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Here we consider two algebras:

a free unital associative complex algebra B = Bq = C 〈ei1 , . . . , eiN 〉,
N ≥ 0 equiped with a multiparametric q-differential structure

∂i(ejx) = δijx+ qijej∂i(x), for each x ∈ B;

with ∂i(1) = 0, ∂i(ej) = δij , (δij is a standard Kronecker delta)

(B is sometimes called a multiparametric quon algebra).

a twisted group algebra

A(Sn) = Rn oC[Sn]

of the symmetric group Sn with coefficients in a polynomial algebra
Rn in commuting variables Xa b, 1 ≤ a, b ≤ n

with the motivation to represent the algebra A(Sn) on the (generic)
weight subspaces of the algebra B (with the aim to simplify certain
computation in B).
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One of the fundamental problems in B = Bq :

describe the space of all constants
(the elements which are annihilated by all multiparametric partial derivatives
∂i = ∂q

i ).

To solve this problem:

one needs some special matrices and their factorizations in terms
of simpler matrices.

A simpler approach:

first, to study certain canonical elements in the twisted group
algebra A(Sn);
then to use certain natural representation of A(Sn) on the
weight subspaces BQ.

In this representation some factorizations of certain canonical elements from
A(Sn) will immediately give the corresponding matrix factorizations and also
determinant factorizations.
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Let N = {i1, . . . , iN} ⊆ {0, 1, . . . }.

Fix a parametar map q : N ×N → C, (i, j) 7→ qij i, j ∈ N .

We consider a free unital associative complex algebra

B = C 〈ei1 , . . . , eiN 〉 (deg ei = 1 for all i ∈ N ).

together with N linear operators ∂i = ∂q
i : B → B, i ∈ N (of degree −1) defined

recursively:
∂i(1) = 0, ∂i(ej) = δij ,

∂i(ejx) = δijx+ qijej∂i(x), for each x ∈ B (twisted Leibnitz rule).

Since every sequence l1, . . . , ln ∈ N , l1 ≤ · · · ≤ ln can be thought of as a multiset
Q = {l1 ≤ · · · ≤ ln} over N of size n = Card Q, each corresponding weight
subspace BQ = Bl1...ln is given by

BQ = spanC

{
ej1...jn := ej1 · · · ejn | j1 . . . jn ∈ Q̂

}
.

Q̂ = the set of all distinct permutations of the multiset Q, dimBQ = Card Q̂.
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A finer decomposition of B into multigraded components (= weight subspaces):

B =
⊕

n≥0, l1≤···≤ln, lj∈N

Bl1...ln .

Let BQ =
{
ej | j ∈ Q̂

}
denote the monomial basis of BQ, where j := j1 . . . jn.

The action of ∂i = ∂q
i on a monomial ej ∈ BQ is given explicitly by the formula:

∂i(ej) =
∑

1≤k≤n, jk=i

qij1 · · · qijk−1 ej1...ĵk...jn , (1)

where ĵk denotes the omission of the corresponding index jk.

The number of terms in this sum is equal to the number of appearances
(multiplicity) of the generator ei in the monomial ej .

In the generic case, when Q is a set, the formula (1) is reduced to:

∂i(ej) = qij1 · · · qijk−1 ej1...ĵk...jn . (2)
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With the motivation of treating better the matrices of ∂i|BQ , we introduce a

multidegree operator ∂ : B → B with ∂ =
∑
i∈N

ei ∂i,

where ei : B → B are considered as (multiplication by ei) operators on B.

The operator ∂ preserves the direct sum decomposition of the algebra B.

We denote by ∂Q : BQ → BQ the restriction of ∂ : B → B to the subspace BQ.

Then for each j1 . . . jn ∈ Q̂ we get

∂Q (ej1...jn) =
∑
i∈N

ei∂i (ej1...jn) =
∑
i∈N

ei
∑

1≤k≤n, jk=i

qij1 · · · qijk−1 ej1...ĵk...jn

=
∑

1≤k≤n

∑
i∈N , i=jk

qij1 · · · qijk−1 eij1...ĵk...jn =
∑

1≤k≤n

qjkj1 · · · qjkjk−1 ejkj1...ĵk...jn .

If BQ denotes the matrix of ∂Q w.r.t basis BQ (totally ordered by the Johnson-Trotter
ordering on permutations) of BQ, then we can write

BQ ej1...jn =
∑

1≤k≤n

qjkj1 · · · qjkjk−1 ejkj1...ĵk...jn . (3)
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Now we consider a twisted group algebra A(Sn) = Rn o C[Sn] of the symmetric
group Sn with coefficients in the polynomial ring Rn = C[Xa b, 1 ≤ a, b ≤ n]
(here o denotes the semidirect product.)

The elements of A(Sn) are the linear combinations
∑

gi∈Sn
pi gi with pi ∈ Rn.

The multiplication in A(Sn) is given by

(p1g1) · (p2g2) := (p1 · (g1.p2)) g1g2

where g.p = g.p(. . . , Xa b, . . . ) = p(. . . , Xg(a) g(b), . . . ) g.

The algebra A(Sn) is associative but not commutative.

In the algebra A(Sn) we have introduced decorated more specific elements:

g∗ =

 ∏
(a,b)∈I(g−1)

Xa b

 g =

 ∏
a<b,g−1(a)>g−1(b)

Xa b

 g

for every g ∈ Sn, where I(g) = {(a, b) | 1 ≤ a < b ≤ n, g(a) > g(b)} denotes the
set of inversions of the permutation g.

Of particular interest are the elements t∗b,a ∈ A(Sn), 1 ≤ a ≤ b ≤ n, where for
a < b, tb,a ∈ Sn denotes the inverse of the cyclic permutation ta,b ∈ Sn i.e

tb,a = t−1
a,b =

(
1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · n
1 · · · a− 1 a+ 1 a+ 2 · · · b a b+ 1 · · · n

)
M. Sošić (University of Rijeka) Representation August 26, 2014 7 / 24



Every permutation g ∈ Sn can be decomposed into cycles (from the left) as follows
(kj ≥ j):

g = tkn,n · tkn−1,n−1 · · · tkj ,j · · · tk2,2 · tk1,1

=
←∏

1≤j≤n

tkj ,j


Now we introduce canonical element α∗n in the twisted group algebra by formula

α∗n :=
∑

g∈Sn

g∗, n ≥ 1.

Then we get the following factorizations:

1 if we define simpler elements β∗k ∈ A(Sn) (1 ≤ k ≤ n) as follows

β∗n−k+1 = t∗n,k + t∗n−1,k + · · ·+ t∗k+1,k + t∗k,k

then: α∗n = β∗1 · β∗2 · · ·β∗n;

2 if we define yet simpler elements in A(Sn) for all 1 ≤ k ≤ n− 1

γ∗n−k+1 =
(
id− t∗n,k

)
·
(
id− t∗n−1,k

)
· · ·
(
id− t∗k+1,k

)
,

δ∗n−k+1 =
(
id− (t∗k)

2 t∗n,k+1

)
·
(
id− (t∗k)

2 t∗n−1,k+1

)
· · ·
(
id− (t∗k)

2 t∗k+1,k+1

)
,

then we get further factorization: β∗n−k+1 = δ∗n−k+1 · (γ∗n−k+1)
−1.

We have used: t∗k+1,k+1 = id and (t∗k)
2 = X{k, k+1} id because

(t∗k)
2 = (Xk k+1 tk) · (Xk k+1 tk) = Xk k+1 ·Xk+1 k (tk)

2 = X{k, k+1} id
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Recall that for any vector space V over a field F , End(V ) denotes the algebra of
all F -endomorphisms of V ;

for any associative algebra A a representation of A on V is any algebra
homomorphism ϕ : A→ End(V ).

Our next task is to define a representation % : A(Sn)→ End(BQ), where

BQ = spanC

{
ej1...jn | j1 . . . jn ∈ Q̂

}
.

Since A(Sn) = Rn oC[Sn] we will consider first a representation %1 of Rn and second a
representation %2 of C[Sn]:

%1 : Rn → End(BQ),

%2 : C[Sn]→ End(BQ)

as follows.

We first denote by: Qa b, 1 ≤ a, b ≤ n a diagonal operator on BQ defined by

Qa b ej1...jn := qjajb ej1...jn .

Note that these operators commute (Qa b ·Qc d = Qc d ·Qa b).
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Definition
We define a representation %1 : Rn → End(BQ) on the generators Xa b of Rn by the
formula

%1(Xa b) := Qa b 1 ≤ a, b ≤ n.

Note that: %1(Xa b) ej1...jn = Qa b ej1...jn = qjajb ej1...jn .

Definition
We define a linear operator %2 : C[Sn]→ End(BQ) by

%2(g) ej1...jn := ej
g−1(1)

...j
g−1(n)

for every g ∈ Sn.

In fact %2 is a (right) regular representation on BQ, Q = generic.

M. Sošić (University of Rijeka) Representation August 26, 2014 10 / 24



Let % : A(Sn)→ End(BQ) be a map defined on decomposable elements by

%(pg) := %1(p) · %2(g)

for every p ∈ Rn and g ∈ Sn and extended by additivity. In the trivial cases we have

(i) %(1 · g) ej1...jn = %1(1) · %2(g) ej1...jn = 1 · ej
g−1(1)

...j
g−1(n)

= ej
g−1(1)

...j
g−1(n)

,

(ii) %(Xa b e) ej1...jn = %1(Xa b) · %2(e) ej1...jn = Qa b ej1...jn = qjajb ej1...jn .

Note that the basic instance of the multiplication (p1g1) · (p2g2) = (p1 · (g1.p2)) g1g2
in A(Sn) reads as follows:

(Xa b g1) · (Xc d g2) =
(
Xa b ·Xg1(c) g1(d)

)
g1g2

which are the consequences of the following two types of basic relations:

Xa b ·Xc d = Xc d ·Xa b,

g.Xa b = Xg(a) g(b) g.
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Theorem
A map % : A(Sn)→ End(BQ) is a representation.

Proof.
It is enough to check that % preserves the previously listed basic relations, where we will
apply the formula %(pg) = %1(p) · %2(g) and properties of representations %1 and %2.

(i) Note that: %(Xa b ·Xc d) = Qa b ·Qc d = Qc d ·Qa b = %(Xc d ·Xa b).

(ii) Now we will show that %(g.Xa b) ej1...jn = %(Xg(a) g(b) g) ej1...jn .

L ≡ %(g.Xa b) ej1...jn = %2(g) · %1(Xa b) ej1...jn = %2(g) qjajb ej1...jn

= qjajb %2(g) ej1...jn

= qjajb ejg−1(1)
...j

g−1(n)
;

D ≡ %(Xg(a) g(b) g) ej1...jn = %1(Xg(a) g(b)) · %2(g) ej1...jn
= Qg(a) g(b) ejg−1(1)

...j
g−1(n)

= qj
g−1(g(a))

j
g−1(g(b))

ej
g−1(1)

...j
g−1(n)

= qjajb ejg−1(1)
...j

g−1(n)
.
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Lemma

The representation % applied to element g∗ =

 ∏
(a,b)∈I(g−1)

Xa b

 g is given by

%(g∗) ej1...jn =
∏

(a,b)∈I(g)
qjbja ejg−1(1)

...j
g−1(n)

.

Proof.
By using %(pg) = %1(p) · %2(g) on g∗ we obtain

% (g∗) ej1...jn =
∏

(a′,b′)∈I(g−1)

%1 (Xa′ b′ ) · %2(g) ej1...jn

=
∏

(a′,b′)∈I(g−1)

qj
g−1(a′)jg−1(b′)

ej
g−1(1)

...j
g−1(n)

=
∏

(b,a)∈I(g)
qjajb ejg−1(1)

...j
g−1(n)

=
∏

(a,b)∈I(g)
qjbja ejg−1(1)

...j
g−1(n)

with a = g−1(a′), b = g−1(b′). Now it is easy to check that

(a′, b′) ∈ I(g−1) ⇒ a′ < b′, g−1(a′) > g−1(b′) i.e g(a) < g(b), a > b, so: (b, a) ∈ I(g).
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A direct consequence of the Lemma:

the element %(t∗b,a) ∈ End(BQ) is given by

%(t∗b,a) ej1...jaja+1...jb...jn =
∏

a≤i≤b−1

qjbji ej1...jbja...jb−1...jn

and in special case: %(t∗a) ej1...jaja+1...jn = qja+1ja ej1...ja+1ja...jn

(where: t∗a = t∗a+1,a). If we denote by σjaja+1 := qjaja+1qja+1ja , then

%((t∗a)
2) ej1...jn = σjaja+1 ej1...jn .

Theorem
Let % : A(Sn)→ End(BQ) be the twisted regular representation on the generic weight
space BQ. Then the (k, j)-entry of the matrix AQ of the %(α∗n) is given by

(AQ)k,j =
∏

(a,b)∈I(g)

qjbja

where g is such that k = g.j (j = j1 . . . jn ∈ Q̂, k = k1 . . . kn ∈ Q̂).

Recall, that α∗n =
∑
g∈Sn

g∗, n ≥ 1.
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Factorization of the matrix AQ

Let us denote
Tb,a := %(t∗b,a), Ta := %(t∗a).

If b = a then Tb,a = I.

The (k, j)-entry of the matrices Tb,a, 1 ≤ a < b ≤ n and Ta, 1 ≤ a ≤ n− 1:

(Tb,a)k,j =


∏

a≤i≤b−1

qjbji if k = tb,a.j

0 otherwise

with tb,a.j = j1 . . . jbja . . . jb−1 . . . jn,

(Ta)k,j =

{
qja+1ja if k = ta.j

0 otherwise

with ta.j = j1 . . . ja+1ja . . . jn.

Now it is easy to see that
(Ta)

2 ej = σjaja+1 ej

is the diagonal matrix with σjaja+1 as j-th diagonal entry.
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Now we consider the elements β∗k ∈ A(Sn), 1 ≤ k ≤ n.

(recall: β∗n−k+1 = t∗n,k + t∗n−1,k + · · ·+ t∗k+1,k + t∗k,k︸︷︷︸
=id

).

Then the corresponding elements %(β∗n−k+1) ∈ End(BQ) are given by

%(β∗n−k+1) ej =
∑

k+1≤m≤n

%(t∗m,k) ej + ej (4)

Let
BQ,l := %(β∗l ), 1 ≤ l ≤ n,

with BQ,1 = %(β∗1 ) = %(id) = I. Then in the matrix notation (4) can be written as

BQ,n−k+1 =
∑

k+1≤m≤n

Tm,k + I

The (k, j)-entry of the matrix BQ,n−k+1 of %(β∗n−k+1), 1 ≤ k ≤ n− 1 is given by

(
BQ,n−k+1

)
k,j

=


∏

k≤i<m

qjmji if k = tm,k.j k ≤ m ≤ n

0 otherwise

for each 1 ≤ k ≤ n− 1 (recall: tm,k.j = j1 . . . jmjk . . . jm−1 . . . jn).
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In the special case for k = 1 we have

BQ,n =
∑

1≤m≤n

Tm,1 = Tn,1 +Tn−1,1 + · · ·+T3,1 +T2,1 + I

(where T1,1 = I) so the (k, j)-entry of BQ,n is given by

(BQ,n)k,j =

{
qjmj1 · · · qjmjm−1 if k = tm,1.j 1 ≤ m ≤ n

0 otherwise

(recall: tm,1.j = jmj1 . . . jm−1jm+1 . . . jn).

1 We get: BQ,n ej =
∑

1≤m≤n

qjmj1 · · · qjmjm−1 ejmj1...jm−1jm+1...jn .

2 Recall that the matrix of ∂Q : BQ → BQ is given by

BQ ej1...jn =
∑

1≤k≤n

qjkj1 · · · qjkjk−1 ejkj1...ĵk...jn .

Then: BQ,n = BQ. It turns out that:

the factorization of the matrix BQ,n is equivalent to factorization of BQ (i.e the
matrix of ∂Q w.r.t monomial basis of BQ ⊂ B);

the problem of computing detBQ can be reduced to the problem of computing
detBQ,n.

With this motivation we are going to find a formula for the factorization of BQ,n and
also its determinant.
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Now we will represent the elements γ∗l , δ∗l , 2 ≤ l ≤ n belonging to A(Sn).

The corresponding elements %(γ∗n−k+1), %(δ
∗
n−k+1) ∈ End(BQ), 1 ≤ k ≤ n− 1

are given by

%(γ∗n−k+1) ej =
(
id− %(t∗n,k)

)
·
(
id− %(t∗n−1,k)

)
· · ·
(
id− %(t∗k+1,k)

)
ej

%(δ∗n−k+1) ej =
(
id− %((t∗k)2) %(t∗n,k+1)

)
·
(
id− %((t∗k)2) %(t∗n−1,k+1)

)
· · ·(

id− %((t∗k)2) %(t∗k+2,k+1)
)
·
(
id− %((t∗k)2)

)
ej

which in matrix notation leads to the following matrix factorizations

CQ,n−k+1 = (I−Tn,k) · (I−Tn−1,k) · · · (I−Tk+1,k)

DQ,n−k+1 =
(
I− (Tk)

2 Tn,k+1

)
·
(
I− (Tk)

2 Tn−1,k+1

)
· · ·
(
I− (Tk)

2)
where

CQ,l := %(γ∗l ), DQ,l := %(δ∗l ), 2 ≤ l ≤ n.

Clearly, (Tk)
2 = (Tk+1,k)

2 is the diagonal matrix.
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Thus we obtain

1 BQ,n−k+1 = DQ,n−k+1 · (CQ,n−k+1)
−1 for all 1 ≤ k ≤ n− 1.

what we can write in the form

BQ,n−k+1 =

←∏
k+1≤m≤n

(
I− (Tk)

2 Tm,k+1

)
·

→∏
k+1≤m≤n

(I−Tm,k)
−1.

2 AQ =
←∏

1≤k≤n−1

(BQ,n−k+1)

=
∏

2≤k≤n

BQ,k


i.e

AQ =
←∏

1≤k≤n−1

 ←∏
k+1≤m≤n

(
I− (Tk)

2 Tm,k+1

)
·

→∏
k+1≤m≤n

(I−Tm,k)
−1

.
Now it is easy to see that

for computing detBQ,n−k+1 and detAQ it is enough to compute

det(I−Tb,a) and det(I− (Ta−1)
2 Tb,a), for all 2 ≤ a < b ≤ n.
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Lemma
We have the following formulas

(i) det(I−Tb,a) =
∏

T∈( Q
b−a+1)

(1− σT )
(b−a)!·(n−b+a−1)! (1 ≤ a < b ≤ n)

(ii) det(I− (Ta−1)
2 Tb,a) =

∏
T∈( Q

b−a+2)

(1− σT )
(b−a)!·(b−a+2)·(n−b+a−2)!

(1 < a ≤ b ≤ n),

where for any subset T , σT =
∏

{i 6=j}⊂T

σij =
∏

i 6=j∈T

qij .

This Lemma is the twisted group algebra analogue of the Lemma 1.9.1 in the
paper of Svrtan and Meljanac 1.
Therefore the proof will be similar to the proof of Lemma 1.9.1 (only it will be
here use the factorizations in different direction).

1Meljanac, S., and Svrtan, D., Determinants and inversion of Gram matrices in Fock
representation of qkl-canonical commutation relations and applications to hyperplane
arrangements and quantum groups. Proof of an extension of Zagier’s conjecture, 2003,
arXiv:math-ph/0304040vl
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Theorem
Let % : A(Sn)→ End(BQ) be a twisted regular representation (where BQ is generic
subspace of B). Then we have

(i) detAQ =
∏

2≤m≤n

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m+1)!,

(ii) detBQ,n−k+1 =
∏

2≤m≤n−k+1

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m)!, (1 ≤ k ≤ n− 1).

Here we will use the following properties

BQ,n−k+1 = DQ,n−k+1 · (CQ,n−k+1)
−1 for all 1 ≤ k ≤ n− 1,

AQ =
←∏

1≤k≤n−1

(BQ,n−k+1)

=
∏

2≤k≤n

BQ,k


(recall: BQ,1 = I).
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Proof.
First part:

By using previous Lemma we get the following:

detCQ,n−k+1 =
∏

k+1≤p≤n

det(I−Tp,k)

=
∏

k+1≤p≤n

∏
T∈( Q

p−k+1)

(1− σT )
(p−k)!·(n−p+k−1)!

=
∏

2≤m≤n−k+1

∏
T∈(Qm)

(1− σT )
(m−1)!·(n−m)!

detDQ,n−k+1 =
∏

k+1≤p≤n

det(I− (Tk)
2 Tp,k+1)

=
∏

k+1≤p≤n

∏
T∈( Q

p−k+1)

(1− σT )
(p−k−1)!·(p−k+1)·(n−p+k−1)!

=
∏

2≤m≤n−k+1

∏
T∈(Qm)

(1− σT )
(m−2)!·m·(n−m)!
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Proof.
Second part:

Therefore by applying the formula detBQ,n−k+1 =
detDQ,n−k+1

detCQ,n−k+1
we get:

detBQ,n−k+1 =
∏

2≤m≤n−k+1

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m)!.

On the other hand by applying detAQ =

←∏
1≤k≤n−1

detBQ,n−k+1 we get

detAQ =

←∏
1≤k≤n−1

∏
2≤m≤n−k+1

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m)!

=
∏

2≤m≤n

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m)!·(n−m+1)

i.e
detAQ =

∏
2≤m≤n

∏
T∈(Qm)

(1− σT )
(m−2)!·(n−m+1)!.
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