ON CERTAIN REPRESENTATION OF TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS ON MULTIPARAMETRIC QUON ALGEBRAS

Milena Sošić

msosic@math.uniri.hr

August 26, 2014

< □ > < @ > < 注 > < 注 > ... 注

Here we consider two algebras:

• a free unital associative complex algebra $\mathcal{B} = \mathcal{B}^q = \mathbb{C} \langle e_{i_1}, \dots, e_{i_N} \rangle$, $N \ge 0$ equiped with a multiparametric **q**-differential structure

$$\partial_i(e_j x) = \delta_{ij} x + q_{ij} e_j \partial_i(x), \quad \text{for each } x \in \mathcal{B};$$

with $\partial_i(1) = 0$, $\partial_i(e_j) = \delta_{ij}$, (δ_{ij} is a standard Kronecker delta) (\mathcal{B} is sometimes called a multiparametric quon algebra).

a twisted group algebra

 $\mathcal{A}(S_n) = R_n \rtimes \mathbb{C}[S_n]$

of the symmetric group S_n with coefficients in a polynomial algebra R_n in commuting variables $X_{a\,b},\,1\leq a,b\leq n$

with the motivation to represent the algebra $\mathcal{A}(S_n)$ on the (generic) weight subspaces of the algebra \mathcal{B} (with the aim to simplify certain computation in \mathcal{B}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

One of the fundamental problems in $\mathcal{B} = \mathcal{B}^q$:

• describe the space of all constants (the elements which are annihilated by all multiparametric partial derivatives $\partial_i = \partial_i^q$).

To solve this problem:

• one needs some special matrices and their factorizations in terms of simpler matrices.

A simpler approach:

- \bullet first, to study certain canonical elements in the twisted group algebra $\mathcal{A}(S_n);$
- then to use certain natural representation of $\mathcal{A}(S_n)$ on the weight subspaces \mathcal{B}_Q .

In this representation some factorizations of certain canonical elements from $\mathcal{A}(S_n)$ will immediately give the corresponding matrix factorizations and also determinant factorizations.

イロト 不得 トイヨト イヨト 二日

Let $\mathcal{N} = \{i_1, \ldots, i_N\} \subseteq \{0, 1, \ldots\}.$

Fix a parametar map $q: \mathcal{N} \times \mathcal{N} \to \mathbb{C}$, $(i, j) \mapsto q_{ij}$ $i, j \in \mathcal{N}$.

We consider a free unital associative complex algebra

$$\mathcal{B} = \mathbb{C} \langle e_{i_1}, \dots, e_{i_N} \rangle \qquad (\deg e_i = 1 \quad \text{for all } i \in \mathcal{N}).$$

together with N linear operators $\partial_i = \partial_i^q : \mathcal{B} \to \mathcal{B}, i \in \mathcal{N}$ (of degree -1) defined recursively:

 $\partial_i(1) = 0, \quad \partial_i(e_j) = \delta_{ij},$

 $\partial_i(e_j x) = \delta_{ij} x + q_{ij} e_j \partial_i(x), \quad \text{for each } x \in \mathcal{B} \quad (\text{twisted Leibnitz rule}).$

Since every sequence l₁,..., l_n ∈ N, l₁ ≤ ··· ≤ l_n can be thought of as a multiset Q = {l₁ ≤ ··· ≤ l_n} over N of size n = Card Q, each corresponding weight subspace B_Q = B_{l1...ln} is given by

$$\mathcal{B}_Q = \operatorname{span}_{\mathbb{C}} \left\{ e_{j_1 \dots j_n} := e_{j_1} \cdots e_{j_n} \mid j_1 \dots j_n \in \widehat{Q} \right\}.$$

 $\widehat{Q} =$ the set of all distinct permutations of the multiset Q, $\dim \mathcal{B}_Q = \operatorname{Card} \widehat{Q}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• A finer decomposition of \mathcal{B} into multigraded components (= weight subspaces):

$$\mathcal{B} = \bigoplus_{n \ge 0, \, l_1 \le \dots \le l_n, \, l_j \in \mathcal{N}} \mathcal{B}_{l_1 \dots l_n}.$$

- Let $\mathfrak{B}_Q = \left\{ e_{\underline{j}} \mid \underline{j} \in \widehat{Q} \right\}$ denote the monomial basis of \mathcal{B}_Q , where $\underline{j} := j_1 \dots j_n$.
- The action of $\partial_i = \partial_i^q$ on a monomial $e_j \in \mathfrak{B}_Q$ is given explicitly by the formula:

$$\partial_i(\underline{e_j}) = \sum_{1 \le k \le n, \ j_k = i} q_{ij_1} \cdots q_{ij_{k-1}} e_{j_1 \dots \widehat{j_k} \dots j_n}, \tag{1}$$

where $\hat{j_k}$ denotes the omission of the corresponding index j_k .

The number of terms in this sum is equal to the number of appearances (multiplicity) of the generator e_i in the monomial e_j .

• In the generic case, when Q is a set, the formula (1) is reduced to:

$$\partial_i(e_{\underline{j}}) = q_{ij_1} \cdots q_{ij_{k-1}} e_{j_1 \dots \widehat{j_k} \dots j_n}.$$
(2)

イロト 不得 トイヨト イヨト 二日

• With the motivation of treating better the matrices of $\partial_i|_{\mathcal{B}_Q}$, we introduce a multidegree operator $\partial: \mathcal{B} \to \mathcal{B}$ with $\partial = \sum_{i \in \mathcal{N}} e_i \partial_i$,

where $e_i \colon \mathcal{B} \to \mathcal{B}$ are considered as (multiplication by e_i) operators on \mathcal{B} .

- The operator ∂ preserves the direct sum decomposition of the algebra \mathcal{B} .
- We denote by $\partial^Q : \mathcal{B}_Q \to \mathcal{B}_Q$ the restriction of $\partial : \mathcal{B} \to \mathcal{B}$ to the subspace \mathcal{B}_Q . Then for each $j_1 \dots j_n \in \widehat{Q}$ we get

$$\partial^Q \left(e_{j_1 \dots j_n} \right) = \sum_{i \in \mathcal{N}} e_i \partial_i \left(e_{j_1 \dots j_n} \right) = \sum_{i \in \mathcal{N}} e_i \sum_{1 \le k \le n, \ j_k = i} q_{ij_1} \cdots q_{ij_{k-1}} e_{j_1 \dots \widehat{j_k} \dots j_n}$$
$$= \sum_{1 \le k \le n} \sum_{i \in \mathcal{N}, \ i = j_k} q_{ij_1} \cdots q_{ij_{k-1}} e_{ij_1 \dots \widehat{j_k} \dots j_n} = \sum_{1 \le k \le n} q_{j_k j_1} \cdots q_{j_k j_{k-1}} e_{j_k j_1 \dots \widehat{j_k} \dots j_n}.$$

If B_Q denotes the matrix of ∂^Q w.r.t basis \mathfrak{B}_Q (totally ordered by the Johnson-Trotter ordering on permutations) of \mathcal{B}_Q , then we can write

$$B_Q e_{j_1\dots j_n} = \sum_{1 \le k \le n} q_{j_k j_1} \cdots q_{j_k j_{k-1}} e_{j_k j_1\dots \widehat{j_k}\dots j_n}.$$
(3)

Now we consider a twisted group algebra $\mathcal{A}(S_n) = R_n \rtimes \mathbb{C}[S_n]$ of the symmetric group S_n with coefficients in the polynomial ring $R_n = \mathbb{C}[X_{a\,b}, 1 \leq a, b \leq n]$ (here \rtimes denotes the semidirect product.)

The elements of $\mathcal{A}(S_n)$ are the linear combinations $\sum_{a_i \in S_n} p_i g_i$ with $p_i \in R_n$.

• The multiplication in $\mathcal{A}(S_n)$ is given by

$$(p_1g_1) \cdot (p_2g_2) := (p_1 \cdot (g_1.p_2)) g_1g_2$$

where $g.p = g.p(..., X_{a\,b}, ...) = p(..., X_{g(a) g(b)}, ...) g.$

The algebra $\mathcal{A}(S_n)$ is associative but not commutative.

• In the algebra $\mathcal{A}(S_n)$ we have introduced decorated more specific elements:

$$g^* = \left(\prod_{(a,b)\in I(g^{-1})} X_{a\,b}\right)g = \left(\prod_{a < b, g^{-1}(a) > g^{-1}(b)} X_{a\,b}\right)g$$

for every $g \in S_n$, where $I(g) = \{(a, b) \mid 1 \le a < b \le n, g(a) > g(b)\}$ denotes the set of inversions of the permutation g.

• Of particular interest are the elements $t_{b,a}^* \in \mathcal{A}(S_n)$, $1 \le a \le b \le n$, where for a < b, $t_{b,a} \in S_n$ denotes the inverse of the cyclic permutation $t_{a,b} \in S_n$ i.e

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Every permutation $g \in S_n$ can be decomposed into cycles (from the left) as follows $(k_j \ge j)$:

$$g = t_{k_n,n} \cdot t_{k_{n-1},n-1} \cdots t_{k_j,j} \cdots t_{k_2,2} \cdot t_{k_1,1} \left(= \prod_{1 \le j \le n}^{\leftarrow} t_{k_j,j} \right)$$

• Now we introduce canonical element $\, lpha_n^* \,$ in the twisted group algebra by formula

$$\alpha_n^* := \sum_{g \in S_n} g^*, \quad n \ge 1.$$

Then we get the following factorizations:

(a) if we define simpler elements
$$\beta_k^* \in \mathcal{A}(S_n)$$
 $(1 \le k \le n)$ as follows
$$\beta_{n-k+1}^* = t_{n,k}^* + t_{n-1,k}^* + \dots + t_{k+1,k}^* + t_{k,k}^*$$
then:
$$\alpha_n^* = \beta_1^* \cdot \beta_2^* \cdots \beta_n^*;$$
(a) if we define yet simpler elements in $\mathcal{A}(S_n)$ for all $1 \le k \le n-1$

$$\gamma_{n-k+1}^* = (id - t_{n,k}^*) \cdot (id - t_{n-1,k}^*) \cdots (id - t_{k+1,k}^*),$$
 $\delta_{n-k+1}^* = (id - (t_k^*)^2 t_{n,k+1}^*) \cdot (id - (t_k^*)^2 t_{n-1,k+1}^*) \cdots (id - (t_k^*)^2 t_{k+1,k+1}^*),$
then we get further factorization:
$$\beta_{n-k+1}^* = \delta_{n-k+1}^* \cdot (\gamma_{n-k+1}^*)^{-1}.$$
We have used:
$$t_{k+1,k+1}^* = id \text{ and } (t_k^*)^2 = X_{\{k,k+1\}} id \text{ because}$$

$$(t_k^*)^2 = (X_{k,k+1} t_k) \cdot (X_{k,k+1} t_k) = X_{k,k+1} \cdot X_{k+1,k} (t_k)^2 = X_{\{k,k+1\}} id$$

- Recall that for any vector space V over a field F, End(V) denotes the algebra of all F-endomorphisms of V;
- for any associative algebra A a representation of A on V is any algebra homomorphism $\varphi: A \to \operatorname{End}(V)$.

Our next task is to define a representation $\varrho: \mathcal{A}(S_n) \to \operatorname{End}(\mathcal{B}_Q)$, where

$$\mathcal{B}_Q = span_{\mathbb{C}} \left\{ e_{j_1 \dots j_n} \mid j_1 \dots j_n \in \widehat{Q} \right\}.$$

Since $\mathcal{A}(S_n) = R_n \rtimes \mathbb{C}[S_n]$ we will consider first a representation ϱ_1 of R_n and second a representation ϱ_2 of $\mathbb{C}[S_n]$:

$$\varrho_1 \colon R_n \to \operatorname{End}(\mathcal{B}_Q),$$
$$\varrho_2 \colon \mathbb{C}[S_n] \to \operatorname{End}(\mathcal{B}_Q)$$

as follows.

We first denote by: Q_{ab} , $1 \le a, b \le n$ a diagonal operator on \mathcal{B}_Q defined by

 $Q_{a\,b}\,e_{j_1\ldots j_n}:=q_{j_aj_b}\,e_{j_1\ldots j_n}.$

Note that these operators commute $(Q_{a b} \cdot Q_{c d} = Q_{c d} \cdot Q_{a b}).$

Definition

We define a representation $\varrho_1 \colon R_n \to \text{End}(\mathcal{B}_Q)$ on the generators $X_{a\,b}$ of R_n by the formula

 $\varrho_1(X_{a\,b}) := Q_{a\,b} \qquad 1 \le a, b \le n.$

Note that:

$$(X_{a\,b}) e_{j_1...j_n} = Q_{a\,b} e_{j_1...j_n} = q_{j_a j_b} e_{j_1...j_n}.$$

Definition

We define a linear operator $\varrho_2 \colon \mathbb{C}[S_n] \to \mathsf{End}(\mathcal{B}_Q)$ by

 ρ

 $\varrho_2(g) e_{j_1 \dots j_n} := e_{j_g - 1}(1) \dots j_g - 1}(n) \qquad \text{for every } g \in S_n.$

In fact ρ_2 is a (right) regular representation on \mathcal{B}_Q , Q = generic.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $\varrho: \mathcal{A}(S_n) \to \operatorname{End}(\mathcal{B}_Q)$ be a map defined on decomposable elements by

 $\varrho(pg) := \varrho_1(p) \cdot \varrho_2(g)$

for every $p \in R_n$ and $g \in S_n$ and extended by additivity. In the trivial cases we have

 $\begin{array}{ll} (i) \ \ \varrho(1 \cdot g) \, e_{j_1 \dots j_n} = \varrho_1(1) \cdot \varrho_2(g) \, e_{j_1 \dots j_n} = 1 \cdot e_{j_g - 1}_{(1)} \dots j_{g^{-1}(n)} = e_{j_g - 1}_{(1)} \dots j_{g^{-1}(n)}, \\ (ii) \ \ \varrho(X_{a \, b} \, e) \, e_{j_1 \dots j_n} = \varrho_1(X_{a \, b}) \cdot \varrho_2(e) \, e_{j_1 \dots j_n} = Q_{a \, b} \, e_{j_1 \dots j_n} = q_{j_a j_b} \, e_{j_1 \dots j_n}. \end{array}$

Note that the basic instance of the multiplication $(p_1g_1) \cdot (p_2g_2) = (p_1 \cdot (g_1.p_2)) g_1g_2$ in $\mathcal{A}(S_n)$ reads as follows:

$$(X_{a\,b}\,g_1)\cdot(X_{c\,d}\,g_2)=(X_{a\,b}\cdot X_{g_1(c)\,g_1(d)})\,g_1g_2$$

which are the consequences of the following two types of basic relations:

$$X_{ab} \cdot X_{cd} = X_{cd} \cdot X_{ab},$$
$$g.X_{ab} = X_{g(a)g(b)}g.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem

A map $\varrho \colon \mathcal{A}(S_n) \to \mathsf{End}(\mathcal{B}_Q)$ is a representation.

Proof.

It is enough to check that ρ preserves the previously listed basic relations, where we will apply the formula $\rho(pg) = \rho_1(p) \cdot \rho_2(g)$ and properties of representations ρ_1 and ρ_2 .

- $(i) \text{ Note that: } \varrho(X_{a\,b} \cdot X_{c\,d}) = Q_{a\,b} \cdot Q_{c\,d} = Q_{c\,d} \cdot Q_{a\,b} = \varrho(X_{c\,d} \cdot X_{a\,b}).$
- (*ii*) Now we will show that $\varrho(g.X_{a\,b}) e_{j_1...j_n} = \varrho(X_{g(a)\,g(b)}\,g) e_{j_1...j_n}$.

$$\begin{split} L &\equiv \varrho(g.X_{a\,b}) \, e_{j_1...j_n} \,= \varrho_2(g) \cdot \varrho_1(X_{a\,b}) \, e_{j_1...j_n} \,= \varrho_2(g) \, q_{j_a j_b} \, e_{j_1...j_n} \\ &= q_{j_a j_b} \, \varrho_2(g) \, e_{j_1...j_n} \\ &= q_{j_a j_b} \, e_{j_g - 1}{}_{(1)}{}_{(1)}{}_{g - 1}{}_{(n)}; \end{split}$$

$$\begin{split} D &\equiv \varrho(X_{g(a) \ g(b)} \ g) \ e_{j_1 \dots j_n} = \varrho_1(X_{g(a) \ g(b)}) \cdot \varrho_2(g) \ e_{j_1 \dots j_n} \\ &= Q_{g(a) \ g(b)} \ e_{j_{g^{-1}(1)} \dots j_{g^{-1}(n)}} \\ &= q_{j_{g^{-1}(g(a))} j_{g^{-1}(g(b))}} \ e_{j_{g^{-1}(1)} \dots j_{g^{-1}(n)}} \\ &= q_{j_a j_b} \ e_{j_{g^{-1}(1)} \dots j_{g^{-1}(n)}}. \end{split}$$

M. Sošić (University of Rijeka)

Lemma

The representation ϱ applied to element $g^* = \left(\prod_{(a,b)\in I(g^{-1})} X_{a\,b}\right)g$ is given by

$$\varrho(g^*) \, e_{j_1 \dots j_n} = \prod_{(a,b) \in I(g)} q_{j_b j_a} \, e_{j_{g^{-1}(1)} \dots j_{g^{-1}(n)}}.$$

Proof.

By using $\varrho(pg) = \varrho_1(p) \cdot \varrho_2(g)$ on g^* we obtain

$$\begin{split} \varrho\left(g^*\right) e_{j_1\dots j_n} &= \prod_{(a',b')\in I(g^{-1})} \varrho_1\left(X_{a'\,b'}\right) \cdot \varrho_2(g) \, e_{j_1\dots j_n} \\ &= \prod_{(a',b')\in I(g^{-1})} q_{j_{g^{-1}(a')}j_{g^{-1}(b')}} \, e_{j_{g^{-1}(1)}\dots j_{g^{-1}(n)}} \\ &= \prod_{(b,a)\in I(g)} q_{j_a j_b} \, e_{j_{g^{-1}(1)}\dots j_{g^{-1}(n)}} = \prod_{(a,b)\in I(g)} q_{j_b j_a} \, e_{j_{g^{-1}(1)}\dots j_{g^{-1}(n)}} \end{split}$$

with $a = g^{-1}(a'), b = g^{-1}(b')$. Now it is easy to check that $(a',b') \in I(g^{-1}) \Rightarrow a' < b', g^{-1}(a') > g^{-1}(b')$ i.e g(a) < g(b), a > b, so: $(b,a) \in I(g)$. \Box A direct consequence of the Lemma:

• the element
$$\varrho(t^*_{b,a}) \in \mathsf{End}(\mathcal{B}_Q)$$
 is given by

$$\varrho(t_{b,a}^*) e_{j_1 \dots j_a j_{a+1} \dots j_b \dots j_n} = \prod_{a \le i \le b-1} q_{j_b j_i} e_{j_1 \dots j_b j_a \dots j_{b-1} \dots j_n}$$

• and in special case: $\varrho(t_a^*) e_{j_1\dots j_a j_{a+1}\dots j_n} = q_{j_{a+1}j_a} e_{j_1\dots j_{a+1}j_a\dots j_n}$

(where: $t^*_a = t^*_{a+1,a}$). If we denote by $\sigma_{j_a j_{a+1}} := q_{j_a j_{a+1}} q_{j_{a+1} j_a}$, then

$$\varrho((t_a^*)^2) e_{j_1 \dots j_n} = \sigma_{j_a j_{a+1}} e_{j_1 \dots j_n}.$$

Theorem

Let $\varrho \colon \mathcal{A}(S_n) \to \operatorname{End}(\mathcal{B}_Q)$ be the twisted regular representation on the generic weight space \mathcal{B}_Q . Then the $(\underline{k}, \underline{j})$ -entry of the matrix \mathbf{A}_Q of the $\varrho(\alpha_n^*)$ is given by

$$\left(\mathbf{A}_Q\right)_{\underline{k},\underline{j}} = \prod_{(a,b)\in I(g)} q_{j_b j_a}$$

where g is such that $\underline{k} = g.\underline{j}$ $(\underline{j} = j_1 \dots j_n \in \widehat{Q}, \underline{k} = k_1 \dots k_n \in \widehat{Q}).$

Recall, that $\alpha_n^* = \sum_{q \in S_n} g^*, n \ge 1.$

(日) (周) (三) (三)

Factorization of the matrix A_Q

Let us denote

$$\mathbf{T}_{b,a} := \varrho(t_{b,a}^*), \qquad \mathbf{T}_a := \varrho(t_a^*).$$

If b = a then $\mathbf{T}_{b,a} = \mathbf{I}$.

• The $(\underline{k}, \underline{j})$ -entry of the matrices $\mathbf{T}_{b,a}, 1 \leq a < b \leq n$ and $\mathbf{T}_a, 1 \leq a \leq n-1$:

$$\left(\mathbf{T}_{b,a}\right)_{\underline{k},\underline{j}} = \begin{cases} \prod_{a \le i \le b-1} q_{j_b j_i} & \text{if } \underline{k} = t_{b,a} \cdot \underline{j} \\ 0 & \text{otherwise} \end{cases}$$

with $t_{b,a} \cdot \underline{j} = j_1 \dots j_b j_a \dots j_{b-1} \dots j_n$,

$$\left(\mathbf{T}_{a}\right)_{\underline{k},\underline{j}} = \begin{cases} q_{j_{a+1}j_{a}} & \text{if } \underline{k} = t_{a}.\underline{j} \\ 0 & \text{otherwise} \end{cases}$$

with $t_a \underline{j} = j_1 \dots j_{a+1} j_a \dots j_n$.

Now it is easy to see that

$$\left(\mathbf{T}_{a}\right)^{2}e_{\underline{j}}=\sigma_{j_{a}j_{a+1}}e_{\underline{j}}$$

is the diagonal matrix with $\sigma_{j_a j_{a+1}}$ as \underline{j} -th diagonal entry.

- 31

(日) (周) (三) (三)

• Now we consider the elements $\beta_k^* \in \mathcal{A}(S_n), 1 \le k \le n$.

(recall:
$$\beta_{n-k+1}^* = t_{n,k}^* + t_{n-1,k}^* + \dots + t_{k+1,k}^* + \underbrace{t_{k,k}^*}_{=id}$$
).

• Then the corresponding elements $\varrho(\beta^*_{n-k+1})\in {\rm End}({\mathcal B}_Q)$ are given by

$$\varrho(\beta_{n-k+1}^*) e_{\underline{j}} = \sum_{k+1 \le m \le n} \varrho(t_{m,k}^*) e_{\underline{j}} + e_{\underline{j}}$$

$$\tag{4}$$

Let

$$\mathbf{B}_{Q,l} := \varrho(\beta_l^*), \quad 1 \le l \le n,$$

with $\mathbf{B}_{Q,1} = \varrho(\beta_1^*) = \varrho(id) = \mathbf{I}$. Then in the matrix notation (4) can be written as

$$\mathbf{B}_{Q,n-k+1} = \sum_{k+1 \le m \le n} \mathbf{T}_{m,k} + \mathbf{I}$$

• The $(\underline{k}, \underline{j})$ -entry of the matrix $\mathbf{B}_{Q, n-k+1}$ of $\varrho(\beta^*_{n-k+1})$, $1 \le k \le n-1$ is given by

$$\left(\mathbf{B}_{Q,n-k+1}\right)_{\underline{k},\underline{j}} = \begin{cases} \prod_{k \leq i < m} q_{j_m j_i} & \text{if } \underline{k} = t_{m,k} \cdot \underline{j} \quad k \leq m \leq n \\ 0 & \text{otherwise} \end{cases}$$

for each $1 \le k \le n-1$ (recall: $t_{m,k} \cdot \underline{j} = j_1 \dots j_m j_k \dots j_{m-1} \dots j_n$).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• In the special case for k = 1 we have

$$\mathbf{B}_{Q,n} = \sum_{1 \le m \le n} \mathbf{T}_{m,1} = \mathbf{T}_{n,1} + \mathbf{T}_{n-1,1} + \dots + \mathbf{T}_{3,1} + \mathbf{T}_{2,1} + \mathbf{I}$$

 $(\text{where } \mathbf{T}_{1,1} = \mathbf{I}) \text{ so the } (\underline{k},\underline{j})\text{-entry of } \mathbf{B}_{Q,n} \text{ is given by}$

$$(\mathbf{B}_{Q,n})_{\underline{k},\underline{j}} = \begin{cases} q_{j_m j_1} \cdots q_{j_m j_{m-1}} & \text{if } \underline{k} = t_{m,1}.\underline{j} & 1 \le m \le n \\ 0 & \text{otherwise} \end{cases}$$

(recall: $t_{m,1}$. $\underline{j} = j_m j_1 \dots j_{m-1} j_{m+1} \dots j_n$).

$$\textbf{0} \quad \text{We get:} \quad \mathbf{B}_{Q,n} \, e_{\underline{j}} = \sum_{1 \leq m \leq n} q_{j_m j_1} \cdots q_{j_m j_{m-1}} \, e_{j_m j_1 \cdots j_{m-1} j_{m+1} \cdots j_n}.$$

2 Recall that the matrix of $\partial^Q \colon \mathcal{B}_Q \to \mathcal{B}_Q$ is given by

$$\mathsf{B}_Q \, e_{j_1 \dots j_n} = \sum_{1 \le k \le n} q_{j_k j_1} \cdots q_{j_k j_{k-1}} \, e_{j_k j_1 \dots \widehat{j_k} \dots j_n}.$$

Then: $\mathbf{B}_{Q,n} = \mathbf{B}_Q$. It turns out that:

- the factorization of the matrix B_{Q,n} is equivalent to factorization of B_Q (i.e the matrix of ∂^Q w.r.t monomial basis of B_Q ⊂ B);
- the problem of computing det B_Q can be reduced to the problem of computing det B_{Q,n}.

With this motivation we are going to find a formula for the factorization of $\mathbf{B}_{Q,n}$ and also its determinant.

M. Sošić (University of Rijeka)

- Now we will represent the elements γ_l^* , δ_l^* , $2 \le l \le n$ belonging to $\mathcal{A}(S_n)$.
- The corresponding elements $\varrho(\gamma_{n-k+1}^*), \varrho(\delta_{n-k+1}^*) \in \operatorname{End}(\mathcal{B}_Q), 1 \le k \le n-1$ are given by

$$\begin{aligned} \varrho(\gamma_{n-k+1}^{*}) e_{\underline{j}} &= \left(id - \varrho(t_{n,k}^{*})\right) \cdot \left(id - \varrho(t_{n-1,k}^{*})\right) \cdots \left(id - \varrho(t_{k+1,k}^{*})\right) e_{\underline{j}} \\ \varrho(\delta_{n-k+1}^{*}) e_{\underline{j}} &= \left(id - \varrho((t_{k}^{*})^{2}) \varrho(t_{n,k+1}^{*})\right) \cdot \left(id - \varrho((t_{k}^{*})^{2}) \varrho(t_{n-1,k+1}^{*})\right) \cdots \\ \left(id - \varrho((t_{k}^{*})^{2}) \varrho(t_{k+2,k+1}^{*})\right) \cdot \left(id - \varrho((t_{k}^{*})^{2})\right) e_{\underline{j}} \end{aligned}$$

which in matrix notation leads to the following matrix factorizations

$$\begin{aligned} \mathbf{C}_{Q,n-k+1} &= (\mathbf{I} - \mathbf{T}_{n,k}) \cdot (\mathbf{I} - \mathbf{T}_{n-1,k}) \cdots (\mathbf{I} - \mathbf{T}_{k+1,k}) \\ \mathbf{D}_{Q,n-k+1} &= \left(\mathbf{I} - (\mathbf{T}_k)^2 \, \mathbf{T}_{n,k+1}\right) \cdot \left(\mathbf{I} - (\mathbf{T}_k)^2 \, \mathbf{T}_{n-1,k+1}\right) \cdots \left(\mathbf{I} - (\mathbf{T}_k)^2\right) \end{aligned}$$

where

$$\mathbf{C}_{Q,l} := \varrho(\gamma_l^*), \qquad \mathbf{D}_{Q,l} := \varrho(\delta_l^*), \qquad 2 \le l \le n.$$

Clearly, $(\mathbf{T}_k)^2 = (\mathbf{T}_{k+1,k})^2$ is the diagonal matrix.

E SQA

イロト イポト イヨト イヨト

Thus we obtain

2

B_{Q,n-k+1} = **D**_{Q,n-k+1} · (**C**_{Q,n-k+1})⁻¹ for all
$$1 \le k \le n-1$$
.

what we can write in the form

$$\mathbf{B}_{Q,n-k+1} = \prod_{k+1 \le m \le n}^{\leftarrow} \left(\mathbf{I} - (\mathbf{T}_k)^2 \, \mathbf{T}_{m,k+1} \right) \cdot \prod_{k+1 \le m \le n}^{\rightarrow} \left(\mathbf{I} - \mathbf{T}_{m,k} \right)^{-1}.$$

$$\mathbf{A}_{Q} = \prod_{1 \le k \le n-1}^{\leftarrow} (\mathbf{B}_{Q,n-k+1}) \left(= \prod_{2 \le k \le n} \mathbf{B}_{Q,k} \right)$$

i.e

$$\mathbf{A}_{Q} = \prod_{1 \leq k \leq n-1}^{\leftarrow} \left(\prod_{k+1 \leq m \leq n}^{\leftarrow} \left(\mathbf{I} - (\mathbf{T}_{k})^{2} \, \mathbf{T}_{m,k+1} \right) \cdot \prod_{k+1 \leq m \leq n}^{\rightarrow} \left(\mathbf{I} - \mathbf{T}_{m,k} \right)^{-1} \right)$$

Now it is easy to see that

• for computing $\det \mathbf{B}_{Q,n-k+1}$ and $\det \mathbf{A}_Q$ it is enough to compute

 $\det(\mathbf{I} - \mathbf{T}_{b,a}) \quad \text{and} \quad \det(\mathbf{I} - (\mathbf{T}_{a-1})^2 \, \mathbf{T}_{b,a}), \quad \text{for all} \ 2 \leq a < b \leq n.$

3

(日) (同) (三) (三)

Lemma

We have the following formulas

(i)
$$\det(\mathbf{I} - \mathbf{T}_{b,a}) = \prod_{T \in \binom{Q}{b-a+1}} (1 - \sigma_T)^{(b-a)! \cdot (n-b+a-1)!} \quad (1 \le a < b \le n)$$

(*ii*)
$$\det(\mathbf{I} - (\mathbf{T}_{a-1})^2 \mathbf{T}_{b,a}) = \prod_{T \in \binom{Q}{b-a+2}} (1 - \sigma_T)^{(b-a)! \cdot (b-a+2) \cdot (n-b+a-2)!}$$

(1 < a < b < n)

where for any subset T, $\sigma_T = \prod_{\{i \neq j\} \subset T} \sigma_{ij} = \prod_{i \neq j \in T} q_{ij}$.

This Lemma is the twisted group algebra analogue of the Lemma 1.9.1 in the paper of Svrtan and Meljanac¹.
 Therefore the proof will be similar to the proof of Lemma 1.9.1 (only it will be here use the factorizations in different direction).

M. Sošić (University of Rijeka)

¹Meljanac, S., and Svrtan, D., Determinants and inversion of Gram matrices in Fock representation of q_{kl} -canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture, 2003, arXiv:math-ph/0304040vl

Theorem

Let $\varrho: \mathcal{A}(S_n) \to \text{End}(\mathcal{B}_Q)$ be a twisted regular representation (where \mathcal{B}_Q is generic subspace of \mathcal{B}). Then we have

(i) det
$$\mathbf{A}_Q = \prod_{2 \le m \le n} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m+1)!}$$
,
(ii) det $\mathbf{B}_{Q,n-k+1} = \prod_{2 \le m \le n-k+1} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m)!}$, $(1 \le k \le n-1)$.

Here we will use the following properties

$$\mathbf{B}_{Q,n-k+1} = \mathbf{D}_{Q,n-k+1} \cdot (\mathbf{C}_{Q,n-k+1})^{-1} \quad \text{for all} \quad 1 \le k \le n-1,$$
$$\mathbf{A}_Q = \prod_{1 \le k \le n-1}^{\leftarrow} (\mathbf{B}_{Q,n-k+1}) \left(= \prod_{2 \le k \le n} \mathbf{B}_{Q,k} \right)$$

(recall: $\mathbf{B}_{Q,1} = \mathbf{I}$).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof.

First part:

By using previous Lemma we get the following:

$$\det \mathbf{C}_{Q,n-k+1} = \prod_{k+1 \le p \le n} \det(\mathbf{I} - \mathbf{T}_{p,k})$$
$$= \prod_{k+1 \le p \le n} \prod_{T \in \binom{Q}{p-k+1}} (1 - \sigma_T)^{(p-k)! \cdot (n-p+k-1)!}$$
$$= \prod_{2 \le m \le n-k+1} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-1)! \cdot (n-m)!}$$

$$\det \mathbf{D}_{Q,n-k+1} = \prod_{k+1 \le p \le n} \det(\mathbf{I} - (\mathbf{T}_k)^2 \mathbf{T}_{p,k+1})$$
$$= \prod_{k+1 \le p \le n} \prod_{T \in \binom{Q}{(p-k+1)}} (1 - \sigma_T)^{(p-k-1)! \cdot (p-k+1) \cdot (n-p+k-1)!}$$
$$= \prod_{2 \le m \le n-k+1} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot m \cdot (n-m)!}$$

Proof.

Second part:

Therefore by applying the formula
$$\det \mathbf{B}_{Q,n-k+1} = \frac{\det \mathbf{D}_{Q,n-k+1}}{\det \mathbf{C}_{Q,n-k+1}}$$
 we get:

$$\det \mathbf{B}_{Q,n-k+1} = \prod_{2 \le m \le n-k+1} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m)!}.$$

 \leftarrow

On the other hand by applying $\det \mathbf{A}_Q = \prod_{1 \leq k \leq n-1} \det \mathbf{B}_{Q,n-k+1}$ we get

$$\det \mathbf{A}_Q = \prod_{1 \le k \le n-1}^{\leftarrow} \prod_{2 \le m \le n-k+1} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m)!}$$
$$= \prod_{2 \le m \le n} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m)! \cdot (n-m+1)}$$

i.e

$$\det \mathbf{A}_Q = \prod_{2 \le m \le n} \prod_{T \in \binom{Q}{m}} (1 - \sigma_T)^{(m-2)! \cdot (n-m+1)!}.$$

THANK YOU FOR YOUR ATTENTION

M. Sošić (University of Rijeka)

Representation

August 26, 2014 24 / 24

3

(日) (周) (三) (三)