
Primjena i prednosti NoSQL baza podataka

Using the advantages of NoSQL databases

Mario Novoselec, Denis Pavlović, Milan Pavlović

SAŽETAK

Relacijske su baze danas temelj poslovanja velikog broja modernih organizacija. Težnja organizacija za

skalabilnošću sustava i trend razvoja Web 2.0. aplikacija uvjetovali su razvoj NoSQL (Not only SQL) baza

podataka. Drugi tip motivacije ogleda se u agilnom pristupu razvoju s naglaskom na smanjenje

kompleksnosti i povećanje brzine razvoja. S obzirom na velike troškove u određenim domenama

implementacije relacijskih baza podataka, NoSQL baze podataka nastoje smanjiti troškove održavanja

skalabilnosti i pružiti jednostavna rješenja za distribuciju i particioniranje modela podataka. Ovaj će rad

predstaviti danas najkorištenije tipove NoSQL baza podataka pozicionirajući ih direktno u okvire primjene s

naglaskom na direktnu usporedbu u konkretnoj domeni s relacijskim bazama podataka.

ABSTRACT

Relational databases are one of the underlying parts of modern organizations. Need for system scalability

and development of Web 2.0. applications are one of the main drivers for NoSQL (Not only SQL) database

rise. Another type of motivation is represented by trend of agile development with emphasis on reducing

complexity requirements and increasing speed of application development. Considering higher costs in some

areas of relational database system implementation, NoSQL databases are trying to directly reduce costs of

maintaining scalability and offer solutions for effortless distribution and partitioning of data models. This

paper will introduce the most used NoSQL database systems by positioning them directly into the scope of

usage with emphasis on direct comparison with relational databases.

1. INTRODUCTION

The NoSQL trend has appeared as a response to

massive cost of storing and manipulating data in

classical relational database systems. Another

benefit of NoSQL movement was flexibility of data

modeling and distribution. ''Relational databases

provide a variety of features and strict data

consistency. But this rich feature set and the ACID

properties implemented by RDBMSs might be more

than necessary for particular applications and use

cases. As an example, Adobe’s ConnectNow holds

three copies of user session data; these replicas do

not neither have to undergo all consistency checks

of a relational database management systems nor

do they have to be persisted. Hence, it is fully

sufficient to hold them in memory.''[2] NoSQL

systems share several key characteristics. ''When

compared to relational databases, NoSQL systems

are more scalable and provide superior

performance.’’[1]

With this approach, NoSQL databases are trying to

resolve some of the most common relational

database problems.

Since most of Web 2.0. applications are agile,

NoSQL databases tend to be very flexible as

opposite to relational databases. For instance, in

most NoSQL systems you do not have fixed

database schema structure and there is no need for

forcing unique data model. These types of data

modeling are applicable to applications that

generate high amount of inconsistently structured

data (e.g. Web blogs, etc…).

Jonathan Ellis from Rackspace defines three

problems of relational databases: [3]

1. Data scalability

2. Single server performance

3. Strict schema design

This paper will describe main benefits and key

concepts of NoSQL databases with concrete

examples in areas of industry and science. Also, this

paper will try to present some of the NoSQL

database downsides and their affect to

organizational and similar environments.

2. DATA MODELS

One of the main differentiation between relational

and NoSQL databases is the data model. Modern

NoSQL databases can be divided into three main

categories.

Document Model

In this type of databases, data model is represented

by documents. Documents have JSON (JavaScript

Object Notation) like structure used for storing and

traversing through data.

In relational databases one record is scattered

through different columns, while in document data

model one record is represented with single

document (object). In that way, document data

model provides an object-oriented approach to data

representation.

Documents do not have strict schema structure and

can contain different type of fields. Every field can

contain different type of data such as date, binary,

array or string. ‘’This flexibility can be particularly

helpful for modelling unstructured and polymorphic

data. It also makes it easier to evolve an application

during development, such as adding new fields.

Additionally, document databases generally provide

the query robustness that developers have come to

expect from relational databases. In particular, data

can be queried based on any fields in a

document.''[1]

This paper will focus on one of the most popular

document database used today, MongoDB.

According to Mongo Inc. there is a wide variety of

document database usage, especially in science.

The European Organisation for Nuclear Research,

also known as CERN, is using MongoDB for solving

problem of storing high amount of differently

structured data. ''At this scale, the information

discovery within a heterogeneous, distributed

environment becomes an important ingredient of

successful data analysis. The data and associated

meta-data are produced in variety of forms and

digital formats. However, users want to be able to

query different services and combine information

from these varied sources. However, this vast and

complex collection of data means they don’t

necessarily know where to find the right information

or have the domain knowledge to extract this

data.''[4]

The choice of NoSQL document model database

was logical in this example mainly because there is

no rigid data structure nor data persistency.

Because data is not structured equally and there is a

need for fast searching through big set of data,

document model database can support that kind of

requirements in fast and flexible way.

Main alternative to MongoDB as a leading document

oriented database, is a CouchDB which is a

database oriented towards Web applications.

''CouchDB’s design borrows heavily from web

architecture and the concepts of resources,

methods, and representations. It augments this with

powerful ways to query, map, combine, and filter

data.’’[5]

Key-Value Model

The most basic type of NoSQL databases are key-

value stores. Every data instance has its own unique

key which is used to access associated value.

These kind of data structure is very similar to

dictionaries found in some higher programming

languages.

This paper will briefly introduce one of the most

advanced key-value databases on the market called

Redis. ‘’Since most key value stores hold their

dataset in memory, they are oftentimes used for

caching of more time intensive SQL queries.''[2]

This paper will briefly show some example of key-

value model and some basic set of operations. In

Redis, we can specify our database insert by using

SET command:

SET user_role 'administrator'

Data insertion uses valid key-value syntax and

allows ease of access to any value in a data set:

GET user_role

One of the most important use case of Redis

database implementation is Pinterest, multinational

social network. One of the main characteristics of

social networks is ability to follow other users and

their interest. Pinterest tried to implement graph

structure as seen in Facebook or Twitter with

millions of nodes representing users.

‘’For example, if Andrea follows Bob, she’ll follow all

of his boards, and if he creates a new board, she’ll

automatically follow that board. If Andrea follows

Bob’s Recipes board, she’ll see all of his pins from

that board in her home feed. Andrea will also be

listed as a follower of that board. We term the board

followers as implicit followers (while the previous

type of user-to-user follower is an explicit

follower).’’[7]

That kind of in-depth analysis of users behavior had

major requirements towards data caching for real-

time user analysis. Relational databases quickly

reached their limits because of graph caching

specifics. ‘’Caching the graph data is hard because

the cache is useful only if the entire subgraph of a

user (vertex) is in cache, however this can quickly

result in an attempt to cache the entire graph!’’ [7]

Pinterest engineering team found solution in Redis

SortedSet data structure. SortedSet is data structure

very similar to standard set represented by binary-

safe string but with addition of operation to return

items in order. Pinterest used Redis for storing

graphs which were sharded by ID of a single user.

Major disadvantage was single threaded nature of

Redis database which was overridden by running

multiple instances of Redis on each CPU core.

By using Redis, Pinterest engineering team

managed to implement advanced graph structure for

user analysis:

Figure 1: Pinterest graph structure for user analysis [7]

By moving away from relational databases, Pinterest

gained some advantages in scalabilty and efficiency

of existing infrastructure. ‘’In the end, when we

migrated away from the existing sharded MySQL

cluster, we saved about 30% IOps.’’

Column oriented databases

Column oriented NoSQL databases use

multidimensional sorted map as main structure for

storing data. In this kind of structure there is random

amount of key value pairs that can be stored in each

record. ''Each record can vary in the number of

columns that are stored, and columns can be nested

inside other columns called super columns. Columns

can be grouped together for access in column

families, or columns can be spread across multiple

column families.''[1]

Because of their column oriented structure, column

databases are very similar to relational databases.

Main advantage of NoSQL column databases are

ability to store data without fixed schema and

reducing amount of null values to minimum. If there

is a data structure with many different types of

attributes, relational database would have null value

for every instance of data that is not known. In

column oriented database data would simply be

stored in one row if there is a need for it.

This paper will introduce Casandra as one of the

most used NoSQL column oriented databases. In

Casandra data structure can be easily represented

by group of columns called column family:

CF= user_role

rowKey1 role permission dateCreated
 admin All 2012-1-11
rowKey2 role permission dateCreated
 user Basic 2013-11-13

Every row instance has unique identifying key.

There is also column based structure for storing data

which can be independent of fixed schema.

One of the most interesting case studies involving

Casandra was Bazaarvoice. Bazaarvoice is a

service for collecting user generated content and

analyzing information gathered through different

media. Bazaarvoice’s case was oriented towards

cloud friendly systems and ease of maintaining

clustered database systems. ‘’Next, we needed a

database that allowed for easy capacity expansion

(especially write capacity) by simply adding new

machines online. Having multiple data center

support was also a very big deal, especially where

we can write to multiple data centers at the same

time.’’[9]

Main disadvantage of MySQL as a classical

relational database was impossibility to scale

according to write capacity growth. Bazaarvoice

uses Casandra to store all of customers metadata

into single data catalog. That means that every

customer becomes single key with different column

structure depending on gathered information.

These kind of data structures can be optimized for

quick data access because of easy to maintain data

structure.

3. SCALING NOSQL DATABASES

Most of NoSQL databases are used across multiple

systems to distribute large amount of data. NoSQL

databases like MongoDB are using sharding to

control process of partitioning data on multiple

servers. A shard can be easily described as one or

more instance of servers in a massive cluster used

for distributing any subset of data. The goal is to

distribute data evenly across multiple shards by

redistributing them. ‘’Relational databases

(traditionally) reside on one server, which can be

scaled by adding more processors, more memory

and external storage. Relational database residing

on multiple servers usually uses replications to keep

database synchronization.''[11] NoSQL databases

are oriented towards cloud and multiple server

scalability with focus on ease of maintaining

partioned data. Data is transfered on multiple shards

in range of key-value pairs. Each shard is only

responsible for a specific range of data. Using this

strategy, querying certain data range can be done in

a fast and efficient way.

In order to maintan high performance of data access

over multiple shards, NoSQL databases can

compromise data integrity in a way that data can

easily be lost or overwritten.

SCALING ON CLOSED BENCHMARK

In work [12], some performance and scaling

comparison between RDBMS MySQL and NoSQL

system MongoDB was described. Authors of related

work built the benchmarking harness using C

programming language and latest stable drivers for

each database system. As they describe on p. 12.,

their benchmarking harness measured the time

required to complete a set number of transactions as

each transaction on its own is negligible. For

calculating the queries per second formulas on fig.

2. were used.

Figure 2. Metrics used in benchmark [12]

As they furthermore describe on p.12-13, database

schema used in benchmark was designed and

modeled to support a music application which would

use different algorithms to suggest songs to users

according to their tastes. The normalized schema

was made for MySQL database implementation and

shown on fig. 2 . Due to fact that MongoDB does not

support complicated operations such as JOINs,

some compromises were made. Final schema for

MongoDB was showed on fig. 3. Details of queries

(simple and complex), other statements and

configuration of both databases can be found in [12],

p. 15.-19. Every SQL statement had it’s equivalent

for MongoDB.

Figure 3. MySQL schema used in benchmark [12]

Figure 4. MongoDB schema used in benchmark [12]

Authors in [12] made several conclusions about

implemented benchmark. MongoDB could handle

more complex queries faster because it worked with

simpler schema, but with the cost of data

duplication. Despite observed performance gain in

complex queries, when queries included nested

SELECTs MySQL performed best. In last type of

complex query which contained two JOINs and

subquery, MongoDB had advantage over MySQL

due to Mongo’s use of subdocuments. “This

advantage comes at the cost of data duplication

which causes an increase in the database size. If

such queries are typical in an application then it is

important to consider NoSQL databases as

alternatives while taking in account the cost in

storage and memory size resulting from the larger

database size.” [12], p. 35-36.

Write operations were also considered in above

benchmark. MySQL performed better in data

deletion and authors of [12] claim this is logical

because MySQL performes better in simple search

queries. Searching and deletion are connected

because deletion requires finding the record to be

deleted first. MongoDB performed better in

insertions. Both databases had a linear trend in this

test.

Mentioned authors also emphasized the use of

different configurations for nodes and threads. “This

part of the benchmark required running the

benchmarking harness on 1, 2 and 3 nodes with

multiple numbers of threads in order to test how the

databases performed with multiple connections.”

[12], p 36. Although databases behaved differently

depending on the query complexity, at higher

numbers of connections the performance (queries

per second) appeared to converge.

Finally, they concluded that two databases behave

differently according to the type of queries, so the

choice of which database to use lies on the type of

application the system will be using. When using

MongoDB as database system, it is important to

have on mind that this database system results with

increased database size. “Despite the indication that

the performance penalty on both databases is small

depending on the database size it is nonetheless an

important factor when considering the type of

queries which will be performed by applications”

[12], p 36.

4. NOSQL POSSIBILITIES ON MOBILE

PLATFORMS

Today, mobile applications have some specific and

common requirements about data persistence and

processing. Currently, mobile applications are one of

the most dynamic areas of Information Technology.

In similar way, demand for tablets and smartphones

has created a huge market for mobile applications

developed today. “Also many Business Information

Systems/ Business Informatics undergraduate and

master programs introduced in their curriculum

courses related to mobile devices and

applications”[13].

Most of mobile applications today require a

persistent data layer, which is also one of the

features of web applications. Currently, mobile

applications share quite a few features of client -

server web application architecture, but there is one

striking difference between mobile and web

application databases concerns. While on one side

web applications have a larger scale and lots of

resources on disposal, on the other hand mobile

applications have lesser scale and lesser resources

on their disposal (processing power) .

There had been huge amount of interest about

NoSQL data stores in last couple of years. Primarily

NoSQL data stores are used inside big web

applications which have needs for storing huge

amounts of information about user interactions and

similar data. On the other side as mobile platforms

and hardware are being developed, storage and

performance of devices powered with same

platforms and hardware is rapidly catching up

desktop platforms. With that demand for solutions

like NoSQL databases on mobile devices is

increasing and currently used in some mobile

applications. Community of developers is trying to

embrace NoSQL on mobile platforms in a way of

creating special libraries for mobile NoSQL

databases. One of those is Android Couchbase

library for using and storing data into popular

document NoSQL database CouchDB. In that way,

mobile application developers can embed CouchDB

database into their Android application.

5. QUERYING NOSQL DATABASES

In classical SQL databases, schemas are composed

of one or more tables where each of the tables is

composed internally with fixed structure for table

rows. Opposing to tables, MongoDB database is

composed of collections in which each of the

collections is composed of one or more documents.

Also each of those documents that together create

collections can have completely different data

structure. On SQL side there are few options that

can’t be found inside MongoDB and vice versa. For

example, users could have roles and roles could be

referencing users while on MongoDB side there

wouldn’t be any referencing between collections.

Both of databases support querying but in a bit

different ways. SQL databases support them in

terms of SQL queries. On the other side NoSQL

database or MongoDB in this case supports

querying in terms of built in functions. Each of these

functions can be used to manipulate data in different

ways depending of the context of data. One

important notice about MongoDB in this context is

that it “permits finding documents with no value

declared for an attribute”[13]. Example for this case

is an region of one country, if it’s not declared it

won’t be found, unless we explicitly specify the

$exists attribute. SQL databases do not have

equivalent for this query as such query couldn’t be

possible because of sharing structure between all

the rows in table. Problem on the other side is that

as queries become more and more complicated

MongoDB database shall extensively use variables

inside of one query. Disadvantage of MongoDB

query approach is that there are no subqueries, but

that problem can be solved via in operator. Special

operators for nesting queries differentiate NoSQL

approach and guarantee most of SQL query

possibilities.

db.roles.find({user:{$in:[‘admin’,’moderator’]});

6. CONCLUSION

NoSQL trend is emerging as a valid relational

database alternative for specific use. It is very

important to analyse important aspects of different

NoSQL data models and include them in system

requirements. As mentioned, NoSQL databases

behave different according to size of data set and

amount of operations to execute. Flexible schema

approach and functional query structure manage to

increase performance and give effortless ways for

data partitioning.

Relational SQL databases are focusing on rigid

structure with defined data types for storing data. In

that way, they are not suitable for use in

environments that are generating massive amounts

of differently structured data. With growth of Web

2.0. application usage there are a lot of

requirements for NoSQL databases.

REFERENCES

[1] MongoDB Inc., “Top 5 Considerations When Evaluating NoSQL Databases”, June 2013.
[2] C. Strauch, “NoSQL Databases”, Stuttgart Media University, 2004, pp. 1–45.
[3] J. McKEnna, “NoSQL Ecosystem” [Online]. Available:

http://www.rackspace.com/blog/2009/11/09/nosql-ecosystem/. [Accessed: 16-May-2014].
[4] MongoDB Inc, “CERN CMS” [Online]. Available: http://www.mongodb.com/customers/cern-cms.

[Accessed: 16-May-2014].
[5] The Apache Software Foundation, “Why CouchDB?” [Online]. Available:

http://docs.couchdb.org/en/latest/intro/why.html. [Accessed: 14-May-2014].
[6] K.Seguin, “The Little Redis Book”, January 2012.
[7] A. Khune, “Building a follower model from scratch” [Online]. Available:

http://engineering.pinterest.com/post/55272557617/building-a-follower-model-from-scratch
[Accessed: 14-May-2014].

 [8] “NoSQL - Not only SQL” [Online]. Available: http://scriptandscroll.com/2011/08/21/nosql-not-only-sql-
introduction-to-apache-cassandra/ [Accessed: 16-May-2014].

[9] Planet Casandra Inc., “Bazaarvoice Chooses Casandra over MySQL, HBasa and MongoDB to Power
Content Analytics Platform” [Online]. Available: http://planetcassandra.org/blog/post/bazzarvoice-
chooses-cassandra-over-mysql-hbase-and-mongodb-to-power-content-analytics-platform/

 [Accessed: 16-May-2014].
[10] K.Chodorov, “Scaling MongoDB”, O'Reilly Media New York, 2011.
[11] J. Pokorny, “NoSQL databases: a step to database scalability in web environment”, Charles University,

Praha, 2013.
[12] C. Hadjigeorgiou, “RDBMS vs NoSQL: Performance and Scaling Comparison”, The University of

Edinburgh, August 2013.
 [13]M. Fotache, D. Cogean, “NoSQL and SQL Databases for Mobile Applications. Case Study: MongoDB

versus PostgreSQL”, University of Iasi, Romania, February 2013.

INFORMATION ON AUTHORS:

Mario Novoselec

mnovosel2@foi.hr

Faculty of Organization and Informatics

Mario Novoselec is a third year full time undergraduate student at Faculty of Organization and Informatics,

University of Zagreb. He is one of the initial members of FOI MT Lab. His main interests are focused towards

developing Web applications with emphasis on user experience and modern design. He has also been

involved in various non-commercial projects.

Denis Pavlović

dpavlovi@foi.hr

Faculty of Organization and Informatics

Denis Pavlović is a third year full time undergraduate student at Faculty of Organization and Informatics,

University of Zagreb. He is also one of the initial members of FOI MT Lab. He is interested in modern web

application design and development. He is involved in various non-commecial projects.

Milan Pavlović

mpavlovi2@foi.hr

Faculty of Organization and Informatics

Milan Pavlović is a third year full time undergraduate student at Faculty of Organization and Informatics,

University of Zagreb. He is also one of initial member of FOI MT Lab. His main interests are Information

Systems engineering and development. He is also interested in Java desktop, mobile and web application

development and technology.

