ON CERTAIN REPRESENTATION OF TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS ON MULTIPARAMETRIC QUON ALGEBRAS

Milena Sošić
msosic@math.uniri.hr
August 26, 2014

UNIVERSITY OF RIJEKA DEPARTMENT OF MATHEMATICS

Here we consider two algebras:

- a free unital associative complex algebra $\mathcal{B}=\mathcal{B}^{q}=\mathbb{C}\left\langle e_{i_{1}}, \ldots, e_{i_{N}}\right\rangle$, $N \geq 0$ equiped with a multiparametric \mathbf{q}-differential structure

$$
\partial_{i}\left(e_{j} x\right)=\delta_{i j} x+q_{i j} e_{j} \partial_{i}(x), \quad \text { for each } x \in \mathcal{B}
$$

with $\quad \partial_{i}(1)=0, \quad \partial_{i}\left(e_{j}\right)=\delta_{i j}, \quad\left(\delta_{i j}\right.$ is a standard Kronecker delta)
(\mathcal{B} is sometimes called a multiparametric quon algebra).

- a twisted group algebra

$$
\mathcal{A}\left(S_{n}\right)=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]
$$

of the symmetric group S_{n} with coefficients in a polynomial algebra R_{n} in commuting variables $X_{a b}, 1 \leq a, b \leq n$
with the motivation to represent the algebra $\mathcal{A}\left(S_{n}\right)$ on the (generic) weight subspaces of the algebra \mathcal{B} (with the aim to simplify certain computation in \mathcal{B}).

One of the fundamental problems in $\mathcal{B}=\mathcal{B}^{q}$:

- describe the space of all constants
(the elements which are annihilated by all multiparametric partial derivatives $\left.\partial_{i}=\partial_{i}^{q}\right)$.

To solve this problem:

- one needs some special matrices and their factorizations in terms of simpler matrices.

A simpler approach:

- first, to study certain canonical elements in the twisted group algebra $\mathcal{A}\left(S_{n}\right)$;
- then to use certain natural representation of $\mathcal{A}\left(S_{n}\right)$ on the weight subspaces \mathcal{B}_{Q}.

In this representation some factorizations of certain canonical elements from $\mathcal{A}\left(S_{n}\right)$ will immediately give the corresponding matrix factorizations and also determinant factorizations.

Let $\mathcal{N}=\left\{i_{1}, \ldots, i_{N}\right\} \subseteq\{0,1, \ldots\}$.
Fix a parametar map $\boldsymbol{q}: \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{C},(i, j) \mapsto q_{i j} \quad i, j \in \mathcal{N}$.
We consider a free unital associative complex algebra

$$
\mathcal{B}=\mathbb{C}\left\langle e_{i_{1}}, \ldots, e_{i_{N}}\right\rangle \quad\left(\operatorname{deg} e_{i}=1 \quad \text { for all } i \in \mathcal{N}\right) .
$$

together with N linear operators $\partial_{i}=\partial_{i}^{q}: \mathcal{B} \rightarrow \mathcal{B}, i \in \mathcal{N}$ (of degree -1) defined recursively:

$$
\begin{gathered}
\partial_{i}(1)=0, \quad \partial_{i}\left(e_{j}\right)=\delta_{i j}, \\
\partial_{i}\left(e_{j} x\right)=\delta_{i j} x+q_{i j} e_{j} \partial_{i}(x), \quad \text { for each } x \in \mathcal{B} \quad \text { (twisted Leibnitz rule). }
\end{gathered}
$$

- Since every sequence $l_{1}, \ldots, l_{n} \in \mathcal{N}, l_{1} \leq \cdots \leq l_{n}$ can be thought of as a multiset $Q=\left\{l_{1} \leq \cdots \leq l_{n}\right\}$ over \mathcal{N} of size $n=\operatorname{Card} Q$, each corresponding weight subspace $\mathcal{B}_{Q}=\mathcal{B}_{l_{1} \ldots l_{n}}$ is given by

$$
\mathcal{B}_{Q}=\operatorname{span}_{\mathbb{C}}\left\{e_{j_{1} \ldots j_{n}}:=e_{j_{1}} \cdots e_{j_{n}} \mid j_{1} \ldots j_{n} \in \widehat{Q}\right\} .
$$

$\widehat{Q}=$ the set of all distinct permutations of the multiset $Q, \operatorname{dim} \mathcal{B}_{Q}=\operatorname{Card} \widehat{Q}$.

- A finer decomposition of \mathcal{B} into multigraded components (= weight subspaces):

$$
\mathcal{B}=\bigoplus_{n \geq 0, l_{1} \leq \cdots \leq l_{n}, l_{j} \in \mathcal{N}} \mathcal{B}_{l_{1} \ldots l_{n}} .
$$

- Let $\mathfrak{B}_{Q}=\left\{e_{\underline{j}} \mid \underline{j} \in \widehat{Q}\right\}$ denote the monomial basis of \mathcal{B}_{Q}, where $\underline{j}:=j_{1} \ldots j_{n}$.
- The action of $\partial_{i}=\partial_{i}^{q}$ on a monomial $e_{\underline{j}} \in \mathfrak{B}_{Q}$ is given explicitly by the formula:

$$
\begin{equation*}
\partial_{i}\left(e_{\underline{j}}\right)=\sum_{1 \leq k \leq n, j_{k}=i} q_{i j_{1}} \cdots q_{i j_{k-1}} e_{j_{1} \ldots \widehat{j_{k}} \ldots j_{n}}, \tag{1}
\end{equation*}
$$

where $\widehat{j_{k}}$ denotes the omission of the corresponding index j_{k}.
The number of terms in this sum is equal to the number of appearances (multiplicity) of the generator e_{i} in the monomial $e_{\underline{j}}$.

- In the generic case, when Q is a set, the formula (1) is reduced to:

$$
\begin{equation*}
\partial_{i}\left(e_{\underline{j}}\right)=q_{i j_{1}} \cdots q_{i j_{k-1}} e_{j_{1} \ldots \widehat{j_{k}} \cdots j_{n}} . \tag{2}
\end{equation*}
$$

- With the motivation of treating better the matrices of $\left.\partial_{i}\right|_{\mathcal{B}_{Q}}$, we introduce a multidegree operator $\partial: \mathcal{B} \rightarrow \mathcal{B}$ with $\partial=\sum_{i \in \mathcal{N}} e_{i} \partial_{i}$, where $e_{i}: \mathcal{B} \rightarrow \mathcal{B}$ are considered as (multiplication by e_{i}) operators on \mathcal{B}.
- The operator ∂ preserves the direct sum decomposition of the algebra \mathcal{B}.
- We denote by $\partial^{Q}: \mathcal{B}_{Q} \rightarrow \mathcal{B}_{Q}$ the restriction of $\partial: \mathcal{B} \rightarrow \mathcal{B}$ to the subspace \mathcal{B}_{Q}. Then for each $j_{1} \ldots j_{n} \in \widehat{Q}$ we get

$$
\begin{aligned}
\partial^{Q}\left(e_{j_{1} \ldots j_{n}}\right)=\sum_{i \in \mathcal{N}} e_{i} \partial_{i}\left(e_{j_{1} \ldots j_{n}}\right)=\sum_{i \in \mathcal{N}} e_{i} \sum_{1 \leq k \leq n, j_{k}=i} q_{i j_{1}} \cdots q_{i j_{k-1}} e_{j_{1} \ldots \widehat{j_{k}} \ldots j_{n}} \\
\quad=\sum_{1 \leq k \leq n} \sum_{i \in \mathcal{N}, i=j_{k}} q_{i j_{1}} \cdots q_{i j_{k-1}} e_{i j_{1} \ldots \widehat{j_{k}} \ldots j_{n}}=\sum_{1 \leq k \leq n} q_{j_{k} j_{1}} \cdots q_{j_{k} j_{k-1}} e_{j_{k} j_{1} \ldots \widehat{j_{k}} \ldots j_{n}} .
\end{aligned}
$$

If B_{Q} denotes the matrix of ∂^{Q} w.r.t basis \mathfrak{B}_{Q} (totally ordered by the Johnson-Trotter ordering on permutations) of \mathcal{B}_{Q}, then we can write

$$
\begin{equation*}
\mathrm{B}_{Q} e_{j_{1} \ldots j_{n}}=\sum_{1 \leq k \leq n} q_{j_{k} j_{1}} \cdots q_{j_{k} j_{k-1}} e_{j_{k} j_{1} \ldots \widehat{j_{k}} \cdots j_{n}} \tag{3}
\end{equation*}
$$

Now we consider a twisted group algebra $\mathcal{A}\left(S_{n}\right)=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]$ of the symmetric group S_{n} with coefficients in the polynomial ring $R_{n}=\mathbb{C}\left[X_{a b}, 1 \leq a, b \leq n\right]$ (here \rtimes denotes the semidirect product.)

The elements of $\mathcal{A}\left(S_{n}\right)$ are the linear combinations $\sum_{g_{i} \in S_{n}} p_{i} g_{i}$ with $p_{i} \in R_{n}$.

- The multiplication in $\mathcal{A}\left(S_{n}\right)$ is given by

$$
\left(p_{1} g_{1}\right) \cdot\left(p_{2} g_{2}\right):=\left(p_{1} \cdot\left(g_{1} \cdot p_{2}\right)\right) g_{1} g_{2}
$$

where

$$
g \cdot p=g \cdot p\left(\ldots, X_{a b}, \ldots\right)=p\left(\ldots, X_{g(a) g(b)}, \ldots\right) g
$$

The algebra $\mathcal{A}\left(S_{n}\right)$ is associative but not commutative.

- In the algebra $\mathcal{A}\left(S_{n}\right)$ we have introduced decorated more specific elements:

$$
g^{*}=\left(\prod_{(a, b) \in I\left(g^{-1}\right)} X_{a b}\right) g=\left(\prod_{a<b, g^{-1}(a)>g^{-1}(b)} X_{a b}\right) g
$$

for every $g \in S_{n}$, where $I(g)=\{(a, b) \mid 1 \leq a<b \leq n, g(a)>g(b)\}$ denotes the set of inversions of the permutation g.

- Of particular interest are the elements $t_{b, a}^{*} \in \mathcal{A}\left(S_{n}\right), 1 \leq a \leq b \leq n$, where for $a<b, t_{b, a} \in S_{n}$ denotes the inverse of the cyclic permutation $t_{a, b} \in S_{n}$ i.e

$$
t_{b, a}=t_{a, b}^{-1}=\left(\begin{array}{ccccccccccc}
1 & \cdots & a-1 & a & a+1 & \cdots & b-1 & b & b+1 & \cdots & n \\
1 & \cdots & a-1 & a+1 & a+2 & \cdots & b & a & b+1 & \cdots & n
\end{array}\right)
$$

- Every permutation $g \in S_{n}$ can be decomposed into cycles (from the left) as follows $\left(k_{j} \geq j\right)$:

$$
g=t_{k_{n}, n} \cdot t_{k_{n-1}, n-1} \cdots t_{k_{j}, j} \cdots t_{k_{2}, 2} \cdot t_{k_{1}, 1}\left(=\prod_{1 \leq j \leq n}^{\leftarrow} t_{k_{j}, j}\right)
$$

- Now we introduce canonical element α_{n}^{*} in the twisted group algebra by formula

$$
\alpha_{n}^{*}:=\sum_{g \in S_{n}} g^{*}, \quad n \geq 1
$$

Then we get the following factorizations:
(1) if we define simpler elements $\beta_{k}^{*} \in \mathcal{A}\left(S_{n}\right)(1 \leq k \leq n)$ as follows

$$
\beta_{n-k+1}^{*}=t_{n, k}^{*}+t_{n-1, k}^{*}+\cdots+t_{k+1, k}^{*}+t_{k, k}^{*}
$$

then:

$$
\alpha_{n}^{*}=\beta_{1}^{*} \cdot \beta_{2}^{*} \cdots \beta_{n}^{*}
$$

(2) if we define yet simpler elements in $\mathcal{A}\left(S_{n}\right)$ for all $1 \leq k \leq n-1$

$$
\begin{aligned}
& \gamma_{n-k+1}^{*}=\left(i d-t_{n, k}^{*}\right) \cdot\left(i d-t_{n-1, k}^{*}\right) \cdots\left(i d-t_{k+1, k}^{*}\right) \\
& \delta_{n-k+1}^{*}=\left(i d-\left(t_{k}^{*}\right)^{2} t_{n, k+1}^{*}\right) \cdot\left(i d-\left(t_{k}^{*}\right)^{2} t_{n-1, k+1}^{*}\right) \cdots\left(i d-\left(t_{k}^{*}\right)^{2} t_{k+1, k+1}^{*}\right)
\end{aligned}
$$

$$
\text { then we get further factorization: } \quad \beta_{n-k+1}^{*}=\delta_{n-k+1}^{*} \cdot\left(\gamma_{n-k+1}^{*}\right)^{-1}
$$

We have used: $\quad t_{k+1, k+1}^{*}=i d$ and $\left(t_{k}^{*}\right)^{2}=X_{\{k, k+1\}} i d \quad$ because

$$
\left(t_{k}^{*}\right)^{2}=\left(X_{k k+1} t_{k}\right) \cdot\left(X_{k k+1} t_{k}\right)=X_{k k+1} \cdot X_{k+1 k}\left(t_{k}\right)^{2}=X_{\left\{k_{\underline{\rightharpoonup}} k+1\right\}} i d
$$

- Recall that for any vector space V over a field $F, \operatorname{End}(V)$ denotes the algebra of all F-endomorphisms of V;
- for any associative algebra A a representation of A on V is any algebra homomorphism $\varphi: A \rightarrow \operatorname{End}(V)$.

Our next task is to define a representation $\varrho: \mathcal{A}\left(S_{n}\right) \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$, where

$$
\mathcal{B}_{Q}=\operatorname{span}_{\mathbb{C}}\left\{e_{j_{1} \ldots j_{n}} \mid j_{1} \ldots j_{n} \in \widehat{Q}\right\}
$$

Since $\mathcal{A}\left(S_{n}\right)=R_{n} \rtimes \mathbb{C}\left[S_{n}\right]$ we will consider first a representation ϱ_{1} of R_{n} and second a representation ϱ_{2} of $\mathbb{C}\left[S_{n}\right]$:

$$
\begin{gathered}
\varrho_{1}: R_{n} \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right), \\
\varrho_{2}: \mathbb{C}\left[S_{n}\right] \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)
\end{gathered}
$$

as follows.
We first denote by: $\quad Q_{a b}, 1 \leq a, b \leq n$ a diagonal operator on \mathcal{B}_{Q} defined by

$$
Q_{a b} e_{j_{1} \ldots j_{n}}:=q_{j_{a} j_{b}} e_{j_{1} \ldots j_{n}}
$$

Note that these operators commute $\left(Q_{a b} \cdot Q_{c d}=Q_{c d} \cdot Q_{a b}\right)$.

Definition

We define a representation $\varrho_{1}: R_{n} \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ on the generators $X_{a b}$ of R_{n} by the formula

$$
\varrho_{1}\left(X_{a b}\right):=Q_{a b} \quad 1 \leq a, b \leq n .
$$

Note that:

$$
\varrho_{1}\left(X_{a b}\right) e_{j_{1} \ldots j_{n}}=Q_{a b} e_{j_{1} \ldots j_{n}}=q_{j_{a} j_{b}} e_{j_{1} \ldots j_{n}} .
$$

Definition

We define a linear operator $\varrho_{2}: \mathbb{C}\left[S_{n}\right] \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ by

$$
\varrho_{2}(g) e_{j_{1} \ldots j_{n}}:=e_{j_{g-1}(1) \cdots j_{g-1}(n)} \quad \text { for every } g \in S_{n}
$$

In fact ϱ_{2} is a (right) regular representation on $\mathcal{B}_{Q}, Q=$ generic.

Let $\varrho: \mathcal{A}\left(S_{n}\right) \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ be a map defined on decomposable elements by

$$
\varrho(p g):=\varrho_{1}(p) \cdot \varrho_{2}(g)
$$

for every $p \in R_{n}$ and $g \in S_{n}$ and extended by additivity. In the trivial cases we have
(i) $\varrho(1 \cdot g) e_{j_{1} \ldots j_{n}}=\varrho_{1}(1) \cdot \varrho_{2}(g) e_{j_{1} \ldots j_{n}}=1 \cdot e_{j_{g^{-1}(1)} \ldots j_{g-1}(n)}=e_{j_{g^{-1}(1)} \ldots j_{g^{-1}(n)}}$,
(ii) $\varrho\left(X_{a b} e\right) e_{j_{1} \ldots j_{n}}=\varrho_{1}\left(X_{a b}\right) \cdot \varrho_{2}(e) e_{j_{1} \ldots j_{n}}=Q_{a b} e_{j_{1} \ldots j_{n}}=q_{j_{a} j_{b}} e_{j_{1} \ldots j_{n}}$.

Note that the basic instance of the multiplication $\left(p_{1} g_{1}\right) \cdot\left(p_{2} g_{2}\right)=\left(p_{1} \cdot\left(g_{1} \cdot p_{2}\right)\right) g_{1} g_{2}$ in $\mathcal{A}\left(S_{n}\right)$ reads as follows:

$$
\left(X_{a b} g_{1}\right) \cdot\left(X_{c d} g_{2}\right)=\left(X_{a b} \cdot X_{g_{1}(c) g_{1}(d)}\right) g_{1} g_{2}
$$

which are the consequences of the following two types of basic relations:

$$
\begin{gathered}
X_{a b} \cdot X_{c d}=X_{c d} \cdot X_{a b} \\
g \cdot X_{a b}=X_{g(a) g(b)} g
\end{gathered}
$$

Theorem

A map $\varrho: \mathcal{A}\left(S_{n}\right) \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ is a representation.

Proof.

It is enough to check that ϱ preserves the previously listed basic relations, where we will apply the formula $\varrho(p g)=\varrho_{1}(p) \cdot \varrho_{2}(g)$ and properties of representations ϱ_{1} and ϱ_{2}.
(i) Note that: $\varrho\left(X_{a b} \cdot X_{c d}\right)=Q_{a b} \cdot Q_{c d}=Q_{c d} \cdot Q_{a b}=\varrho\left(X_{c d} \cdot X_{a b}\right)$.
(ii) Now we will show that $\varrho\left(g \cdot X_{a b}\right) e_{j_{1} \ldots j_{n}}=\varrho\left(X_{g(a) g(b)} g\right) e_{j_{1} \ldots j_{n}}$.

$$
\begin{aligned}
& L \equiv \varrho\left(g \cdot X_{a b}\right) e_{j_{1} \ldots j_{n}}=\varrho_{2}(g) \cdot \varrho_{1}\left(X_{a b}\right) e_{j_{1} \ldots j_{n}}=\varrho_{2}(g) q_{j_{a} j_{b}} e_{j_{1} \ldots j_{n}} \\
& \\
& =q_{j_{a} j_{b}} \varrho_{2}(g) e_{j_{1} \ldots j_{n}} \\
& \\
& =q_{j_{a} j_{b}} e_{j_{g^{-1}(1)} \cdots j_{g^{-1}(n)}} ; \\
& \begin{aligned}
D \equiv \varrho\left(X_{g(a) g(b)} g\right) e_{j_{1} \ldots j_{n}} & =\varrho_{1}\left(X_{g(a) g(b)}\right) \cdot \varrho_{2}(g) e_{j_{1} \cdots j_{n}} \\
& =Q_{g(a) g(b)} e_{j_{g-1}(1) \cdots j_{g-1}(n)} \\
& =q_{j_{g}-1(g(a))^{j_{g}-1}(g(b))} e_{j_{g^{-1}(1)} \cdots j_{g^{-1}(n)}} \\
& =q_{j_{a} j_{b}} e_{j_{g^{-1}(1)} \cdots j_{g^{-1}(n)}}
\end{aligned}
\end{aligned}
$$

Lemma

The representation ϱ applied to element $g^{*}=\left(\prod_{(a, b) \in I\left(g^{-1}\right)} X_{a b}\right) g$ is given by

$$
\varrho\left(g^{*}\right) e_{j_{1} \ldots j_{n}}=\prod_{(a, b) \in I(g)} q_{j_{b} j_{a}} e_{j_{g-1}(1)} \cdots j_{g-1}(n) .
$$

Proof.

By using $\varrho(p g)=\varrho_{1}(p) \cdot \varrho_{2}(g)$ on g^{*} we obtain

$$
\begin{aligned}
\varrho\left(g^{*}\right) e_{j_{1} \ldots j_{n}} & =\prod_{\left(a^{\prime}, b^{\prime}\right) \in I\left(g^{-1}\right)} \varrho_{1}\left(X_{a^{\prime} b^{\prime}}\right) \cdot \varrho_{2}(g) e_{j_{1} \ldots j_{n}} \\
& =\prod_{\left(a^{\prime}, b^{\prime}\right) \in I\left(g^{-1}\right)} q_{j_{g}-1\left(a^{\prime}\right)^{j} j_{g}-1\left(b^{\prime}\right)} e_{j_{g}-1(1) \ldots j_{g}-1(n)} \\
& =\prod_{(b, a) \in I(g)} q_{j_{a} j_{b}} e_{\left.j_{g-1}-1\right) \cdots j_{g}-1(n)}=\prod_{(a, b) \in I(g)} q_{j_{b} j_{a}} e_{j_{g}-1(1) \cdots j_{g}-1(n)}
\end{aligned}
$$

with $a=g^{-1}\left(a^{\prime}\right), b=g^{-1}\left(b^{\prime}\right)$. Now it is easy to check that $\left(a^{\prime}, b^{\prime}\right) \in I\left(g^{-1}\right) \Rightarrow a^{\prime}<b^{\prime}, g^{-1}\left(a^{\prime}\right)>g^{-1}\left(b^{\prime}\right)$ i.e $g(a)<g(b), a>b$, so: $(b, a) \in I(g)$.

A direct consequence of the Lemma:

- the element $\varrho\left(t_{b, a}^{*}\right) \in \operatorname{End}\left(\mathcal{B}_{Q}\right)$ is given by

$$
\varrho\left(t_{b, a}^{*}\right) e_{j_{1} \ldots j_{a} j_{a+1} \ldots j_{b} \ldots j_{n}}=\prod_{a \leq i \leq b-1} q_{j_{b} j_{i}} e_{j_{1} \ldots j_{b} j_{a} \ldots j_{b-1} \ldots j_{n}}
$$

- and in special case: $\quad \varrho\left(t_{a}^{*}\right) e_{j_{1} \ldots j_{a} j_{a+1} \ldots j_{n}}=q_{j_{a+1} j_{a}} e_{j_{1} \ldots j_{a+1} j_{a} \ldots j_{n}}$ (where: $t_{a}^{*}=t_{a+1, a}^{*}$). If we denote by $\sigma_{j_{a} j_{a+1}}:=q_{j_{a} j_{a+1}} q_{j_{a+1} j_{a}}$, then

$$
\varrho\left(\left(t_{a}^{*}\right)^{2}\right) e_{j_{1} \ldots j_{n}}=\sigma_{j_{a} j_{a+1}} e_{j_{1} \ldots j_{n}}
$$

Theorem

Let $\varrho: \mathcal{A}\left(S_{n}\right) \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ be the twisted regular representation on the generic weight space \mathcal{B}_{Q}. Then the $(\underline{k}, \underline{j})$-entry of the matrix \mathbf{A}_{Q} of the $\varrho\left(\alpha_{n}^{*}\right)$ is given by

$$
\left(\mathbf{A}_{Q}\right)_{\underline{k}, \underline{j}}=\prod_{(a, b) \in I(g)} q_{j_{b} j_{a}}
$$

where g is such that $\underline{k}=g \cdot \underline{j} \quad\left(\underline{j}=j_{1} \ldots j_{n} \in \widehat{Q}, \underline{k}=k_{1} \ldots k_{n} \in \widehat{Q}\right)$.
Recall, that $\quad \alpha_{n}^{*}=\sum_{g \in S_{n}} g^{*}, \quad n \geq 1$.

Factorization of the matrix \mathbf{A}_{Q}

Let us denote

$$
\mathbf{T}_{b, a}:=\varrho\left(t_{b, a}^{*}\right), \quad \mathbf{T}_{a}:=\varrho\left(t_{a}^{*}\right)
$$

If $b=a$ then $\mathbf{T}_{b, a}=\mathbf{I}$.

- The $(\underline{k}, \underline{j})$-entry of the matrices $\mathbf{T}_{b, a}, 1 \leq a<b \leq n$ and $\mathbf{T}_{a}, 1 \leq a \leq n-1$:

$$
\left(\mathbf{T}_{b, a}\right)_{\underline{k}, \underline{j}}=\left\{\begin{array}{cl}
\prod_{a \leq i \leq b-1} q_{j_{b} j_{i}} & \text { if } \underline{k}=t_{b, a \cdot} \underline{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

with $t_{b, a} \cdot \underline{j}=j_{1} \ldots j_{b} j_{a} \ldots j_{b-1} \ldots j_{n}$,

$$
\left(\mathbf{T}_{a}\right)_{\underline{k}, \underline{j}}=\left\{\begin{array}{cl}
q_{j_{a+1} j_{a}} & \text { if } \underline{k}=t_{a \cdot} \cdot \underline{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

with $t_{a} \cdot \underline{j}=j_{1} \ldots j_{a+1} j_{a} \ldots j_{n}$.

- Now it is easy to see that

$$
\left(\mathbf{T}_{a}\right)^{2} e_{\underline{j}}=\sigma_{j_{a} j_{a+1}} e_{\underline{j}}
$$

is the diagonal matrix with $\sigma_{j_{a} j_{a+1}}$ as \underline{j}-th diagonal entry.

- Now we consider the elements $\beta_{k}^{*} \in \mathcal{A}\left(S_{n}\right), 1 \leq k \leq n$.

$$
\text { (recall: } \quad \beta_{n-k+1}^{*}=t_{n, k}^{*}+t_{n-1, k}^{*}+\cdots+t_{k+1, k}^{*}+\underbrace{t_{k, k}^{*}}_{=i d}) \text {. }
$$

- Then the corresponding elements $\varrho\left(\beta_{n-k+1}^{*}\right) \in \operatorname{End}\left(\mathcal{B}_{Q}\right)$ are given by

$$
\begin{equation*}
\varrho\left(\beta_{n-k+1}^{*}\right) e_{\underline{j}}=\sum_{k+1 \leq m \leq n} \varrho\left(t_{m, k}^{*}\right) e_{\underline{j}}+e_{\underline{j}} \tag{4}
\end{equation*}
$$

- Let

$$
\mathbf{B}_{Q, l}:=\varrho\left(\beta_{l}^{*}\right), \quad 1 \leq l \leq n
$$

with $\quad \mathbf{B}_{Q, 1}=\varrho\left(\beta_{1}^{*}\right)=\varrho(i d)=\mathbf{I}$. Then in the matrix notation (4) can be written as

$$
\mathbf{B}_{Q, n-k+1}=\sum_{k+1 \leq m \leq n} \mathbf{T}_{m, k}+\mathbf{I}
$$

- The $(\underline{k}, \underline{j})$-entry of the matrix $\mathbf{B}_{Q, n-k+1}$ of $\varrho\left(\beta_{n-k+1}^{*}\right), \quad 1 \leq k \leq n-1$ is given by

$$
\left(\mathbf{B}_{Q, n-k+1}\right)_{\underline{k}, \underline{j}}=\left\{\begin{array}{cl}
\prod_{k \leq i<m} q_{j_{m} j_{i}} & \text { if } \underline{k}=t_{m, k} \cdot \underline{j} \quad k \leq m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

for each $1 \leq k \leq n-1 \quad\left(\right.$ recall: $\left.t_{m, k} \cdot \underline{j}=j_{1} \ldots j_{m} j_{k} \ldots j_{m-1} \ldots j_{n}\right)$.

- In the special case for $k=1$ we have

$$
\mathbf{B}_{Q, n}=\sum_{1 \leq m \leq n} \mathbf{T}_{m, 1}=\mathbf{T}_{n, 1}+\mathbf{T}_{n-1,1}+\cdots+\mathbf{T}_{3,1}+\mathbf{T}_{2,1}+\mathbf{I}
$$

(where $\mathbf{T}_{1,1}=\mathbf{I}$) so the ($\underline{k}, \underline{j}$)-entry of $\mathbf{B}_{Q, n}$ is given by

$$
\left(\mathbf{B}_{Q, n}\right)_{\underline{k}, \underline{j}}=\left\{\begin{array}{cl}
q_{j_{m} j_{1}} \cdots q_{j_{m} j_{m-1}} & \text { if } \underline{k}=t_{m, 1 . \underline{j}} \quad 1 \leq m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

(recall: $\quad t_{m, 1} \cdot \underline{j}=j_{m} j_{1} \ldots j_{m-1} j_{m+1} \ldots j_{n}$).
(1) We get: $\quad \mathbf{B}_{Q, n} e_{\underline{j}}=\sum_{1 \leq m \leq n} q_{j_{m} j_{1}} \cdots q_{j_{m} j_{m-1}} e_{j_{m} j_{1} \ldots j_{m-1} j_{m+1} \cdots j_{n}}$.
(2) Recall that the matrix of $\partial^{Q}: \mathcal{B}_{Q} \rightarrow \mathcal{B}_{Q}$ is given by

$$
\mathrm{B}_{Q} e_{j_{1} \ldots j_{n}}=\sum_{1 \leq k \leq n} q_{j_{k} j_{1}} \cdots q_{j_{k} j_{k-1}} e_{j_{k} j_{1} \ldots \widehat{j_{k}} \cdots j_{n}}
$$

Then: $\quad \mathbf{B}_{Q, n}=\mathrm{B}_{Q}$. It turns out that:

- the factorization of the matrix $\mathbf{B}_{Q, n}$ is equivalent to factorization of B_{Q} (i.e the matrix of ∂^{Q} w.r.t monomial basis of $\mathcal{B}_{Q} \subset \mathcal{B}$);
- the problem of computing $\operatorname{det} \mathrm{B}_{Q}$ can be reduced to the problem of computing $\operatorname{det} \mathbf{B}_{Q, n}$.
With this motivation we are going to find a formula for the factorization of $\mathbf{B}_{Q, n}$ and also its determinant.
- Now we will represent the elements $\gamma_{l}^{*}, \delta_{l}^{*}, 2 \leq l \leq n$ belonging to $\mathcal{A}\left(S_{n}\right)$.
- The corresponding elements $\varrho\left(\gamma_{n-k+1}^{*}\right), \varrho\left(\delta_{n-k+1}^{*}\right) \in \operatorname{End}\left(\mathcal{B}_{Q}\right), \quad 1 \leq k \leq n-1$ are given by

$$
\begin{aligned}
\varrho\left(\gamma_{n-k+1}^{*}\right) e_{\underline{j}}= & \left(i d-\varrho\left(t_{n, k}^{*}\right)\right) \cdot\left(i d-\varrho\left(t_{n-1, k}^{*}\right)\right) \cdots\left(i d-\varrho\left(t_{k+1, k}^{*}\right)\right) e_{\underline{j}} \\
\varrho\left(\delta_{n-k+1}^{*}\right) e_{\underline{j}}= & \left(i d-\varrho\left(\left(t_{k}^{*}\right)^{2}\right) \varrho\left(t_{n, k+1}^{*}\right)\right) \cdot\left(i d-\varrho\left(\left(t_{k}^{*}\right)^{2}\right) \varrho\left(t_{n-1, k+1}^{*}\right)\right) \cdots \\
& \left(i d-\varrho\left(\left(t_{k}^{*}\right)^{2}\right) \varrho\left(t_{k+2, k+1}^{*}\right)\right) \cdot\left(i d-\varrho\left(\left(t_{k}^{*}\right)^{2}\right)\right) e_{\underline{j}}
\end{aligned}
$$

which in matrix notation leads to the following matrix factorizations

$$
\begin{aligned}
& \mathbf{C}_{Q, n-k+1}=\left(\mathbf{I}-\mathbf{T}_{n, k}\right) \cdot\left(\mathbf{I}-\mathbf{T}_{n-1, k}\right) \cdots\left(\mathbf{I}-\mathbf{T}_{k+1, k}\right) \\
& \mathbf{D}_{Q, n-k+1}=\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2} \mathbf{T}_{n, k+1}\right) \cdot\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2} \mathbf{T}_{n-1, k+1}\right) \cdots\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2}\right)
\end{aligned}
$$

where

$$
\mathbf{C}_{Q, l}:=\varrho\left(\gamma_{l}^{*}\right), \quad \mathbf{D}_{Q, l}:=\varrho\left(\delta_{l}^{*}\right), \quad 2 \leq l \leq n .
$$

Clearly, $\quad\left(\mathbf{T}_{k}\right)^{2}=\left(\mathbf{T}_{k+1, k}\right)^{2}$ is the diagonal matrix.

Thus we obtain
(1) $\quad \mathbf{B}_{Q, n-k+1}=\mathbf{D}_{Q, n-k+1} \cdot\left(\mathbf{C}_{Q, n-k+1}\right)^{-1} \quad$ for all $\quad 1 \leq k \leq n-1$.
what we can write in the form

$$
\mathbf{B}_{Q, n-k+1}=\prod_{k+1 \leq m \leq n}^{\leftarrow}\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2} \mathbf{T}_{m, k+1}\right) \cdot \prod_{k+1 \leq m \leq n}^{\rightarrow}\left(\mathbf{I}-\mathbf{T}_{m, k}\right)^{-1}
$$

$$
\mathbf{A}_{Q}=\prod_{1 \leq k \leq n-1}^{\leftarrow}\left(\mathbf{B}_{Q, n-k+1}\right)\left(=\prod_{2 \leq k \leq n} \mathbf{B}_{Q, k}\right)
$$

i.e

$$
\mathbf{A}_{Q}=\prod_{1 \leq k \leq n-1}^{\leftarrow}\left(\prod_{k+1 \leq m \leq n}^{\leftarrow}\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2} \mathbf{T}_{m, k+1}\right) \cdot \prod_{k+1 \leq m \leq n}^{\rightarrow}\left(\mathbf{I}-\mathbf{T}_{m, k}\right)^{-1}\right)
$$

Now it is easy to see that

- for computing $\operatorname{det} \mathbf{B}_{Q, n-k+1}$ and $\operatorname{det} \mathbf{A}_{Q}$ it is enough to compute $\operatorname{det}\left(\mathbf{I}-\mathbf{T}_{b, a}\right) \quad$ and $\quad \operatorname{det}\left(\mathbf{I}-\left(\mathbf{T}_{a-1}\right)^{2} \mathbf{T}_{b, a}\right), \quad$ for all $2 \leq a<b \leq n$.

Lemma

We have the following formulas
(i) $\operatorname{det}\left(\mathbf{I}-\mathbf{T}_{b, a}\right)=\prod_{T \in\left(\begin{array}{c}Q \\ b-a+1 \\ \hline\end{array}\right.}\left(1-\sigma_{T}\right)^{(b-a)!\cdot(n-b+a-1)!} \quad(1 \leq a<b \leq n)$

$$
\operatorname{det}\left(\mathbf{I}-\left(\mathbf{T}_{a-1}\right)^{2} \mathbf{T}_{b, a}\right)=\prod_{T \in\left(\begin{array}{c}
Q \tag{ii}\\
b-a+2 \\
)
\end{array}\right.}\left(1-\sigma_{T}\right)^{(b-a)!\cdot(b-a+2) \cdot(n-b+a-2)!}
$$

$$
(1<a \leq b \leq n)
$$

where for any subset $T, \quad \sigma_{T}=\prod_{\{i \neq j\} \subset T} \sigma_{i j}=\prod_{i \neq j \in T} q_{i j}$.

- This Lemma is the twisted group algebra analogue of the Lemma 1.9.1 in the paper of Svrtan and Meljanac ${ }^{1}$.
Therefore the proof will be similar to the proof of Lemma 1.9.1 (only it will be here use the factorizations in different direction).

[^0]
Theorem

Let $\varrho: \mathcal{A}\left(S_{n}\right) \rightarrow \operatorname{End}\left(\mathcal{B}_{Q}\right)$ be a twisted regular representation (where \mathcal{B}_{Q} is generic subspace of $\mathcal{B})$. Then we have
(i) $\operatorname{det} \mathbf{A}_{Q}=\prod_{2 \leq m \leq n} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m+1)!}$,
(ii) $\operatorname{det} \mathbf{B}_{Q, n-k+1}=\prod_{2 \leq m \leq n-k+1} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m)!}, \quad(1 \leq k \leq n-1)$.

Here we will use the following properties

$$
\begin{gathered}
\mathbf{B}_{Q, n-k+1}=\mathbf{D}_{Q, n-k+1} \cdot\left(\mathbf{C}_{Q, n-k+1}\right)^{-1} \quad \text { for all } 1 \leq k \leq n-1, \\
\mathbf{A}_{Q}=\prod_{1 \leq k \leq n-1}^{\leftarrow}\left(\mathbf{B}_{Q, n-k+1}\right)\left(=\prod_{2 \leq k \leq n} \mathbf{B}_{Q, k}\right)
\end{gathered}
$$

(recall: $\mathbf{B}_{Q, 1}=\mathbf{I}$).

Proof.

First part:

By using previous Lemma we get the following:

$$
\begin{aligned}
\operatorname{det} \mathbf{C}_{Q, n-k+1} & =\prod_{k+1 \leq p \leq n} \operatorname{det}\left(\mathbf{I}-\mathbf{T}_{p, k}\right) \\
& =\prod_{k+1 \leq p \leq n} \prod_{T \in\binom{Q}{p-k+1}}\left(1-\sigma_{T}\right)^{(p-k)!\cdot(n-p+k-1)!} \\
& =\prod_{2 \leq m \leq n-k+1} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-1)!\cdot(n-m)!}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det} \mathbf{D}_{Q, n-k+1} & =\prod_{k+1 \leq p \leq n} \operatorname{det}\left(\mathbf{I}-\left(\mathbf{T}_{k}\right)^{2} \mathbf{T}_{p, k+1}\right) \\
& =\prod_{k+1 \leq p \leq n} \prod_{T \in\binom{Q}{p-k+1}}\left(1-\sigma_{T}\right)^{(p-k-1)!\cdot(p-k+1) \cdot(n-p+k-1)!} \\
& =\prod_{2 \leq m \leq n-k+1} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot m \cdot(n-m)!}
\end{aligned}
$$

Proof.

Second part:

Therefore by applying the formula $\operatorname{det} \mathbf{B}_{Q, n-k+1}=\frac{\operatorname{det} \mathbf{D}_{Q, n-k+1}}{\operatorname{det} \mathbf{C}_{Q, n-k+1}}$ we get:

$$
\operatorname{det} \mathbf{B}_{Q, n-k+1}=\prod_{2 \leq m \leq n-k+1} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m)!} .
$$

On the other hand by applying $\operatorname{det} \mathbf{A}_{Q}=\prod_{1 \leq k \leq n-1}^{\leftarrow} \operatorname{det} \mathbf{B}_{Q, n-k+1}$ we get

$$
\begin{aligned}
\operatorname{det} \mathbf{A}_{Q} & =\prod_{1 \leq k \leq n-1}^{\leftarrow} \prod_{2 \leq m \leq n-k+1} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m)!} \\
& =\prod_{2 \leq m \leq n} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m)!\cdot(n-m+1)}
\end{aligned}
$$

i.e

$$
\operatorname{det} \mathbf{A}_{Q}=\prod_{2 \leq m \leq n} \prod_{T \in\binom{Q}{m}}\left(1-\sigma_{T}\right)^{(m-2)!\cdot(n-m+1)!} .
$$

THANK YOU FOR YOUR ATTENTION

[^0]: ${ }^{1}$ Meljanac, S., and Svrtan, D., Determinants and inversion of Gram matrices in Fock representation of $q_{k l}$-canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture, 2003, arXiv:math-ph/0304040vl

