
Korištenje Android Annotations i Active Android razvojnih okvira

Using Android Annotations and Active Android development frameworks

Alen Huskanović, David Ante Macan, Pavlović Milan

SAŽETAK

Android je danas najpopularniji operacijski sustav za mobilne platforme. No, unatoč svojoj popularnosti,

nativan razvoj aplikacija za Android zna biti poprilično dugotrajan muktorpan posao, te je ponekad čak i za

jako male i jednostavne aplikacije potrebno ubaciti puno koda. Upravo iz tog razloga, danas se javlja sve

više i više novih i inovativnih open-source rješenja koja smanjuju taj problem iz pojedinih aspekata. Android

Annotations i Active Android upravo su takva rješenja koja se danas koriste sve više u sve ozbiljnijim

projektima. Active Android ORM je alat koji uvelike olakšava manipulaciju bazom podataka, dok je Android

Annotations razvojni okvir koji nam pruža skraćeno pisanje mnogih popularnih dijelova koda koji se s

vremenom i veličinom aplikacije sve više gomilaju. Oba ova razvojna okvira koriste anotacije u programskom

jeziku Java, te uvelike skraćuju pisanje koda, što omogućuje developerima da se više fokusiraju na

inženjering i dizajn aplikacije, nego na samo pisanje koda.

ABSTRACT

Nowadays, Android is the most popular mobile operating system. But, although its popularity, native Android

application development can be quite time and energy consuming work. Sometimes, it is necessary to write

a lot of code even for small and simple applications. That is exactly why there are more and more various

new open-source solutions that take care of those problems from different aspects. Android Annotations and

Active Android are such solutions that are being more and more used in lot of serious projects. Active

Android is an ORM tool that eases database manipulation a lot. On the other hand, Android Annotations is

an framework that offers us shortened writing of the popular parts of code, and increases the complete code

readability. Both of these frameworks use annotations in Java programing language and reduce the code

writing a lot, which enables the developers to be more focused on engineering and design of the application,

instead on focusing on code writing.

1. INTRODUCTION

The successful development of mobile applications

is largely dependent on the quality of written code.

Unfortunately, today the code is increasing rapidly

and it should be reduced. Specifically, regarding the

development for Android, very often for some

general things there must be code written that is

already mostly predefined and in the high ratio it

does not change from application to application. By

writing such code, developers spend precious time

reading it and it becomes cumbersome and

unreadable.

From the above mentioned reasons, some

developers are trying to make their own

development frameworks that will replace the entire

predefined code with only a few lines of their own,

and with that save a lot of time.

The aim of this paper is to introduce developers who

develop applications for Android that there are

developmental frameworks that can help them with

the speed and quality of development of mobile

applications.

This paper is divided into three chapters; in the first

one, Active Android development framework will be

explained, which is ORM for Android. The next

chapter is intended for Android Annotations

development framework, which with the help of Java

Annotations helps in reducing a lot of code. The final

chapter is intended for the comparison of native

approach with the usage of a development

frameworks where the advantages will be shown, as

well as the disadvantages of using those very same

frameworks.

2. ACTIVE ANDROID

2.1. Introduction to Active Android

As an Android operating system framework, Active

Android is an ORM (object relational mapper) library.

Active Android allows you to manipulate data in

database over SQLite database management

system. It provides quick and easy usage without

using any of the SQL queries directly. Developers

don't even need to know SQL to use this

framework[1]. Active Android provides usage with

the records in the database via objects, so that the

developers don't have problems with conversion of

tabular entries into objects and vice versa. Model

class represents a table and class instance

represents a record in table. Database management

with Active Android is much simpler and faster

because developers can create a class and with

annotation tell the system that that class represents

table in the database. Active Android does all the

work around the database setup so that the

developers don't have to write CRUD methods

themselves.

Nowadays the Active Android is one of the most

useful frameworks for programming applications on

Android operating system as shown by the

increasing number of users. The source code of the

framework can be found at Github where everyone

can take it and use it[2].

2.2. Using Active Android

In this section, we will create a very simple mobile

application with database for chocolate sale. We will

create this database in both standard and Active

Android way. Let’s create a use-case here and say

that we wish to delete the first receipt with a

salesman “Mario” who sold the chocolate “Dorina”.

For that, we need to do the following steps:

 Create tables and model classes

 Insert required data

 Read the inserted data

 Print the data to the screen

2.2.1. Native approach:

Using standard approach without Active Android, we

usually need to create DatabaseHelper class that

contains methods and attributes for setting up and

updating the database. Using this class, we need to

specify both database name and database version,

alongside with adding SQL code for creating and

dropping every single table that our database will

contain.

To improve efficiency and reduce typo errors, we

usually put the CREATE TABLE string into the class

that represents the table that is to be created. We

created the SalesmanSQL.java and

ReceiptSQL.java in the same manner. After the

representative model classes were created, we need

to create DatabaseHelper class that helps us

connect to the database and creates tables using

previously mentioned CREATE TABLE strings.

And final class that we need to create is called

DatabaseAdapter. This class provides us with all the

CRUD methods for our tables. Unfortunately, coding

of this class usually takes quite a lot of time. The

problem with database adapter is that it is usually

very large, because we need to add qute a lot of

code for each table individually. After setting up the

database, we can start using it.

2.2.2. Active Android approach:

To use Active Android, we just need to setup few

things and we are ready to code. First of all, we

need to override default Application class for our app

and add a reference to it in the manifest file. Besides

that, we also need to write database name and

version inside the manifest file. We do this like in the

following example:

Figure 1 - ER model of example database

AndroidManifest.xml

...
<application

 android:allowBackup="true"

 android:name="CaseApp"

 android:icon="@drawable/ic_launcher"

 android:label="@string/app_name"

 android:theme="@style/AppTheme">

 <meta-data

 android:name="AA_DB_NAME"

 android:value="CaseApp.db" />

 <meta-data

 android:name="AA_DB_VERSION"

 android:value="1" />

...

Now we are ready to start coding our database.

Instead of creating DatabaseHelper and

DatabaseAdapter classes, we just need to add few

modifications to the existing model classes:

Receipt.java

@Table(name = "receipts")
public class Receipt extends Model {

 @Column(name = "chocolatte")
 private Chocolatte chocolatte;
 @Column(name = "salesman")
 private Salesman salesman;
 @Column(name = "time")
 private String time;

 public Receipt() {
 }
...

As shown above, using Java’s annotation

processing tool, Active Android allows us to define

our table inside it’s appropriate model class. Notice

also that this time we didn’t add the id attribute in our

class. That is because Active Android itself handles

it and Model class allows our classes to inherit that

attribute. As for the foreign keys, Active Android

improves that part as well. If we put into a column an

attribute that is a child of Model class, Active

Android automatically creates foreign key for that

column. Another noteworthy fact is that Active

Android provides us a way to just query the

database and it handles the whole “linking and

communication” process with the database, which

allows the developer to focus more on designing and

developing, instead of mindless coding.

Receipt.java

...
//Some query methods

public static Receipt readReceiptById(long id) {
 return new
Select().from(Receipt.class).where("Id =? ",
id).executeSingle();
}

public static List<Receipt> readAllReceipts() {
 return new
Select().from(Receipt.class).execute();
}

public static Receipt
readReceiptForSalesmanAndChocolatte(Salesm
an salesman, Chocolatte chocolatte) {
 return new
Select().from(Receipt.class).where("salesman
=? AND chocolatte =? ",
 salesman.getId(),
chocolatte.getId()).orderBy("Id").executeSingle(
);
}
...

Finally, we can show how to use the database:

 Creating chocolatte, salesman and receipt:

Chocolatte dorina = new Chocolatte("Dorina",
4.00);
dorina.save();
Salesman mario = new Salesman("Mario", 22);
mario.save();
new Receipt(dorina, mario,
currentDate()).save();

 Reading that receipt from the database

Receipt receipt =
Receipt.readReceiptForSalesmanAndChocolatte
(mario, dorina);

 Deleting that receipt from the database

receipt.delete();

3. ANDROID ANOTATIONS

3.1. Introduction to Android Annotations

Lately, among Android developers is discussed the

concept of Diet Driven Development, and anyone

who is familiar with this concept is also familiar with

Android Annotations framework which will be

presented in this chapter[3].

Android Annotations is a development framework for

the Android operating system which reduces the

unnecessary code; using Java annotations,

developers can show their intent and let Android

Annotations generate the plumbing code at compile

time[4].

This development framework helps developers in

writing neat and readable code, and thus allows

faster production and faster debugging while

developing Android applications. Android Anotations

is free to use, and full source code is available on

GitHub[5].

3.2. Using Android Anotations

In this section, we will try to induce some of the

practical usages for Android Annotations framework.

Let’s start with the first class that is created when

the project is generated. That is MainActivity class

that (usually) extends Activity. Every Android

developer knows that, by default, every Activity has

its onCreate method which gets called every time

the activity gets created. But the problem is that this

method looks almost always the same, but it takes

couple of lines of code just to write it and specify the

layout for the activity. Using Android Annotations, we

can clean that code as shown in next example:

@EActivity(R.layout.activity_main)
public class MainActivity extends Activity {
 @AfterViews

 void main() {
 // Do something

 }
}

As shown in the example above, it is very simple to

specify the designated layout for the activity, as well

as the method that is to be invoked after activity gets

created. If our activity is to be used with Android

Annotations, we must provide an annotation

@EActivity (as shown in the example above). Using

this analogy, it is clear that @AfterViews annotations

specifies the method that is called after the activity is

created. This is a very simple, but effective

demonstration of Android Annotations power.

Another thing in Android that can easily increase the

code amount a lot (especially if it is done multiple

times) is the process of binding xml elements

together with the Java variables. Using native

approach, we need to take following steps:

 Create designated View variable

 Specify that the variable is to be used for View

element with certain id

 Cast the View if necessary

Using Android Annotations, this is done simply by

Adding @ViewById annotation as shown in the next

example:

@ViewById

TextView txtLabel;

The code above automatically binds View element

with id “txtLabel” from given layout to the txtLabel

variable. Fortunately, Android Annotaions can detect

variable name and recognize it as an id, but we

aren’t forced to use that naming convention. If we

decide to call id different than the variable name, we

can simply add an annotation attribute with the

elements id like this:

@ViewById (R.id.txtMyId)

There are plenty more situations like this in which

Android Annotations provide a simple and elegant

solution. For example, there is a @Click annotation

which is used to handle click events for designated

views, @ItemClicked annotation that handles list

item click events, etc.

Another great example of necessary native complex

code is the AsyncTask. By default, AsyncTask is

used for safe and proper synchronization of the

background thread and UI thread. The only problem

is that it is relatively large and complex to write.

Using AndroidAnnotations, this is solved in again,

very simple and elegant way. Simple way of

replacing AsyncTask with Android Annotations is

shown below:

@Background

private void doInBackground() {
 // Do some background work

 updateUIThread();
}

@UiThread

private void updateUIThread() {
 // Do some UI work

}

So, the big and complex AsyncTask is replaced with

two simple methods. When called,

“doInBackground” method will do its work in

background thread and update UI Thread when

done.

There are many more annotations in this framework

that aim to ease native Android development a lot.

Some of the things that are improved a lot with this

framework are:

 Rest API implementation (@Rest, @Get,

@Post, …)

 Activity saved instance state (@InstanceState)

 SeekBar events (@SeekBarProgressChange,

@SeekBarTouchStart, …)

 Text change events (@TextChange)

 Options menu (@OptionsMenu, @OptionItem,

…)

 And many more….

4. DISCUSSION

4.1. Comparing Active Android and Android

Anotations with native approach

As stated before, both Android Annotations and

Active Android frameworks are used for reducing the

amount of code needed for implementing some

functionalities in our Android applications.

Android Annotations framework makes our code

more readable and easier to use and understand by

replacing (not removing) a lot of code that is either

generated or necessary for the right implementation.

A lot of Android developers that use native approach

agree that they often find themselves losing quite a

lot of time just for setting up and preparing some

functionalities.

As for the Active Android framework, not only does it

reduce the code needed for implementation, but it

also allows us to design our database using Object-

Oriented approach, without having to think a lot

about modeling the database itself.

4.2. Advantages and disadvantages

Using a framework in application development along

with benefits also brings a number of disadvantages

and limitations. Usually, the benefits are far above

the limit, and in most cases development

frameworks are worth using.

Using Active Android and Android Annotations

developers get a great set of advantages. Both

developmental frameworks are easy to use and

maintain, and perhaps one of the most important

benefits is the reduction of errors. It is widely known

that errors are mainly due to human factors, and by

using development frameworks the vast majority of

the code is automatically generated and developers

are not obliged to write these parts, which reduces

the probability of one of them to make a mistake.

Both development frameworks have a lot of

influence on the number of lines of code, and it goes

in the direction of Diet Driven Development.

According to some informations, using just Android

Annotations in average reduces the average number

of lines of code for 42%, and using Active Android

gives even more reduction[3]. Code written using a

development framework is in most cases more

readable, and easier to determine later why is some

section of code used.

The disadvantages the developers face using

development frameworks are largely related to the

inability of customizing individual parts, while Active

Android and Android Annotations offer these

possibilities. These problems are eliminated by an

open source development framework that anyone

can customize to their liking. With all attempts to

eliminate drawbacks, there are still some that the

community is trying to solve, for example in Active

Android function for adding records to a table is void,

and the only way to check whether a record

successfully entered or not requires selecting the

base immediately after entry. Development

frameworks are quite large, and it is not easy to

manage them while trying to customize.

Active Android as an ORM does support only the

code-first approach, so a base model (classes) can

not be made from tables[6].

Each development framework, including these two,

requires configuration and customization of a

project to their mode before it can be used at all, and

to inexperienced programmers it can add

complications with the development which leads to

droping out the development framework at the first

step, the configuration.

5. CONCLUSSION

This paper briefly summarizes the advantages and

disadvantages of using frameworks such as Android

Annotations and Active Android for native android

development. Android is a tremenduous platform,

and it's development is great. But, as allways, there

is room for improvement. While developing

applications in a standard way, developers often

have to add or generate relatively large ammounts

of code to acomplish some really trivial

functionalities. But with usage of additional

frameworks, as shown in this paper, that code could

be easilly reduced and it's readibility improved,

which is often a very important factor.

To conclude this paper, we will add a quote from

Robert C. Martin to show how important clean and

readible code is:

„The ratio of time spent reading [code] versus writing

is well over 10 to 1 [therefore] making it easy to read

makes it easier to write.“ [7]

REFERENCES

[1] “ActiveAndroid Guide,” CodePath. [Online]. Available:
http://guides.thecodepath.com/android/ActiveAndroid-Guide#overview. [Accessed: 21-May-2014].

[2] M. Pardo, “Active Android source code,” 21-May-2014. [Online]. Available:
https://github.com/pardom/ActiveAndroid.

[3] P.-Y. Ricau, “Diet Driven Development,” Devoxx. [Online]. Available:
http://www.devoxx.com/display/DV12/Android+DDD+(Diet+Driven+Development)! [Accessed: 16-
May-2014].

[4] “AndroidAnnotations offical site,” AndroidAnotaions. [Online]. Available:
http://androidannotations.org/. [Accessed: 21-May-2014].

[5] “AndroidAnnotations source code,” Github. [Online]. Available:
https://github.com/excilys/androidannotations. [Accessed: 21-May-2014].

[6] Ž. Plesac, “Infinum Talks - Active Android.” [Online]. Available:
http://www.slideshare.net/Infinum/infinum-android-talks-02-activeandroid. [Accessed: 21-May-2014].

[7] R. C. Martin, Ed., Clean code: a handbook of agile software craftsmanship. Upper Saddle River, NJ:
Prentice Hall, 2009.

INFORMATION ON AUTHORS:

Alen Huskanović

e-mail: ahuskano@foi.hr

Faculty of Organization and Informatics

Alen Huskanović is a regular student of the third year of undergraduate study Information Systems at the

Faculty of Organization and Informatics in Varazdin. He has participated in various national and international

competitions, among which stands out IEEEmadC international competition for the design of mobile

applications where he won first prize. Actively working on the system PEAS with whom he came to Croatian

finals of Microsoft Imagine Cup. He is primarily engaged in the development of applications for the Android

operating system.

David Ante Macan

e-mail: amacan@foi.hr

Faculty of Organization and Informatics

David Ante Macan is a third year undergraduate student of Information Systems at Faculty of Organization

and Informatics. He has participated in various competitions, including the Croatian Microsoft Imagine Cup

finals, won the best design award at IEEEmadC contest, won the third place at Infinum student Hackathon

2014, etc. His main area of interest is mobile development, especially Android. He is actively working on

several projects, including the Personal Exam Assistant (PEAS) project at Faculty of Organization and

Informatics. He is also a member of IEEE Institute and is one of the student coordinators and founders of the

Laboratory for mobile technologies (MT Lab) at Faculty of Organization and Informatics.

Milan Pavlović

e-mail: mpavlovi2@foi.hr

Faculty of Organization and Informatics

Milan Pavlović is a third year full time undergraduate student at Faculty of Organization and Informatics,

University of Zagreb. He is also one of initial member of FOI MT Lab. His main interests are Information

Systems engineering and development. He is also interested in Java desktop, mobile and web application

development and technology.

