Execute iteration in Equation 3 

6:   end for 

7:   Recalculate curve γ and narrow band  

8:   Reinitiate Ψ in narrow band 

9:   if nstat/nall>M then Calculate additional 
stopping criterion 

10:  until γ stops changing 



3.2 Feature-Based Tracking of Curve Segments 

In this modification the expansion coefficient of the moving curve acts as an 
additional stopping criterion. Input data for this approach are CT volume and already 
segmented internal aortic boundary, which is an initial curve for this step. The 
evolving contour can be divided into moving segments, which are delimited by 
contour points that have already stopped. Expansion of each of those segments must 
be traced separately. There is also possibility that two segments will merge so a 
merging of expansion coefficients has also had to be implemented. Expansion 
coefficient is defined by the iterative expression in the Equation 8 
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where Nt represents number of moving points in contour segment in given time step t 
and St represents the number of new statically points in current segment in current 
time step t. The expansion coefficient of the initial contour equals one.  

When the evolving curve is growing the expansion coefficient X is also growing 
and we stop evolution of the curve segment when X reaches predefined level. This 
predefined level has to be determined experimentally for each application and it 
depends on ratio of ending curve length and initial curve length. This stopping 
criterion, by itself, could prematurely stop evolving contour even inside aorta. This is 
not desired, so another criterion has been introduced. Only those segments are 
stooped whose expansion coefficient is larger than predefined value and moving point 
ratio R (Equation 9.) is greater then predefined level. 
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The moving point ratio is used to distinguish the case when we want the expansion 
coefficient to take action and the case when we do not want that. The expansion 
coefficient stopping criterion will not be applied if the moving points ratio is less then 
predefined value (usually set to 1) which is the case when the contour is approaching 
to the closed border. This basically means that the moving part of contour segment is 
getting smaller. Moving point ratio that is greater than this predefined value is typical 
for contour leaking past the outer aortic wall when evolving contour starts filling 
surrounding tissue. 

4 Experimental results 

The application has been tested using CT angiography images of a real patient. On 
Figure 4. some experimental results of outer aortic boundary segmentation are shown 
using both modification. The original slices are shown on subfigures a) and e). After 
thresholding and gradient operator have been applied it is easy to see large boundary 
gaps occurring on subfigures b) and f). Subfigures c) and g) show segmentation 



results for the first modification while subfigures d) and h) show segmentation results 
for the second modification. It can bee seen on all resulting images that in spite of the 
additional stopping criteria, the deformable model have penetrated slightly into the 
surrounding tissue, which requires some manual correction. 
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Fig. 4. Segmentation of slices with large boundary gaps 



5 Discussion 

Here, we described two modifications to the original level set algorithm that have 
been designed to solve the “boundary gap” problem, which we encountered in our 
application for segmentation of AAA. However these modifications do not solve the 
problem entirely. 

The efficiency of the first modification depends largely on initial conditions that is 
the concentricity of internal and outer aortic boundary. It also depends on the shape 
and its symmetry, which is often not the case for the aortic aneurysm. In such 
asymmetrical cases it could happen that additional stopping curve does not encircle 
the entire evolving contour. The evolving curve segment that lies outside additional 
stopping criterion curve could then evolve unhindered. 

The second modification is more general then the first one. It is capable of 
stopping the level set deformable model that has penetrated past the large boundary 
gap, from penetrating too far into surrounding tissue. This way the manual correction 
effort is reduced but not eliminated to the extent that we desire. The manual 
correction is still necessary because this modification can only stop the evolving 
curve when it has already missed the boundary. AAA comes in different shapes and 
sizes and among this variety, slices may occur that look the same to the algorithm but 
in fact present opposite cases and require different treatment. Our modification can 
not solve this problem. We feel that this is partly because our application uses plain 
threshold to eliminate the influence of the high image gradient found on the inner 
aortic border. By doing this we also eliminate already weak image gradient on the 
problematic areas. This produces large boundary gaps that level set algorithm has 
problems with. 

This thought led us to believe that a more "intelligent" thresholding could solve our 
problem. So we direct our further investigation on applying some sort of probabilistic 
region labeling or boundary detection that would decrease large boundary gap 
occurrence and thus improve our application performance. 

6 Conclusion 

In this paper we have presented two modifications to the original level set algorithm 
for deformable models. These modifications are motivated by the problems we have 
encountered in the application for segmentation of abdominal aortic aneurysm. These 
modifications are designed to improve the level set algorithm in our specific 
application but we believe that they could be useful in other applications with similar 
difficulties. The first modification utilizes shape constraints and is less general than 
the second modification, which utilizes feature-based tracking of curve segments. The 
modifications do not solve the problems completely but they decrease undesired 
effects to some extent. Though the modifications introduced improvement into our 
application performance we feel that further improvements can be introduced, which 
is our next step. 
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