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Abstract

One significant problem with sinusoidal modeling of the
speech signal is due to the use of standard Fourier Transform
for a quasi-periodic signal. The analysis accuracy is severely
limited by the lack of stationarity of the analyzed segment,
since the analysis is based on the conventional Fourier
Transform. An improved analysis technique based on the
Generalized Fourier Transform (GFT) with quadratic phase
will be discussed in this paper. Speech signal is modeled as a
sum of harmonic cosines but with nonlinear phases. A
technique for estimation of the time-varying model parameters
from the GFT spectrum is proposed. It will be shown that the
modeling gain can be improved significantly by inclusion of a
single additional parameter in the analysis procedure.

1. Introduction

Parametric modeling of the periodic signals based on
sinusoidal representation is a very popular approach in signal
compression [1][2][3]. The basic idea is to represent a
periodic signal as a sum of sinusoidal signals that are integer
multiples of the fundamental frequency of the signal. After
analysis, the signal is parametrically represented using a set of
the estimated parameters that include: the fundamental
frequency, the amplitudes, and the phases of the harmonically
related sines. The signal is assumed to consist of a set of fixed
frequency sines, hence the estimation of the sine parameters
can be performed in the spectral domain using the Fourier
analysis.

For pseudo-stationary signals, such as the speech signal,
modeling and spectral analysis must be performed on short
time basis. Fourier analysis of the signal segment results in
accurate parameter estimates only if the signal is really
consistent with the initial fixed frequency assumption. To
simplify the encoding of the estimated parameters, the width
of the analysis window and the update rate of the parameters
are usually fixed. The minimum window width is determined
by the longest expected pitch period and the typical values for
speech analysis are 20 to 30 ms. With such windows, the
assumption of the fixed fundamental frequency may not hold
any more, especially for high pitch female voices. For this
reason, narrower windows are many times preferred, even at
the expense of the increased update rate of the model
parameters. Synthesis is usually performed by interpolation of
the estimated parameters in the interval of L samples between
the centers of the two neighboring analysis windows. By
decreasing the update rate, the synthesis frame width L is
increased. Since the tapering windows are usually applied to
improve the spectral estimation of the model parameters,
some overlap is required, such that the ratio between L and

the analysis window width N is usually kept in the range of
0.5 to 0.75. Therefore, the minimum update rate is determined
by the analysis window width.

Ideally, for good signal compression, the update rate
should be kept as low as possible. In order to solve the
problems related to signal pseudostationarity, we propose a
model that reflects signal variability. The idea of
frequency/amplitude varying sinusoidal model is not new but
such models are usually employed only in the synthesis (e.g.
[4]1[2]]3]). Parameter estimation of time-varying models using
the spectral analysis based on the conventional Fourier
Transform is difficult, since the signal spectrum is distorted
by frequency modulation.

A new signal-adaptive transformation will be introduced
in this paper to enable accurate estimation of the time-varying
model parameters employing a new spectral domain. By using
the proposed approach, a wider analysis window can be used,
resulting in the same estimation and modeling accuracy as
with the conventional models but at the lower update rate of
the model parameters.

2. Time-varying harmonic model

Quasi-periodic signals with a time varying period can be
modeled as a sum of harmonically related sines, whose
frequencies are integer multiples of a variable fundamental
frequency Qq(f). This assumption is true as long as the
spectral envelope of the signal is changing slowly. This
concept of nonstationary modeling was introduced in [1]
under the name of the generalized harmonics. A discrete time
parametric model X(n)can be represented as a sum of

generalized harmonics x,, (n) , with complex amplitudes 4,,:

M
Hm)= X in(n). Ry (n)=real(d,,e’n ™) )
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The number of harmonics M is determined by the
fundamental frequency of the signal in the discrete time
domain, @ , i.e. M<a/@,. For sufficiently short analysis
windows, a linear frequency model can be assumed [5], such

that the instantaneous phase ¢,(n) of the m™ harmonic is
expressed as a quadratic function of the time index n:

¢m(n) = mao”[l + n%) (3)

while its initial phase is included in the complex amplitude

A, It is obvious that this phase function corresponds to the

following instantaneous harmonic frequency @,,(n):
wu(m)=m-ay(n),  wy(n) =@y (1+nd,) “



For a symmetric analysis windows, @, is equal to the

mean fundamental frequency of the model, that is also equal
to the instantaneous fundamental frequency in the center of
the analysis window (#=0), ie. @y =awy(0). The model

parameters are thus: the mean fundamental frequency @ , the

normalized slope of the fundamental frequency, &, and the
complex amplitudes of the harmonics 4,,, m=1,...M. A short
hand notation for the model will be S={@y,%,Am

m=1,.., M }. This model includes as well the conventional
fixed-frequency sinusoidal model for &%=0.

All these parameters will be estimated for each frame, on
the analysis interval of N samples centered around the time
origin n=0, i.e. ne[-(N-1)/2, (N-1)/2]. For simplicity of the
notation, the frame index will be omitted except for equation
where an explicit frame index is really needed.

2.1. Analysis based on the time-varying harmonic model

In the conventional sinusoidal modeling, the analysis and
parameter estimation are usually performed by assuming the
linear phase model (&=0). To improve the modeling
accuracy, the frequency variability of the model should be
included in the analysis as well. However, estimation of the
time-varying model parameters from the Short Time Fourier
Transform (STFT) of a quasi-periodic signal is very complex
even if the frequency variation model of the signal is known
exactly [1]. Almeida and Tribolet proposed a higher order
spectral model where each generalized spectral line was
described using a set of coefficients instead of single complex
amplitude in order to capture the variability of the harmonic
amplitude and frequency (phase). The estimation of the model
parameters was based on MSE minimization of the modeling
error in the Fourier domain.

For signals with variable frequency, the spectral model of
a generalized harmonic in the Fourier domain is widened due
to the frequency modulation effect. Widening is proportional
to the harmonic frequency, such that neighboring high
frequency harmonics overlap each other significantly, thus
affecting the estimation accuracy of the model parameters. An
iterative estimation algorithm was proposed in [5] and [6] by
Marques and Almeida and it was shown that for certain
convenient choices of the analysis windows, the model
parameters can be estimated from STFT. However this
algorithm results in proper estimates only for the low-order
harmonics, whose initial position can be resolved by the peak-
picking algorithm. Spectral line sharpening was proposed in
[5] to solve the problem by using the time warping, such that
the time-warped signal has almost constant frequency. The
STFT based parameter estimation on such warped signal
results in much better estimates, since the frequency
modulation effect can be reduced by time warping

3. Generalized Fourier Transform with
Quadratic Phase

The previous section shows that the Fourier Transform is not
the best tool for spectral analysis of quasi-periodic signals. If
the signal x(7) can be modeled well as a sum of sinuses with
linearly increasing frequency as in (4), then the optimal basis
function should be constructed the same way, i.e. like
complex exponentials with a constant frequency slope that is
proportional to the mean frequency of the basis function. This

corresponds to a generalization of the Fourier Transform,
since the basis functions are still the complex exponentials but
with a quadratic phase functions defined by the normalized
frequency slope ¢&. Therefore, the Generalized Fourier
Transform (GFT) is an adaptive transformation, parameterized
by &, whose discrete time representation, GFT(x(n)), is given
by the following equation:

=/, 5¢) = GFT(x(n)) =

=%ZW(”= 50)-x(n)-e” Jo'n(l+8yni2) (5)
n
The frequency variable is denoted by @’, @’ €[-x, 7], to
emphasize the fact that it is different from the DFT frequency
. Summation range over n in (5) is determined by the
analysis window width N, as ne[-(N-1)/2, (N-1)/2]. Only the
case of the odd N will be considered since it simplifies the
modeling of the signal phase at the center of the analysis
frame. The adaptive analysis window w(n, &) is defined as:
0 2
w(n,dg) = (1+50n)2aq cos[qz—ﬂ-(@n2 +n-234y N—) (6)
= N 2 8
The shape of the window is determined by the coefficients
ay to oy given in Table 1. for some commonly used windows.

Table 1. Typical window coefficients

Window 0 oA o 3
Rectangular 0 | 1.00 - -
Pseudo-Hamming 1| 054 | 046 -
Pseudo-Hann 1| 050 | 050 -
Pseudo-Blackman 2| 042 | 0.50 0.08

Obviously, for &=0, the equation (5) reduces to the
conventional DFT, while the adaptive window w(n,&) in
equation (6) becomes one of the classical raised-cosine
windows.

3.1. Parameter estimation in the GFT domain

Parameter estimation of the model S can be performed by
minimizing the MSE modeling error, &S), between the GFT
of the signal Z(¢/“,&%) and GFT of the model %(x) in the @’
domain:

g(S):i |

The GFT of the model with parameters S, denoted by

. N L 2
=(e’?,8)) - =(e’?,S)| do’ 7

é(ejm',S) is simply a sum of GFTs of each of the model
harmonics =,,(e/®,5,) which can be found from the

equation (5) by substituting x(n) with x,,(n) .

M
B8 = Y E(?.5) )
m=0
It is important to emphasis that the normalized slope of the
GFT and the normalized slope of the model are chosen to be
equal.

Under the assumption that the normalized slope &, and the
mean fundamental frequency @, are known, the complex
amplitude of the m™ model harmonic minimizing (7) can be
determined as a normalized correlation between the GFT of
the signal and GFT of the m'™ harmonic of the model with unit



amplitude, denoted with ém(ejw',éo,Am =1),ie.:

by
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where * denotes a complex conjugate. The integration is

performed only within the main lobe of the window, so the

limits a, and b, are symmetric around the harmonic
frequency may with displacement of +Aw’:

a, =may —Aw', b, =may+ Ao’ (10)

A" =min(wy /2, 27(Q +1)/N) (11)

The estimation of the remaining parameters of the model,

& and @, , depends on the actual application of the proposed

modeling technique. Usually these parameters can be coarsely

estimated using some simplified algorithms and then refined

based on the Analysis By Synthesis (ABS) approach by direct

minimization of (7). The initial slope can also be estimated

from the conventional spectrum shape of the low frequency
harmonics using algorithm given in [5].

3.2. Approximation of the GFT of the model
The parameter estimation can be simplified if the model

spectrum é(ej w‘,S) is approximated by a closed form
equation. First, the GFT of an adaptive window w(n,&) will
be calculated, by substituting x(n)=1 in the equation (5). The
resulting GFT spectrum, (¢/“, &), can be approximated as a
product of the conventional spectrum of the conventional
window w(n,0), Wo(e/*), multiplied by a linear phase term that
depends on the slope d:

W (el 5g)= e 00N> I8y (oo (12)
Conventional window spectrum Wy(¢/”) can be
determined from the coefficients o to ap according to the
well-known equation:
o
Wy(e™) = aq 51r.1(@A /2)
sin(@/2)

Lo 2qm . 2qm.
0 2, sm((a)+T)Z\ /2) . 0 2, sm((a)—T)N /2) (13)

g1 2 sin((a)+2qTﬂ)/2) g1 2 sin((a)—qu”)Q)

The accuracy of the approximation in (12) is very good
even for very high slopes, (e.g. for linear variation of 20% in
N/2 samples). Once the window spectrum is defined, the GTF
of the m™ harmonic with unit amplitude, can be approximated
using the familiar expression:

E, (1Y 5o Ay =) =W (/@ MP0) 50)/2+

+ (/@m0 50y/2

Again, the accuracy of this approximation is very good as
long as the harmonic frequency is low. However, for
harmonics that are close to the Nyquist frequency, the
modeling accuracy strongly depends on &. The problem is
that for high slope &, the basis functions that are close to 7
may exceed the Nyquist frequency as a result of the linear

(14)
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Figure 1: Accuracy of the spectral modeling (N=161).

slope. These functions wrap-around causing aliasing that
affects the orthogonality. A half-width of the main spectral
lobe of the window is equal to Bw=2x (Q+1)/N. If the
harmonic frequency is within [Bw, 7~Bw] and if the window
has sufficient side-lobe attenuation, then the second term of
(14) corresponding to the mirror image can be ignored to
simplify the modeling. The corresponding maximum
approximation error for the Hamming window is shown in the
Figure 1., as a function of the harmonic frequency and the
normalized slope. The solid curve corresponds to zero-slope
case, while the dashed curves are for & from 2% to 20 %
within N/2 samples. It can be observed that for moderate
slopes (<5%), only the last 10% of the spectrum are affected
by the aliasing problem, while the modeling accuracy of the
remaining part is identical to the zero-slope case.

4. Experimental results

To illustrate the potential of the improved analysis procedure
based on GFT, an experiment was performed on the real
speech data. Sixteen short utterances spoken by 8 male and 8
female speakers were used. To eliminate the problem of the
spectral envelope variations, the proposed modeling was
performed on the normalized residual signal of the LPC
analysis. Speech was sampled at 8kHz, high-pass filtered
above 80Hz, pre-emphasized using a fixed factor of 0.9375,
and analyzed using the 10" order LPC. The LPC analysis
window width was 25 ms with an update rate of 100 frames/s.
Fixed bandwidth expansion of 10 Hz was applied to all the
formants. The LPC residual signal was formed by inverse
filtering and was normalized by a piecewise-linear amplitude
envelope derived from the LPC gains. The voiced/unvoiced
segmentation and an initial pitch contour were derived
manually.

Harmonic analysis and modeling was performed for
voiced frames with a 32ms Hamming window. The proposed
GFT estimation was compared to the baseline fixed-frequency
approach with 6,=0.

For the baseline case, the estimation procedure becomes
identical to the MBE technique [3], but with the assumption
of completely voiced excitation (all bands classified as
voiced). The modeling error, &S), was minimized using the
technique known as pitch refinement [3], by selecting @,



from a candidate list and determining the optimal amplitudes
for each candidate according to (9). One hundred candidates
were used in the interval of £10% around the initial estimate
of the fundamental frequency for each of the voiced frames.
Due to the exhaustive nature of this ABS technique, the final
results represent the best possible stationary harmonic match
to the input signal. Estimation was performed in the DFT
domain with the spectral resolution of M=512 samples. A
modeling gain, G, was calculated for each frame as a quotient
of the energy of the windowed signal and the energy of the
modeling residual &(S). Scatter plot of the MBE modeling
gain G expressed in dB is shown in Figure 2. as a function of
the normalized slope & of each of the analysis frames. The
slope on the x-axis is converted to the continuous time
domain by multiplication with the sampling rate f;, such that it
can be interpreted as a percentual frequency increase on the
10 ms intervals.
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Figure 2: MBE modeling gain vs. normalized slope

It can be observed, that the modeling gain of the
convetional analysis drops rapidly as &, is increased. It is
roughly bounded by the dashed curve given by:

G<14-|f,67" [dB] (15)

The results of the first procedure were used as initial
estimates for the GFT based analysis. The initial slope (i)
for the analysis frame i was calculated from the estimated
pitch values of the frames i-1, i and i+1 according to:

So(i) = 1 50(i+2—§0(i—1)
2L (i)

To evaluate the maximum possible benefit of the
proposed GFT based analysis technique, the optimal model
parameters were estimated using the exhaustive search over a
two dimensional grid with 21x21 @y /6, candidate pairs. The

(16)

search grid for each frame was centered on the initial MBE
estimates. The slope was varied by £3%@10ms around the
initial &, while @, was varied by £2%. The final solution

was derived from 2-D interpolation of the sampled &)
surface determined in the search procedure.

The increase of the modeling gain, AG was calculated for
each frame and it is shown in Figure 3 as a function of the
signal slope &. As expected, for stationary frames with &,
close to 0, both techniques resulted in the same gain, but for
frames that contain pitch variations the modeling accuracy
can be significantly improved. Average modeling gain
improvement for all voiced frames in the database was:

1.64 dB for the interpolated solution; 1.54 dB for the best
solution on the grid; and 0.92dB for the initial @gy/d

estimate. On a large number of frames (cca. 8%) the
improvement was greater then 5dB.
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Figure 3: Increase of the modeling gain

5. Conclusions

A new speech analysis technique was described, that can
improve the accuracy of the sinusoidal voiced speech
modeling especially for speech with significant time
variability, e.g. conversational or emotional speech. The
proposed method addresses the problem of signal frequency
variability encountered in the analysis systems with fixed and
relatively wide analysis windows. By adapting the signal
transformation to the local frequency variations of the signal,
the overall modeling gain can be improved by 1.6 dB.
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