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Abstract 

In this paper we propose a technique for 3-D segmentation of abdominal aorta computed 
tomography (CT) images. Output data of the proposed algorithm is a 3-D model of aorta that 
can be used for measurement of aortas dimensions. Thos information are very important in 
minimally invasive treatment of abdominal aortic aneurysm. The technique is based on 
deformable model. The deformable model is implemented using a level-set algorithm for 
implementation of the method. The level set algorithm has several advantages over classical 
“snake” algorithms. Experiments have been performed using real patient CT angiography 
images and have shown good results.  
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1 Introduction 

In this paper, we describe a 3-D image analysis technique for segmentation of abdominal 
aorta and its application to CT data of abdominal aortic aneurysm (AAA). The technique is 
based on 2-D and 3-D deformable models, which are implemented using the level-set 
algorithm (Malladi, 1995, Osher, 1988). The level-set algorithm has several advantages over 
classical deformable models. 3-D deformable model is utilized in segmentation of interior 
(perfused) aortic border while 2-D deformable model is used in segmentation of outer 
(unperfused) aortic border because of difficulties encountered in this step as explained later in 
the text. The output of the segmentation is a 3-D model of abdominal aorta, which can be then 
used in measurements of aortic dimensions. This information is then utilized in diagnostic and 
treatment of aortic aneurysm thus allowing less invasive treatment methods to be employed. 
 
2 Level-set method for deformable model segmentation 

Deformable models have shown to be a powerful tool for medical image segmentation 
(McInerey, 1996) and there are various implementation algorithms. The classical active 
contour algorithm, also called snake (Kass, 1987), has several disadvantages like disability to 
change topology and segment complex structuresand problems with bookkeeping in 3-D case. 
The level-set algorithm overcomes above difficulties. In this section, we provide a short 
description of the level-set algorithm for 2-D deformable model. Extension to 3-D case, which 
we also use, is straightforward. 

In 2-D level-set approach for shape modeling, a 2-D curve γ is represented by a 3-D 
surface Ψ (Figure 1.). The height of surface Ψ each point is defined as the distance d from the 
corresponding image point x to the 2-D curve γ according to Equation 1. The sign in Equation 
1 determines whether the point lies outside or inside the 2-D curve γ(t=0). This way γ is 
represented by the zero level set γ(t)= {x∈ R2 | Ψ(x, t)=0} of the 3D surface. The level set 



method then evolves the 3-D surface Ψ instead of the original 2-D curve γ. The motion of Ψ 
is described by partial differential equation shown in Equation 2. 
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Figure 1. Level-set algorithm illustration 

 
Expanding 2-D curve evolution to 3-D surface evolution makes things more complex, but 

on the other hand, the level-set method introduces some new qualities and resolves some 
problems found in the classical snake method. An important property of the level-set method 
is that as long as the surface stays smooth, its zero level-set can take any shape, change 
topology, brake and merge. Another advantage is that it is easy to build accurate numerical 
schemes to approximate the equations of motion.  
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The evolution equation of the surface Ψ(x,t) is shown in Equation 2. To obtain numerical 
solution of Equation 2 it is necessary to perform discretization in both space and time 
domains. Let n

ijΨ  be the approximation to the solution Ψ(ih, jh, n∆t), where h is  the spacing 
of uniform mesh and ∆t is the time step. This gives us the final iteration expression in 
Equation 3. 

The speed term F depends on the curvature K and is separated into the constant advection 
term F0 and the remainder F1(K) (Equation 4). 

The advection term F0 defines a uniform direction speed of front, which corresponds to 
inflation force in classical snake models. Term F1(K) depends on the local curvature and 
smoothes out regions of high curvature thus corresponding to internal force in classical snake 
models. 

The curvature K is obtained from the divergence of the gradient of the unit normal vector 
to front (Equation 5). 
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In order to segment images the speed function F also has to have an image based 
condition, which would cause propagating front to stop near desired object boundary. 
Multiplying the speed function F with a quantity k provides needed influence of image 
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gradient. The term k can be defined in several ways and we use the form shown in Equation 6 
where Gσ*I denotes image convolved with Gaussian smoothing filter whose characteristic 
width is σ. 
We use the following expression for the speed term 

)1()( εKk KF −=  (7) 
where ε is the entropy condition which regulates the smoothness of the curve. The proposed 
range for ε is 0.5 to 1.0. 

We use the narrow band extension as proposed by Malladi et al. (Malladi, 1995) where the 
front is moved by updating the level-set function Ψ only at a small set of points in the narrow 
neighborhood of zero level-set called the narrow band. The zero level-set cannot move past 
the narrow band. After a given number of iterations the curve γ, the level-set function, and the 
new narrow band are recalculated and process repeats. This way all calculations are done only 
inside the narrow band area, which greatly reduces number calculations. 

Extension from 2-D to 3-D level-set approach is achieved by extending the array structures 
and gradient operators. In that case, Ψ is a 4-D surface and we use the following expression 
for curvature of the level set function (Equation 8.) 
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3 3-D abdominal aortic aneurysm segmentation 

We apply the above level set algorithm to the problem of AAA segmentation. The input to 
the level-set algorithm in this case is a 3-D data array of volumetric CT angiography data of 
the human abdomen. We prefer manually extracting the region of interest containing the AAA 
from the volumetric data. This step does not have much influence over execution of the 
algorithm but greatly reduces memory costs, which tend to be very large with 3-D data. 

To segment aortic wall we perform two steps. In the first step, we segment inner boundary 
of aorta while in the second step we segment outer border.  

 
3.1 Segmentation of inner aortic border 

In segmentation of inner aortic boundary, we use basic 3-D level-set algorithm described in 
the previous section. In order to use the 3-D level-set algorithm, an initial surface has to be 
defined. We choose the initial surface γinit1 to be a sphere due to simplicity. The sphere center 
and radius have to be defined manually by the user so that the initial sphere resides entirely 
inside the aorta. The algorithm shown in Figure 2a then evolves the initial surface γ1 trough its 
corresponding higher dimensional surface Ψ1 until γ1 stops changing.  

 The output of the algorithm is the final surface γend1 representing the internal boundary of 
the aorta. The final γend1 in the above algorithm is used to produce initial conditions in second 
step: calculation of outer aortic boundaries. 

There are no major difficulties in segmentation of inner aortic borders because of the high 
contrast between aortic interior and aortic wall. This is due to angiography technique used for 
obtaining CT data. In this case the image gradient that is used by the level-set algorithm is 
relatively high thus making the stopping criterion in Equation 8 very efficient. This however 
is not the case while segmenting outer aortic boundary. 

 



3.2 Segmentation of outer aortic border 

The main difficulty with segmentation of outer aortic border is that surrounding tissue has 
the same optical density as aortic wall. In a number of places, the aortic wall and similar 
surrounding tissue are very close together, making it impossible to determine boundary 
between them. Level-set algorithm can successfully deal with small contact areas thanks to its 
local curvature based speed term, but cannot stop propagation of zero level-set inside 
surrounding tissue where the contact area is relatively wide. Since this problem cannot be 
overcome with 3-D level-set algorithm itself, we utilize the 2-D level-set method on each slice 
and an additional stopping criterion.  

The 2-D level-set method is used because of variations in aortic diameter along aorta and 
especially in aneurysm area. Initial curve γinit2 for the 2-D level-set method is chosen to be a 
circle. The circle center is calculated as the mid-point of the final curve γend1 from the 
previous step. The radius from initial surface γinit2 is chosen to be scaled mean radius of the 
final curve γend1 from the previous step. This way we utilize some general knowledge of aortic 
shap: we are expanding initial circle into a larger shape similar to circle. Calculated center of 
the initial curve γinit2 is therefore estimated center of the final curve γend2. This way we reduce 
chances of level-set propagation outside outer aortic borders before the additional stopping 
criterion is applied. 

The additional stopping criterion is based on knowledge of general aortic shape: aortic 
surface is smooth and round. One can than presume that the outer aortic boundary has the 
same characteristics in areas where it is not distinguishable. The additional stopping criterion 
is basically a curve built from the evolving curve γ2 once predefined percent M of γ2 points 
has met outer aortic border. The stopping criterion curve is built in following way: central 
point Cγ is calculated as mid-point of γ2. Then distance r from each γ2 point to Cγ is 
calculated. Predefined number of distances rα is chosen based on corresponding point angles. 
Distances rα are then transformed using Fourier transformation. We then eliminate higher 
frequency Fourier coefficients. Low frequency Fourier coefficients are transformed back into 
distances rift, which are subsequently increased by some amount. Those rift produce a stopping 
criterion curve. In this way the stopping criterion curve estimates aortic border where it is not 
distinguishable. 

After the additional stopping criterion is calculated, evolving curve γ stops at aortic borders 
and at additional stopping curve. 

We use thresholded image for computing of image gradient so inner boundaries of aorta do 
not interfere with outer boundary segmentation. In addition, some modifications to the basic 
speed term have to be made in order to more efficiently prevent propagation of front into 
surrounding tissue: the constant speed term is decreased and influence of curvature term is 
increased. The modified algorithm (Figure 2b) is run to segment outer aortic boundary. 

An additional modification to the original level-set algorithm has been made in order to 
reduce the chances of level-set propagation outside the outer aortic borders. We modify the 
curvature calculation (Equation 6) so that in derivatives calculation, second neighbor points 
are used instead of immediate neighbor points. This is done because curves are represented in 
discretized form and in that form curves that are convex can become locally concave. If that 
were true, curvature speed term would produce wrong effect making the surface expand faster 
instead of slowing down its expansion. 

After performing both steps in aortic segmentation, we end up with 3-D model of 
abdominal aorta, on which measurements can be performed. 

The major part of the algorithm has been implemented in MATLAB program package 
while the most computationally complex steps of recalculating γ, narrow band and 
reinitialization of Ψ, have been implemented in C programming language. 



 

1: Calculate initial surface γinit2 and initialΨ2 
2: repeat 
3:  for i =1,...,Niter1 do 
4:   Execute iteration in Equation 4 
5:  end for 
6:  Recalculate surface γ1 
7:  Recalculate narrow band 
8:  Reinitiate Ψ1 in narrow band 
9: until γ1 stops changing 

1: repeat for all slices 
2:  Calculate initial surface γinit2 and initialΨ2 
3:  repeat 
4:   for i =1,...,Niter2 do 
5:    Execute iteration in Equation 4 
6:   end for 
7:   Recalculate surface γ2 
8:   Recalculate narrow band 
9:   Reinitiate Ψ2 in narrow band 
10:   if nstat/nall>M then 
11:    Calculate additional stopping criterion 
12:  until γ stops changing 

a) b) 

Figure 2.The algorithms for inner (a) and outer (b) aortic boundary segmentation. 
 
4 Results and discussion 

The algorithm has been tested using CT angiography images of a real patient. 
Segmentation is performed on manually pre-selected volume consisting of 80 slices of 
dimension 191×167. Values of numerical constants for segmenting of inner aorta’s boundary 
are as follows. F0=1, ε=0.9. The Gaussian smoothing filter characteristic width is δ=0.9. The 
constant Niter which determines the number of inner loops in Figures 2a and 2b is set to 4 and 
width of narrow band is δ=6. The gradient of input data in Equation 8 has to be multiplied by 
coefficient that guarantees that border of interest stops evolving front. The magnitude of this 
coefficient is dependent on image data values and gaussian filter. For segmenting of outer 
boundaries we use following values: F0=0.1, ε=0.4. 

 
 

       
a) b) c)  

Figure 3. Slice 11 (a) and slice with superimposed segmented aorta’s inner (b) and outer (c) boundaries 
 

       
a) b) c) 

Figure 4. Slice 43 (a) and slice with superimposed segmented aorta’s inner (b) and outer (c) boundaries 



Figures 3 and 4 show the results of segmentation using the proposed algorithm. Subfigures 
a) show slices of input data while b) and c) show the segmented inner and outer aortic 
boundaries superimposed on the original slices. Figure 5 shows 3-D model of inner aorta 
surface obtained by the proposed algorithm. 

 
 

 
 

Figure 5. Resulting 3-D model of abdominal aorta 
 
5 Conclusion 

New less invasive techniques for treatment of abdominal aortic aneurysm require accurate 
measurements of the aneurysm. These measurements can be performed using segmented CT 
image data. In this paper, we have presented a novel method for abdominal aortic aneurysm 
segmentation from CT images. The method uses 3-D and 2-D deformable models that are 
implemented using the level-set algorithm. Experiments have been performed using CT 
images of patients having abdominal aortic aneurysm. Experiments have shown good results. 

 Future work will include different approaches to gradient computation and exploration of 
new approaches to computation of additional stopping criterion. 
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