
Firecrow – A tool for Web Application
Analysis and Reuse

Josip Maras
University of Split

Croatia
josip.maras@fesb.hr

Maja Štula
University of Split

Croatia
maja.stula@fesb.hr

Jan Carlson
Mälaradalen University

Sweden
jan.carlson@mdh.se

ABSTRACT
This paper presents Firecrow – a tool for Web application
analysis and reuse. The tool’s primary function is to sup-
port reuse of client-side features, but it can also be used for
feature identification, web application slicing, and genera-
tion of usage scenarios, i.e. sequences of user actions that
cause the manifestation of application behaviors. The tool
is in prototype stage and is accessible through a plug-in to
the Firefox browser, but it can also be used as a library from
other browsers (e.g. Chrome, Safari, and PhantomJs).

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.13 [Software Engineering]: Reusable Software

Keywords
Web; Tool; Feature Identification; Reuse; Testing

1. INTRODUCTION
The domain of web applications is one of the most perva-

sive and fastest growing application domains today. In the
last twenty-five years, web applications have made signifi-
cant advances, from simple static interconnected documents
to full-blown applications that can almost match standard
desktop applications in terms of responsiveness and func-
tionality. However, at the same time, there exists a mis-
match between their pervasiveness and the state of the art
of tools and methods supporting their development. Com-
pared to some other, more traditional software engineering
domains, there is a lack of tools and methods for their de-
velopment, analysis, testing, and reuse.

Constructing new software systems by reusing already ex-
isting artifacts can reduce development time and decrease
defect density [12, 18, 6]. Reuse can even lead to increased
productivity [3], improved quality [4], and more satisfied cus-
tomers [19]. For these reasons, a number of approaches that
facilitate reuse have been developed (e.g. component-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648620.

development [12], software product-lines [14]). Most of these
approaches address pre-planned reuse, where software enti-
ties are built to be easily reusable. However, it would also be
very beneficial if we could reuse existing code that was not
developed with reuse in mind [5]. In such cases, identifying
the exact code that we want to reuse, as well as integrating
it into an already existing application can be a challenging
and time-consuming task.

Web applications are composed out of two equally im-
portant parts: the server-side which is usually responsible
for data-access and business logic, and the client-side which
acts as an event-driven user-interface (UI) to the server-side.
The two primary functions of client-side applications are:
i) to communicate with the user over their UI, and ii) to
communicate with the server by exchanging messages. For
this reason, we have defined [8] that a client-side feature
is a subset of the application’s behavior, triggered by se-
quences of user-generated events, that manifest at runtime
with: i) changes to certain parts of the application struc-
ture, and/or ii) communications with the server. Client-side
applications are implemented through three programming
languages: HTML for structure, CSS for the presentational
aspects, and JavaScript for the behavior.

In our previous work, we have developed methods for sup-
porting feature reuse in web application development; more
specifically, methods that enable reuse of features that were
not necessarily designed with reuse in mind. In order to
do this, first we have to identify the source code that im-
plements a particular feature [11], and then we have to in-
tegrate the code of the feature into the code of an already
existing application [9]. The feature identification process
and the feature integration process are both based on the
dynamic analysis of web application execution. Since client-
side web applications are user-interface (UI) applications,
these executions are usually caused by certain sequences of
user-generated events, i.e. usage scenarios. Because of this,
we have also defined a method for generating usage scenar-
ios [10] that cause the manifestations of particular applica-
tion features.

In this paper we present Firecrow tool, an integrated tool
that implements the functionalities of: feature identification,
automatic scenario generation, and feature reuse, in the con-
text of client-side web applications.

2. FIRECROW
The Firecrow tool is composed out of four subsystems

(Figure 1): i) DoppelBrowser, that processes and interprets
web application code, and creates a dependency graph and

847

execution summaries for a particular execution; ii) Scenario
Generator, that automatically generates sequences of user
actions (usage scenarios); iii) Feature Locator, that traverses
the dependency graph, analyzes the execution summary, and
identifies the code that implements a certain feature; and
iv) Feature Integrator, that locates and fixes potential fea-
ture integration errors, and merges the feature code and the
target application code. The DoppelBrowser is an under-
lying subsystem used by the other subsystems, while the
Scenario Generator, the Feature Locator, and the Feature
Integrator subsystems can be used in a stand-alone fashion
by the user. Firecrow is available at github1, and a video
demonstration of the tool is available at http://marjan.

fesb.hr/~jomaras/tools.html.

Figure 1: Firecrow subsystems and artifacts

2.1 DoppelBrowser
DoppelBrowser is a JavaScript library that interprets web

application code according to standard rules of client-side
web application interpretation. It includes a newly devel-
oped JavaScript interpreter that also keeps track of relation-
ships between values and code expressions from where these
values originate. This additional functionality enables it to
construct a client-side dependency graph [11] that captures
dependencies that exist in a particular execution (e.g. be-
tween an HTML element and a CSS rule that defines its vi-
sual properties, between a code expression that reads a value
and the expression that assigns it, or between an HTML ele-
ment and a JavaScript expression that modifies it). In addi-
tion, the library gathers execution summaries that capture
important run-time information. The library is browser ag-
nostic and we have used it from different browsers: Firefox,
Chrome, Safari, and PhantomJs.

2.2 Scenario Generator
The Scenario Generator is a JavaScript library that makes

use of the DoppelBrowser library and that automates the
process of generating usage scenarios, i.e. sequences of user
events that capture either the behavior of the whole appli-
cation or the behavior of a particular feature. The process

1https://github.com/jomaras/Firecrow

is similar to automatic web application testing, and is com-
posed of two phases [10]: i) Scenario Generation and ii) Sce-
nario Filtering. The Scenario Generation phase starts by
creating an initial, empty scenario that represents the act
of loading the page, without any user input. The approach
then proceeds by iteratively selecting a scenario, executing it
and dynamically analyzing the execution. New scenarios are
then generated by: i) extending event chains – all event reg-
istrations and data-dependencies during the execution are
tracked, and new scenarios are generated by extending the
event chain of the current scenario with newly registered
events, or with previously executed events whose execution
potentially depends on the variables and objects modified
by the current scenario; and by ii) modifying the input pa-
rameters, i.e. the internal state of the browser and the event
parameters; the process tracks how the input parameters
influence the control-flow of the application with concolic
execution [17], and generates new scenarios by modifying
those inputs. In the second phase of Scenario Filtering, ex-
ecution traces of all executed scenarios are analyzed and
the set of scenarios is filtered. If the process targets cer-
tain application features, all scenarios that do not cause the
manifestation of those features are removed. In addition,
we also remove scenarios whose removal does not lower the
overall code coverage.

Figure 2: Scenario Generator used as a Firefox plu-
gin. A – toolbar; B – web application code; C –
Generated Scenarios; D – Kept scenarios

Figure 2 shows the UI of the Scenario Generator subsys-
tem, when accessed through a Firefox plugin. Mark A indi-
cates the toolbar that is used to specify feature selectors and
to start the process; mark B shows the source code of the
application, where the bold text denotes parts of the source
code that was executed by at least one scenario; mark C
shows all scenarios that were generated in the process, and
mark D shows the scenarios that were kept after the scenario
filtering phase.

2.3 Feature Locator
Feature Locator is a JavaScript library developed with the

purpose of identifying code that implements a particular fea-
ture. It operates on the artifacts created by the Doppel-
Browser library: the dependency graph and the execution
summary. As the DoppelBrowser library, it can be used from
different browsers.

From the user’s perspective, a client-side application offers
a number of features that are relatively easy to distinguish.
However, the same can not be said for their implementation
details. A feature is implemented by a subset of the applica-
tion’s code and resources, and identifying the exact subset is

848

a challenging task. In our approach, we execute the applica-
tion with a certain scenario that causes the manifestation of
a feature described by a set of feature descriptors (i.e. CSS
selectors2 or XPath expressions3). During this execution the
DoppelBrowser builds a client-side dependency graph, iden-
tifies points in the execution where a feature behavior can
be observed (feature manifestation points), and gathers an
execution summary necessary for the accurate identification
and extraction of feature code. Once the application ex-
ecution is completed, the process traverses the dependency
graph for each part of the feature structure and for every fea-
ture manifestation point, and in that way identifies the fea-
ture code [11]. In essence, the process is performing dynamic
program slicing [1] with the feature manifestation points and
parts of the feature structure as a slicing criteria.

Figure 3: Feature Locator used as a Firefox plugin.
A – action toolbar; B – DOM viewer; C – Slicing
Criteria; D – Scenario description

Figure 3 shows the UI of the Feature Locator subsystem,
when accessed through a Firefox plugin. Mark A indicates
the toolbar that allows browsing though application source
code, recording scenarios, and initiating the feature identi-
fication process; mark B shows the DOM viewer which en-
ables easy specification of parts of web page structure where
the feature manifests; mark C shows a container with slicing
criteria (either points in the source code, or CSS selectors
that point to certain parts of the page); mark D shows a list
of all events for the recorded scenario.

2.4 Feature Integrator
The Feature Integrator is a JavaScript library that pro-

vides the functionality of detecting and fixing conflicts, and
integrating feature code identified with the Feature Locator
subsystem into an already existing application. It uses the
functionalities of the DoppelBrowser library to execute and
analyze the application, and the Feature Locator application
to identify the feature code that will be reused.

Once the feature code has been identified, in order to
achieve reuse, we have to integrate it with the code of the
target application. This is a complex task, because by do-
ing this we are changing the environment on which both the
feature code and the target application code rely for their
behavior. This can lead to a number of errors in behavior
and differences in presentation for both the extracted fea-
ture and the target application. These errors occur because
of conflicts between two code bases. So in order to integrate
the code of the feature into the code of the target applica-

2http://www.w3.org/TR/CSS2/selector.html
3http://www.w3.org/TR/xpath/

tion, we have to detect and fix all possible conflicts. In our
previous work, we have defined all types of conflicts, and
have specified methods for their resolving [9].

Figure 4: Feature Integrator used as a Firefox plu-
gin. A – toolbar; B – Setting the feature and the
target page; C – Specifying the parts of the page
structure that define the feature and the position
where the feature will be reused; D – Feature sce-
narios; E – application scenarios

Figure 4 shows the UI of the Feature Integrator subsys-
tem, used as a Firefox plugin. Marks A, B, and C indicate
the toolbar that allows the user to select the feature page and
specify parts of the page structure where the feature mani-
fests, and the page where the feature will be reused into, as
well as the exact position in the page structure where the
feature will be integrated; mark D shows the feature scenar-
ios, and mark E the scenarios of the target application.

3. RELATED WORK
A number of approaches that support some form of reuse

have been developed: Hunter Gatherer [16], HTMLview-
Pad [21], and Internet Scrapbook [20] in the web domain;
and G&P [5] in the Java domain.

HunterGatherer [16], Internet Scrapbook [20], and HTM-
LviewPad [21] are similar approaches related to clipping
fragments of Web pages. Users can create personalized pages
that gather data from different sources. Since these ap-
proaches were developed in the 1990’s and early 2000, when
web page development was not as dynamic on the client-side,
currently their usability is quite limited.

For Java applications, G&P [5] is a tool suite composed of
two tools, Gilligan and Procrustes, that support pragmatic
reuse tasks. Gilligan enables the investigation of dependen-
cies from a desired functionality and the construction of a
reuse plan, while Procrustes extracts the relevant code from
the originating system, makes modifications that reduce the
errors in compilation and includes it into the target sys-
tem. The main difference between our approaches is that
G&P statically analyzes Java applications; while some of
the ideas and end goals are similar, these tools can not be
used to support reuse on the client-side web applications.

Our tool is related to tools for automatic testing of web
applications, e.g. Kudzu [15] and Artemis [2]. Kudzu ex-
plores the application’s event space with GUI exploration,
i.e. by searching the space of all event sequences with a ran-
dom exploration strategy; and the application’s value space
by using dynamic symbolic execution. In the process, they
have also developed a string constraint solver that deals
with the particularities of string constraints for JavaScript.
Artemis [2] uses feedback directed testing of JavaScript ap-

849

plications and is based on dynamic analysis of web applica-
tion execution. Neither of these tools enable users to target
specific client-side features, nor do they filter the generated
scenarios in order to remove the unnecessary ones.

There are also tools that support the understanding of
dynamic web page behavior: FireCrystal [13] and Script In-
Sight [7]. FireCrystal supports the understanding of inter-
active behaviors by recording user interactions and logging
DOM changes, user generated events, and JavaScript code
executions. The user can then use a time-line to study the
code executed for the particular behavior. Script InSight re-
lates the elements in the page with the lower-level JavaScript
syntax, by gathering data during the script’s execution and
building a context-sensitive, control-flow model with trac-
ing information. Compared to our approach they make no
attempts to track data dependencies between different code
expressions, nor to identify individual features in the ana-
lyzed code.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a prototype open-source

tool for client-side web application analysis and reuse – Fire-
crow. The tool provides the functionality of automatic usage
scenario generation, feature identification, and feature inte-
gration. These three functionalities target the general goal
of facilitating reuse in the domain of client-side web applica-
tions. The tool is developed as a JavaScript library and can
be used from different browsers: Firefox, Chrome, Safari,
PhantomJs. However, due to the advantages of the Fire-
fox platform, the tool is integrated into the Firefox browser,
where it can be used as a plugin to Firefox Web Developer
Tools.

For future work, we plan to explore the usage of some of
its functionalities for different purposes than reuse, e.g. fea-
ture identification could be used to facilitate debugging, code
understanding, maintenance, and even for deriving various
software metrics. Web applications in general are composed
out of two parts: the server-side application which imple-
ments business logic and data access, and the client-side
which represents the UI of the application. In its current
state, Firecrow deals exclusively with the client-side, and as
part of future work, we plan to extend it in order to support
server-side applications also.

5. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic program

slicing. ACM SIGPLAN Notices, 25(6):246–256, 1990.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and
F. Tip. A framework for automated testing of
Javascript web applications. In Software Engineering,
ICSE 2011, 33rd International Conference on, pages
571–580. ACM, 2011.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. How reuse
influences productivity in object-oriented systems.
Communications of the ACM, 39(10):104–116, 1996.

[4] W. B. Frakes and G. Succi. An industrial study of
reuse, quality, and productivity. Journal of Systems
and Software, 57(2):99–106, 2001.

[5] R. Holmes and R. J. Walker. Semi-Automating
Pragmatic Reuse Tasks. Automated Software
Engineering, pages 481–482. IEEE Computer Society,
2008.

[6] C. W. Krueger. Software reuse. ACM Computing
Surveys (CSUR), 24(2):131–183, 1992.

[7] P. Li and E. Wohlstadter. Script insight: Using models
to explore Javascript code from the browser view. In
International Conference on Web Engineering, pages
260–274, 2009.

[8] J. Maras. Automating Reuse in Web Application
Development. PhD thesis, Mälardalen University,
April 2014.

[9] J. Maras, J. Carlson, and I. Crnković. Towards
automatic client-side feature reuse. In Web
Information Systems Engineering–WISE 2013, pages
479–488. Springer, 2013.

[10] J. Maras, M. Štula, and J. Carlson. Generating
feature usage scenarios in client-side web applications.
In Web Engineering, pages 186–200. Springer, 2013.

[11] J. Maras, M. Stula, J. Carlson, and I. Crnkovic.
Identifying code of individual features in client-side
web applications. 2013.

[12] M. D. McIlroy, J. Buxton, P. Naur, and B. Randell.
Mass-produced software components. In Proceedings of
the 1st International Conference on Software
Engineering, Garmisch Pattenkirchen, Germany,
pages 88–98. sn, 1968.

[13] S. Oney and B. Myers. FireCrystal: Understanding
interactive behaviors in dynamic web pages. In IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 105–108. IEEE Computer Society,
2009.

[14] D. L. Parnas. On the design and development of
program families. Software Engineering, IEEE
Transactions on, (1):1–9, 1976.

[15] P. Saxena, D. Akhawe, S. Hanna, F. Mao,
S. McCamant, and D. Song. A symbolic execution
framework for Javascript. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 513–528.
IEEE, 2010.

[16] M. Schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and
S. Zhao. Hunter Gatherer: Interaction Support for the
Creation and Management of Within-Web-Page
Collections. World Wide Web, pages 172–181, 2002.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C, volume 30. ACM, 2005.

[18] T. A. Standish. An essay on software reuse. Software
Engineering, IEEE Transactions on, (5):494–497,
1984.

[19] G. Succi, L. Benedicenti, and T. Vernazza. Analysis of
the effects of software reuse on customer satisfaction
in an RPG environment. Software Engineering, IEEE
Transactions on, 27(5):473–479, 2001.

[20] A. Sugiura and Y. Koseki. Internet scrapbook:
creating personalized world wide web pages. Human
Computer Interaction, pages 343–344. ACM, 1997.

[21] Y. Tanaka, K. Ito, and J. Fujima. Meme Media for
Clipping and Combining Web Resources. World Wide
Web, 9:117–142, 2006.

850

