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1. Introduction

Integers having no prime factors outside a fixed set of primes play im-

portant role and are heavily investigated in several parts of number theory.

For example, they play special role in diophantine number theory; see e.g.

the classical survey paper of Evertse, Győry, Stewart and Tijdeman [1] or

Chapter 1 of the book of Shorey and Tijdeman [7] and the references given

there.

Further, the sequence formed of such integers is also of interest. To be

precise, fix primes p1 < · · · < pt, and write sn for the sequence of integers

composed of these primes, arranged in an increasing order. Tijdeman [8] and

[9] provided sharp upper and lower bounds for the gaps between consecutive

terms of the sequence, respectively. These bounds have the nice property

that they are ”almost” equal. Namely, Tijdeman proved that

(1.1)
sn

(log sn)c1
< sn+1 − sn <

sn
(log sn)c2

hold with some effectively computable absolute constants c1 and c2 for all

index n which is large enough. In the proofs of both the lower and the upper

bound in (1.1) the approximation properties of the tuple (log p1, . . . , log pt)

play a crucial role. These are mainly used through Baker’s theory, but in
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establishing the upper bound also the continued fractions of log pi/ log pj
play a vital role.

In this paper we develop a method to explicitly give the gaps in the

sequence sn. In other words, for any term sn we can find both sn−1 and

sn+1, at least in principle, without enumerating all terms of the sequence.

Again, here the approximation properties of the tuple (log p1, . . . , log pt)

are decisive. In the case when there are two fixed primes, we even give an

efficient and algorithm to find these terms explicitly. This is done by the

careful analysis of the behavior of the continued fractions of log p1/ log p2.

Since to explain our results and methods in detail we need several notions

and notation, we shall do that in the next section.

2. Main results

Let S = {p1, p2, . . . , pt} be a set of t rational primes, and in the sequel

suppose that p1 < p2 < · · · < pt. The ring of rational S-integers is denoted

by ZS, and its unit group by Z∗
S. Consider those S-units, which are natural

numbers, and denote by (sn) the sequence consisting of these numbers in

increasing order. Clearly, any element of the sequence (sn) can be written

in the form sn = p
cn,1

1 p
cn,2

2 . . . p
cn,t

t with cn,i ∈ Z≥0.

Consider the hyperplane P ⊂ Rt defined by

P := {(x1, . . . , xt) : x1 log p1 + · · ·+ xt log pt = 0}.

Then P is a subspace of Rt, in particular, it clearly contains the origin. For

a point a = (a1, . . . , at) ∈ Zt
≥0 denote by d(a) the Euclidean distance of the

point a from the hyperplane P in Rt.

Theorem 2.1. The following statements are true:

(i) For all a = (a1, . . . , at), b = (b1, . . . , bt) ∈ Zt
≥0 we have

pa11 . . . patt < pb11 . . . pbtt ⇐⇒ d(a) < d(b).

In particular, d(a) = d(b) if and only if a = b.

(ii) Let r ∈ R>0, and write

c(r) :=
log r√

log2 p1 + · · ·+ log2 pt
.
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Then the smallest sn for which sn > r is that sn = pa11 . . . patt with

a = (a1, . . . , at) ∈ Zt
≥0 for which for every b = (b1, . . . , bt) ∈ Zt

≥0

with d(b) > c(r) we have

c(r) < d(a) < d(b).

Similarly, the largest sn for which sn < r is that sn = pa11 . . . patt with

a = (a1, . . . , at) ∈ Zt
≥0 for which for every b = (b1, . . . , bt) ∈ Zt

≥0

with d(b) < c(r) we have

c(r) > d(a) > d(b).

Further, in both cases a can be effectively determined.

Remark. The proof of Theorem 2.1 is based upon some properties of a

certain special multidimensional diophantine approximation. For the theory

of multidimensional diophantine approximations of different types see the

excellent survey paper of Moshcevitin [4], and the references given there.

In the special case t = 2 we can formulate much more precise results. In

order to do so, we need to introduce some further notation. From now on

let S = {p, q} be a set of two rational primes with p < q. Now the sequence

(sn) may be written in the form sn = pcnqdn with cn, dn ∈ Z≥0. We define

the companion sequence (fn) of (sn) by

(2.1) fn :=
dn+1 − dn
cn − cn+1

.

Later we shall prove that the elements of the sequence (fn) are always

well defined (i.e. cn − cn+1 ̸= 0), they are always in lowest terms (i.e.

gcd(dn+1−dn, cn−cn+1) = 1), and fn ≥ 0, with equality precisely for values

of n for which sn < q.

In the statement of our results below we use notions related to the con-

tinued fractions of real numbers. Here we use these notions without any

reference, however the concepts and results connected to continued frac-

tions which are needed in the paper, are summarized in Section 3.

Given a concrete element of the sequence (sn), the following theorem gives

a simple algorithm how to determine the next element in the sequence.
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Theorem 2.2. Let the sequences (sn), (cn), (dn) and (fn) have the same

meaning as above. Suppose that we are given sk = pckqdk . Then we can

compute sk+1 in the following way:

• Let u1

v1
be the upper convergent of log p

log q
with maximal denominator

for which v1 ≤ ck holds.

• Let u2

v2
be the lower convergent of log p

log q
with maximal numerator for

which u2 ≤ dk holds.

• Put x := |v1 log p− u1 log q| − |v2 log p− u2 log q| and

(2.2) ck+1 =

ck − v1 if x < 0,

ck + v2 if x > 0,
dk+1 =

dk + u1 if x < 0,

dk − u2 if x > 0.

Then we have sk+1 = pck+1qdk+1.

Remark. In view of the method of the proof, having sk one can explicitly

give the term sk−1 of the sequence, similarly to the term sk+1. However,

since in the light of Theorem 2.2 this can be done in the obvious way, we

omit the details.

In the following theorem we summarize basic properties of the companion

sequence, which sequence describes how the exponents of p and q change

when we move from sn to sn+1.

Theorem 2.3. Let the sequences (sn), (cn), (dn) and (fn) have the same

meaning as above. Then we have the following properties:

(i) The sequence (fn) is well-defined, i.e. cn+1 ̸= cn for all n ∈ N.
(ii) We have fn ≥ 0 for all n ∈ N, with equality precisely for those

values of n for which sn < q.

(iii) All companion fractions fn are convergents of log p
log q

, and

• if fn is an upper convergent then ck+1 < ck and dk+1 > dk,

• if fn is a lower convergent then ck+1 > ck and dk+1 < dk.

(iv) Suppose that the smallest index n such that fn = u
v
is k. Then

• if u
v
is an upper convergent of log p

log q
then we have sk = pv and

sk+1 = qu;

• if u
v
is a lower convergent of log p

log q
then we have sk = qu and

sk+1 = pv.

Conversely,
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• if sk = pv and sk+1 = qu then fk = u
v
is an upper convergent

of log p
log q

and k is the index of u
v
in the sequence (fn);

• if sk = qu and sk+1 = pv then fk = u
v
is a lower convergent of

log p
log q

and k is the index of u
v
in the sequence (fn).

(v) Let
pi,j
qi,j

be a convergent of log p
log q

. The number of occurrences of
pi,j
qi,j

in the sequence (fn) is exactly pi+1qi+1, where
pi+1

qi+1
is the principal

convergent of log p
log q

following the principal convergent pi
qi
=

pi,0
qi,0

.

To understand well the structure of our sequence (sn) we need to know

how the corresponding companion sequence (fn) behaves. Some of the most

important arising questions are the following:

• if we know the value of fn then which values can be taken by fn−1

and fn+1 respectively

• how many consecutive elements of the sequence fn may have the

same value
pi,j
qi,j

.

Theorems 2.4 and 2.5 give a precise answer to these questions. In one hand

we prove that an intermediate convergent cannot be the value of two con-

secutive elements of (fn), and that there are at most aj+2 + 1 consecutive

elements of (fn) which assume the same value
pj
qj
. Further our Theorems

describe all possible patterns formed by exactly k (1 ≤ k ≤ aj+2 + 1) con-

secutive elements of (fn) assuming the same value
pj
qj
, and by the preceding

and the following elements. Moreover, our Lemmas in Section 6 give neces-

sary and sufficient conditions for cn = ordq sn and dn = ordp sn so that sn−1

is the starting point of such a concrete pattern.

In the following Theorem 2.4 we answer the above question for principal

convergents, and in Theorem 2.5 we do the same for intermediate conver-

gents.

Theorem 2.4. Let us suppose that in the sequence of companion fractions

we have the following pattern:

(2.3) fn−1 ̸=
pl
ql
, fn = fn+1 = · · · = fn+k−1 =

pl
ql
, fn+k ̸=

pl
ql
.

Then we have 1 ≤ k ≤ al+1 + 1, and for (fn−1, fn+k) we have the following

possibilities:
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(i) If 1 ≤ k < al+1 then

(2.4)

(fn−1,fn+k) ∈
{(

pl+1

ql+1

,
pl+1

ql+1

)
,

(
pl−1,k−1

ql−1,k−1

,
pl−1,k−1

ql−1,k−1

)
,(

pl−1,k−1

ql−1,k−1

,
pl−1,k

ql−1,k

)(
pl−1,k

ql−1,k

,
pl−1,k−1

ql−1,k−1

)(
pl−1,k

ql−1,k

,
pl−1,k

ql−1,k

)}
(ii) If k = al+1 then

(2.5)

(fn−1, fn+k) ∈
{(

pl+1

ql+1

,
pl+1

ql+1

)
,

(
pl−1,k−1

ql−1,k−1

,
pl−1,k−1

ql−1,k−1

)
,(

pl−1,k−1

ql−1,k−1

,
pl+1

ql+1

)(
pl+1

ql+1

,
pl−1,k−1

ql−1,k−1

)}
(iii) If k = al+1 + 1 then

(2.6) (fn−1, fn+k) =

(
pl+1

ql+1

,
pl+1

ql+1

)
.

Theorem 2.5. Suppose that fn =
pl,j
ql,j

with some 1 ≤ j < al+2 (i.e. fn is

an intermediate convergent). Then we have

(2.7) fn−1 = fn+1 =
pl+1

ql+1

.

3. Continued fractions

In this section we summarize important properties of the continued frac-

tion expansion and the corresponding convergents of real numbers. For the

general theory of continued fractions we refer to the classical books [2], [5],

[6] and the references given there. If S = {p, q}, then, as we have seen,

the structure of the sequence of natural S-units is strongly connected to

the convergents of the real number log p
log q

. The proofs of the properties listed

below may be found in [2], [5] and [6].

Let 0 ̸= α ∈ R be a real number and define a0, a1, a2, . . . in the following

way: α0 := α, a0 := [α0], αi+1 := { 1
{αi}}, ai+1 := [ 1

αi+1
], . The sequence (an)

is called the continued fraction of α. In the sequel, for 0 ̸= α ∈ R we shall

denote by [a0, a1, a2 . . . ] the continued fraction expansion of α. Put

(3.1) p−2 = 0, p−1 = 1, pi = aipi−1 + pi−2 (i ≥ 0)
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and

(3.2) q−2 = 1, q−1 = 0, qi = aiqi−1 + qi−2 (i ≥ 0).

The fractions pi/qi for i ≥ 0 are called the principal convergents of α.

Further, for non-negative integers i and j put

(3.3) pi,j = jpi+1 + pi, qi,j = jqi+1 + qi.

The fractions

(3.4)
pi,j
qi,j

=
jpi+1 + pi
jqi+1 + qi

1 ≤ j ≤ ai+2 − 1

are called the intermediate convergents of α. We mention, that in many

cases it is comfortable to let in (3.4) the index j assume also the values

0 and ai+2, in these cases the resulting fraction in (3.4) being a principal

convergent, namely:

(3.5)
pi,0
qi,0

=
pi
qi

and
pi,ai+2

qi,ai+2

=
pi+2

qi+2

.

The principal convergents and intermediate convergents together are called

convergents. For the convergents of α we have the following properties:

· · · < pi
qi

< · · · < pi,j
qi,j

<
pi,j+1

qi,j+1

< · · · < pi+2

qi+2

< . . . if i is even,(3.6)

· · · > pi
qi

> · · · > pi,j
qi,j

>
pi,j+1

qi,j+1

> · · · > pi+2

qi+2

> · · · > if i is odd,(3.7)

and pi,j−1qi,j − pi,jqi,j−1 = (−1)j for i ≥ 0 and 1 ≤ j ≤ ai+2 − 1. In the

sequel the fractions (3.6) of even indices will also be referred to as lower

convergents, while the fractions (3.7) of odd indices as upper convergents.

This terminology is clearly justified by the fact, that lower convergents of

α are smaller then α, while upper convergents of α are larger then α.

We say that

• the rational number p
q
is a best approximation to α if for every

rational number b
c
with denominator c < q we have

(3.8) |qα− p| < |cα− b|
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• the rational number p
q
is a best lower approximation to α if p

q
< α

and for every rational number b
c
< α with denominator c < q we

have

(3.9) qα− p < cα− b

• the rational number p
q
is a best upper approximation to α if p

q
> α

and for every rational number b
c
> α with denominator c < q we

have

(3.10) p− qα < b− cα.

The first statement of the following lemma is a well-known property of

principal convergents (see e.g. [2], [5], [6]), while the second and third

statements are due to Kimberling [3].

Lemma 3.1. Let α ̸= 0 be a real number, and denote by pi/qi for i ≥ 0

the principal convergents of α and by
pi,j
qi,j

for i ≥ 0, 1 ≤ j < ai+2 the

intermediate convergents of α. Then the following statements are true:

(i) If b
c
satisfies |cα− b| < |qiα− pi| then c ≥ qi+1

(ii) The best lower approximates to α are the lower convergents to α,

i.e. the fractions
pi,j
qi,j

for even i and 0 ≤ j < ai+2.

(iii) The best upper approximates to α are the upper convergents to α,

i.e. the fractions
pi,j
qi,j

for odd i and 0 ≤ j < ai+2.

Remark. The first statement of Lemma 3.1 implies as a simple corollary

that the best approximates to α are the principal convergents of α. In

the last two statements of Lemma 3.1 among the best lower and upper

approximations
pi,j
qi,j

for 0 ≤ j < ai+2 we can find the principal convergents,

i.e. the fractions with j = 0, and the intermediate convergents, i.e. the

fractions with 1 ≤ j < ai+2.

The next lemma is a classical result for continued fractions again (see e.g.

[2], [5], [6]).

Lemma 3.2. Suppose that p
q
̸= 0 is a convergent to a positive real number

α. Then q
p
is a convergent to 1

α
. The parity of the index of q

p
among

the convergents of 1
α
is opposite to the parity of the index of p

q
among the

convergents of α.
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4. Applications

In this section we give some diophantine applications of our results.

Theorem 4.1. There exist infinitely many indices k such that the terms

sk, sk+1, sk+2, sk+3 form a geometric progression.

Proof of Theorem 4.1. In fact we prove more. First note that since α := log p
log q

is transcendental, the continued fraction expansion of α contains infinitely

many terms > 1, so there are either infinitely many odd values of n with

an+1 > 1 or there are either infinitely many even values of n with an+1 > 1.

First suppose that there are infinitely many odd values of n with an+1 > 1

and take a fixed odd index n such that an+1 > 1. Observe that then we

have

qn+1 = an+1qn + qn−1 ≥ 2qn + qn−1,

and

pn+1 = an+1pn + pn−1 ≥ 2pn + pn−1.

Choose integers A and B subject to the following restrictions:

(4.1) 3qn ≤ A < 3qn + qn−1, 0 ≤ B < pn−1.

We claim that with any of the above choices for A and B, writing sk =

pAqB we have fk = pn
qn
, and the terms sk, sk+1, sk+2, sk+3 form a geometric

progression. To check these assertions, observe that both

A < qn + qn+1 ≤ min{qn+2, qn,1} and B + 2pn < pn+1

holds. Hence by Theorem 2.2 we clearly get that

sk = pAqB, sk+1 = pA−qnqB+pn , sk+2 = pA−2qnqB+2pn , sk+3 = pA−3qnqB+3pn

is a desired geometric progression. Since by our assumption there are infin-

itely many indices n having the desired property, the statement follows.

Now we also have to deal with the case when there are only finitely many

odd values of n with an+1 > 1. However, in this case there are infinitely

many even values of n with an+1 > 1 and choosing any such n a similar

construction is possible as above, just we have to choose A and B subject

to the restrictions

0 ≤ A < qn−1, 3pn ≤ B < 3pn + pn−1,
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and the desired geometric progression shall be

sk = pAqB, sk+1 = pA+qnqB−pn , sk+2 = pA+2qnqB−2pn , sk+3 = pA+3qnqB−3pn .

�

Remark. Assuming that α is not badly approximable, the sequence (sn)

contains arbitrary long geometric progressions. Indeed, in this case one can

find infinitely many indices n with an > K for any K, and applying the

argument in the proof of Theorem 4.1, our claim follows.

For n ≥ 1 write

Sn =
n∏

i=1

si.

Theorem 4.2. There exist infinitely many indices n such that Sn is a per-

fect square.

Proof of Theorem 4.2. We give a construction similar to the one from the

proof of Theorem 4.1. Take an index k such that an+1 > 1 and n is odd,

and let

A =

3qn, if qn is odd,

3qn + 1, if qn is even,

and

B =

0, if pn is odd,

1, if pn is even.

We mention, that here depending on our parity conditions we chose one of

the smallest possible values for both A and B, which fulfil (4.1).

Now put sk+1 := pAqB and observe that

pAqB, pA−qnqB+pn , pA−2qnqB+2pn , pA−3qnqB+3pn

are four consecutive terms in the sequence (sn). Write

Sk = pUqV .

Then

Sk+1 = pU+AqV+B, Sk+2 = pU+2A−qnqV+2B+pn , Sk+3 = pU+3A−3qnqV+3B+3pn ,
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and observe that by the choices of A,B and gcd(pn, qn) = 1 we have that

in one of the pairs

(U, V ), (U+A, V+B), (U+2A−qn, V+2B+pn), (U+3A−3qn, V+3B+3pn)

both entries are even. If we have infinitely many possibilities to choose an

odd n with an+1 > 1 our statement follows. If there are only finitely many

such indices n, then we have infinitely many even values of n such that

an+1 > 1 and we use a similar construction to conclude the proof of our

Theorem 4.2. �

5. Proofs of Theorems 2.1, 2.2 and 2.3

Proof of Theorem 2.1. (i) By elementary linear algebra for any y ∈ Rt we

have

d(y) = y1
log p1
u

+ · · ·+ yt
log pt
u

,

where u =
√

log2 p1 + · · ·+ log2 pt. Thus for a,b ∈ Zt
≥0 we have d(a) <

d(b) if and only if

a1 log p1 + · · ·+ at log pt < b1 log p1 + · · ·+ bt log pt

that is, if and only if

pa11 . . . patt < pb11 . . . pbtt .

This concludes the proof of part (i) of the theorem.

(ii) We prove the assertion only for the case when we are searching for the

smallest sn larger than r. The other case can be proved in the same way.

Let r ∈ R>0 and let sk be the smallest term of the strictly increasing

sequence (sn) with sk > r. Clearly, we have sk = pa11 . . . patt with some

a = (a1, . . . , at) ∈ Zt
≥0. By assumption we have

a1
log p1
u

+ · · ·+ at
log pt
u

>
log r

u
,

where u =
√
log2 p1 + · · ·+ log2 pt. This means that d(a) > log r

u
holds. Let

b = (b1, . . . , bt) ∈ Zt
≥0 arbitrary with b ̸= a and d(b) > log r

u
, and suppose

that d(b) ≤ d(a). As d(a) = d(b) is impossible, we in fact have d(b) < d(a).

However, then by

d(a) > d(b) >
log r

u
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we get

pa11 . . . patt > pb11 . . . pbtt > r,

contradicting the minimality of sn with sn > r, as above. Hence for any

b ̸= a with d(b) > log r
u

we necessarily have

d(b) > d(a) > r.

Finally, note that taking c1 ∈ N the smallest exponent for which pc11 > r,

we have d(c) > log r
u

with c = (c1, 0, . . . , 0). Thus by d(c) > d(a) > log r
u
, a

is an integral point in a bounded region of Rt, so it can be found effectively.

This concludes the proof of part (ii) of the statement. �

Proof of parts (i)-(iii) Theorem 2.3. To prove (i) suppose indirectly that for

some n ∈ N we have cn = cn+1. Then by sn+1 > sn we must have dn+1 > dn.

However, then by p < q we get

sn = pcnqdn < pcn+1qdn < pcnqdn+1 ≤ sn+1,

which contradicts the fact that sn and sn+1 are consecutive terms in the

strictly increasing sequence (sn).

Now we turn to the proof of (ii). Indirectly, suppose that for some n ∈ N
we have fn < 0. Since sn+1 > sn clearly cn > cn+1 and dn > dn+1 cannot

hold simultaneously. So the only way that fn could be negative is that

cn < cn+1 and dn < dn+1. However, then

sn = pcnqdn < pcn+1qdn < pcn+1qdn+1 ≤ sn+1,

a contradiction again. This shows that fn ≥ 0.

Now suppose that fn = 0 and sn > q. Then we have dn+1 = dn, and

by sn+1 > sn clearly cn < cn+1. Let c be that positive integer for which

pc−1 < q < pc. If dn ≥ 1 then

sn = pcnqdn < pcn+cqdn−1 < pcn+1qdn ≤ sn+1,

and if dn = 0 then

sn = pcn < pcn−c+1q < pcn+1 ≤ sn+1,

and by sn > q we see that cn − c+ 1 ≥ 0. So we find a contradiction again,

proving part (ii) of the theorem.
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For the proof of (iii) suppose that fn = dn+1−dn
cn−cn+1

is a companion fraction

such that cn > cn+1 and dn+1 > dn. We clearly have

(5.2)
0 < sn+1 − sn <sk − sn

for every k > n+ 1 with ck < cn and dk > dn.

Using si = pciqdi we get

(5.3) 0 < (dn+1 − dn)− (cn − cn+1)
log p

log q
< (dk − dn)− (cn − ck)

log p

log q
.

Now if k runs through all the possible values with k > n + 1, ck < cn and

dk > dn then (cn − ck, dk − dn) in (5.3) runs through all pairs of positive

integers with 0 < cn − ck ≤ cn, dk − dn > 0 and dk−dn
cn−ck

> log p
log q

. Indeed, this

last inequality is just sk > sn. Thus by (5.3) we see that fn = dn+1−dn
cn−cn+1

is

a best upper approximate to log p
log q

, which in turn means by Lemma 3.1 that

fn is an upper convergent to log p
log q

.

Now suppose that fn = dn+1−dn
cn−cn+1

is a companion fraction such that cn <

cn+1 and dn+1 < dn. We clearly have

(5.4)
0 < sn+1 − sn <sk − sn

for every k > n+ 1 with ck > cn and dk < dn.

Similarly as above, we can deduce

(5.5) 0 < (cn+1 − cn)− (dn − dn+1)
log q

log p
< (ck − cn)− (dn − dk)

log q

log p
.

Now a similar reasoning as above shows that cn+1−cn
dn−dn+1

is an upper convergent

to log q
log p

, which by Lemma 3.1 proves that fn = dn+1−dn
cn−cn+1

is a lower convergent

to log p
log q

. �

Proof of Theorem 2.2. Write sk = pckqdk . Our goal is to determine sk+1 =

pck+1qdk+1 . By (iii) of Theorem 2.3 we know that fk = u
v
= dk+1−dk

ck−ck+1
is a

convergent of log p
log q

.

If fn is an upper convergent, then it must be the upper convergent with

maximal denominator for which v ≤ ck holds. Indeed, if this is not true, we

have the following cases.

• If v > ck then we must have ck < ck+1 and since now fn is an upper

convergent, this contradicts (iii) of Theorem 2.3.
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• If v ≤ ck but v is not maximal among the denominators of the

upper convergents having this property, then we have another upper

convergent u′

v′
, with 0 < v < v′ ≤ ck. Thus u′

v′
is a best upper

approximate to log p
log q

so by (iii) of Lemma 3.1, putting c := ck − v′

and d := dk + u′ we obtain

0 < (d− dk)− (ck − c)
log p

log q
< (dk+1 − dk)− (ck − ck+1)

log p

log q
.

This is equivalent to

sk < pcqd < sk+1,

which contradicts the assumption that sk and sk+1 are consecutive

elements of (sn).

Similarly, using (ii) of Lemma 3.2 we can prove that if fn is a lower

convergent, then it must be the lower convergent with maximal numerator

for which u ≤ dk holds.

Now it is clear, that we have only those two possibilities for ck+1 and dk+1

which are stated in (2.2). We only need to prove that the decision among

the two possibilities can be made based on the sign of

x := |v1 log p− u1 log q| − |v2 log p− u2 log q| .

In order to show this, let us first suppose indirectly, that x < 0 but ck+1 =

ck+v2 and dk+1 = dk−u2. Since
u1

v1
is an upper convergent and u2

v2
is a lower

convergent we clearly have v1 log p− u1 log q < 0 and v2 log p− u2 log q > 0.

This shows that x < 0 can be rewritten in the form

0 < −v1 log p+ u1 log q < v2 log p− u2 log q,

which can be reformulated as

1 < p−v1qu1 < pv2q−u2 .

Multiplying this by sk = pckqdk , and using that ck+1 = ck + v2 and dk+1 =

dk − u2, we get

sk = pckqdk < pck−v1qdk+u1 < pck+v2qdk−u2 = sk+1,
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which contradicts the fact that sk and sk+1 are consecutive elements of

the sequence (sn). This means that if x < 0 then ck+1 = ck − v1 and

dk+1 = dk + u1 must be valid.

We can prove similarly that if x > 0 we have ck+1 = ck + v2 and dk+1 =

dk − u2. �

Now to continue the proof of Theorem 2.3 we need the following lemma:

Lemma 5.1. Suppose that sn = pcnqdn. Then we have the following:

(i) fn =
p2i,j
q2i,j

with 0 ≤ j < a2i+2 if and only if

(5.6)

p2i,j ≤ dn < p2i,j+1,

0 ≤ cn < q2i+1.

(ii) fn =
p2i+1,j

q2i+1,j
with 0 ≤ j < a2i+3 if and only if

(5.7)

0 ≤ dn < p2i+2,

q2i+1,j ≤ cn < q2i+1,j+1.

Proof. This is just a simple consequence of our Theorem 2.2. �

We are ready to finish the proof of Theorem 2.3:

Proof of (iv) and (v) of Theorem 2.3. Let fk =
p2i,j
q2i,j

be a lower convergent,

where 0 ≤ j < a2i+2 (it may be both a principal and an intermediate

convergent). Then by Lemma 5.1 we clearly have (5.6). Thus the number

of elements of the companion sequence which are equal to
p2i,j
q2i,j

is (p2i,j+1 −
p2i,j)q2i+1 = p2i+1q2i+1, and this proves (v) for lower convergents. Similarly,

if fk =
p2i+1,j

q2i+1,j
is an upper convergent, where 0 ≤ j < a2i+3, then by Lemma

5.1 we get (5.7), so the number of elements of the companion sequence which

are equal to
p2i+1,j

q2i+1,j
is p2i+2(q2i+1,j+1 − q2i+1,j) = p2i+2q2i+2, and this proves

(v) for upper convergents, so we have completed the proof of (v).

If fk =
p2i,j
q2i,j

is a lower convergent, then by (5.6) it is clear that the smallest

possible value for sk is qp2i,j and if fk =
p2i+1,j

q2i+1,j
, then by (5.7) it is clear that

the smallest possible value for sk is pq2i+1,j . The converse statements are

also trivial consequences of (5.6) and (5.7), so this concludes the proof of

(iv). �
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6. Proof of Theorems 2.4 and 2.5

In order to prove Theorem 2.4 and 2.5 we need to separate the cases

where l is odd and l is even. Here we only prove the case when l is odd and

we mention that the other case can be proved in the very same way. During

the proofs we shall use (3.3) several times without further reference.

For the rest of this section put l := 2i+ 1.

First we prove Theorem 2.5, since its proof is much simpler.

Proof of Theorem 2.5. Lemma 5.1 shows that if 1 ≤ j < a2i+3 then fn =
p2i+1,j

q2i+1,j
is equivalent to

(6.8)

{
0 ≤dn < p2i+2

q2i+1,j ≤cn < q2i+1,j+1.

Further, fn =
p2i+1,j

q2i+1,j
also yields cn+1 = cn − q2i+1,j and dn+1 = dn + p2i+1,j.

These, together with (6.8) show that we have

(6.9)

{
p2i+1,j ≤dn+1 < p2i+2 + p2i+1,j

0 ≤cn+1 < q2i+1,j+1 − q2i+1,j,

this latter being equivalent to

(6.10)

{
jp2i+2 + p2i+1 ≤dn+1 < (j + 1)p2i+2 + p2i+1

0 ≤cn+1 < q2i+2.

Now using 1 ≤ j < a2i+3 (6.10) has the consequence

(6.11)

{
p2i+2 ≤dn+1 < p2i+3 + p2i+2

0 ≤cn+1 < q2i+3,

which proves

(6.12) fn+1 =
p2i+2

q2i+2

.

Now we prove the statement fn−1 =
p2i+2

q2i+2
. Suppose indirectly that

(6.13) fn−1 ̸=
p2i+2

q2i+2

.
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This is equivalent to the negation of the following condition:

(6.14)

{
p2i+2 ≤dn + p2i+2 < p2i+3 + p2i+2

0 ≤cn − q2i+2 < q2i+3.

However, the negation of (6.14) is

dn ̸∈ [0, p2i+3[(6.15)

or

cn ̸∈ [q2i+2, q2i+3 + q2i+2[.(6.16)

However, using q2i+3 = a2i+3q2i+2 + q2i+1 and 1 ≤ j < a2i+3 it is easily seen

that both (6.15) and (6.16) contradict (6.8). Thus the indirect assumption

is false, and we have

(6.17) fn−1 =
p2i+2

q2i+2

.

Now (6.12) and (6.17) is just what we had to prove. �

The proof of Theorem 2.4 is more complicated, so we split it into several

lemmas. However, these lemmas may be interesting themselves, too. Recall

that l := 2i+ 1.

Lemma 6.1. Suppose that sn = pcnqdn. Then

(6.18) fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

is equivalent to

(6.19)

{
0 ≤dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤cn < q2i+2 + q2i+1.

Proof. Put sj = qcjpdj for j ∈ N. By (6.18) we have cn+l = cn − lq2i+1 and

dn+l = dn + lp2i+1 for l = 0, . . . , k− 1. Thus, by Lemma 5.1, more precisely

by (5.7) we have{
0 ≤dn + lp2i+1 < p2i+2 for l = 0, . . . , k − 1

p2i+1 ≤cn − lq2i+1 < q2i+2 + q2i+1 for l = 0, . . . , k − 1.

In fact this is a system of 2k inequalities, k of them containing cn, and

the other k containing dn. It is easy to see that the solution of this is just

(6.19). �
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Lemma 6.2. Suppose that sn = pcnqdn and 1 ≤ k ≤ a2i+2 + 1. Then

(6.20) fn−1 =
p2i+2

q2i+2

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k =
p2i+2

q2i+2

is equivalent to

(6.21)

{
max(0, p2i+2 − kp2i+1) ≤dn < p2i+2 − (k − 1)p2i+1

max(kq2i+1, q2i+2) ≤cn < q2i+2 + q2i+1.

Proof. Using Lemma 5.1 and Lemma 6.1 it is easily seen that (6.20) is

equivalent to

(6.22)



p2i+2 ≤ dn + p2i+2 < p2i+2 + p2i+3

0 ≤ cn − q2i+2 < q2i+3

0 ≤ dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤ cn < q2i+2 + q2i+1

p2i+2 ≤ dn + kp2i+1 < p2i+2 + p2i+3

0 ≤ cn − kq2i+1 < q2i+3

and this set of conditions clearly is equivalent to (6.21). �

Lemma 6.3. Suppose that sn = pcnqdn and 1 ≤ k ≤ a2i+2 + 1. Then

(6.23) fn−1 =
p2i,k−1

q2i,k−1

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k =
p2i,k−1

q2i,k−1

is equivalent to

(6.24)

{
0 ≤dn < p2i

kq2i+1 ≤cn < kq2i+1 + q2i.

Proof. Using Lemma 5.1 and Lemma 6.1 it is easily seen that (6.23) is

equivalent to

(6.25)



p2i,k−1 ≤ dn + p2i,k−1 < p2i,k

0 ≤ cn − q2i,k−1 < q2i+1

0 ≤ dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤ cn < q2i+2 + q2i+1

p2i,k−1 ≤ dn + kp2i+1 < p2i,k

0 ≤ cn − kq2i+1 < q2i+1
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and (using also (3.3)) this set of conditions is clearly equivalent to (6.24). �

Lemma 6.4. Suppose that sn = pcnqdn and 1 ≤ k < a2i+2 + 1. Then

(6.26) fn−1 =
p2i,k−1

q2i,k−1

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k =
p2i,k
q2i,k

is equivalent to

(6.27)

{
p2i ≤dn < p2i+1

kq2i+1 ≤cn < kq2i+1 + q2i.

Proof. Here we have to split the proof in two cases, depending on k < a2i+2

or k = a2i+2.

If k < a2i+2 then using Lemma 5.1 and Lemma 6.1 it is easily seen that

(6.26) is equivalent to

(6.28)



p2i,k−1 ≤ dn + p2i,k−1 < p2i,k

0 ≤ cn − q2i,k−1 < q2i+1

0 ≤ dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤ cn < q2i+2 + q2i+1

p2i,k ≤ dn + kp2i+1 < p2i,k+1

0 ≤ cn − kq2i+1 < q2i+1

and (using also (3.3)) this set of conditions is clearly equivalent to (6.27).

If k = a2i+2 then the same argument applies, except that the last two

conditions in (6.28) are replaced by

(6.29)
p2i+2 ≤ dn + kp2i+1 < p2i+2 + p2i+3

0 ≤ cn − kq2i+1 < q2i+3.

However, this set of conditions will be equivalent to the same (6.27) as in

the case k < a2i+2. �

Lemma 6.5. Suppose that sn = pcnqdn and 1 ≤ k < a2i+2 + 1. Then

(6.30) fn−1 =
p2i,k
q2i,k

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k =
p2i,k−1

q2i,k−1

is equivalent to

(6.31)

{
0 ≤dn < p2i

kq2i+1 + q2i ≤cn < (k + 1)q2i+1.
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Proof. Here we have to split the proof in two cases, depending on k < a2i+2

or k = a2i+2.

If k < a2i+2 then using Lemma 5.1 and Lemma 6.1 it is easily seen that

(6.26) is equivalent to

(6.32)



p2i,k ≤ dn + p2i,k < p2i,k+1

0 ≤ cn − q2i,k < q2i+1

0 ≤ dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤ cn < q2i+2 + q2i+1

p2i,k−1 ≤ dn + kp2i+1 < p2i,k

0 ≤ cn − kq2i+1 < q2i+1

and (using also (3.3)) this set of conditions is clearly equivalent to (6.31).

If k = a2i+2 then the same argument applies, except that the first two

conditions in (6.32) are replaced by

(6.33)
p2i+2 ≤ dn + p2i+2 < p2i+2 + p2i+3

0 ≤ cn − q2i+2 < q2i+3.

However, this set of conditions will be equivalent to the same (6.31) as in

the case k < a2i+2. �

Lemma 6.6. Suppose that sn = pcnqdn and 1 ≤ k < a2i+2. Then

(6.34) fn−1 =
p2i,k
q2i,k

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k =
p2i,k
q2i,k

is equivalent to

(6.35)

{
p2i ≤dn < p2i+1

kq2i+1 + q2i ≤cn < (k + 1)q2i+1.

Remark. We mention that the case k = a2i+2 is just the case described by

Lemma 6.2.
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Table 1.

1 ≤ k < a2i+2

D1 ∅

D2

{
dn ∈ [0, p2i+1[

cn ∈ [kq2i+1, (k + 1)q2i+1[

D3

{
dn ∈ [p2i+2 − kp2i+1, p2i+2 − (k − 1)p2i+1[

cn ∈ [q2i+2, q2i+1 + q2i+2[

D4 ∅

Proof. Using Lemma 5.1 and Lemma 6.1 it is easily seen that (6.26) is

equivalent to

(6.36)



p2i,k ≤ dn + p2i,k < p2i,k+1

0 ≤ cn − q2i,k < q2i+1

0 ≤ dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤ cn < q2i+2 + q2i+1

p2i,k ≤ dn + kp2i+1 < p2i,k+1

0 ≤ cn − kq2i+1 < q2i+1

and (using also (3.3)) this set of conditions is clearly equivalent to (6.35). �

Lemma 6.7. Suppose that sn = pcnqdn and 1 ≤ k ≤ a2i+2 + 1. Then

(6.37) fn−1 ̸=
p2i+1

q2i+1

, fn = fn+1 = · · · = fn+k−1 =
p2i+1

q2i+1

, fn+k ̸=
p2i+1

q2i+1

.

is equivalent to

(dn, cn) ∈ D1 ∪D2 ∪D3 ∪D4,

where the sets Di are given in Tables 1, 2 and 3.

Proof. By Lemma 6.1 we already know that (6.18) is equivalent to (6.19),

and by Lemma 5.1that fn−1 =
p2i+1

q2i+1
is equivalent to

(6.38)

{
0 ≤dn − p2i+1 < p2i+2

q2i+1 ≤cn + q2i+1 < q2i+1 + q2i+2.
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Table 2.

k = a2i+2

D1

{
dn ∈ [p2i+2 − kp2i+1, p2i+1[

cn ∈ [kq2i+1, q2i+1 + q2i+2[

D2

{
dn ∈ [0, p2i+1[

cn ∈ [kq2i+1, (k + 1)q2i+1[

D3

{
dn ∈ [p2i+2 − kp2i+1, p2i+2 − (k − 1)p2i+1[

cn ∈ [q2i+2, q2i+1 + q2i+2[

D4

{
dn ∈ [0, p2i+2 − (k − 1)p2i+1[

cn ∈ [q2i+2, (k + 1)q2i+1[

Table 3.

k = a2i+2 + 1

D1

{
dn ∈ [0, p2i+2 − (k − 1)p2i+1[

cn ∈ [kq2i+1, q2i+1 + q2i+2[

D2

{
dn ∈ [0, p2i+2 − (k − 1)q2i+1[

cn ∈ [kq2i+1, (k + 1)q2i+1[

D3

{
dn ∈ [0, p2i+2 − (k − 1)p2i+1[

cn ∈ [kq2i+1, q2i+1 + q2i+2[

D4

{
dn ∈ [0, p2i+2 − (k − 1)p2i+1[

cn ∈ [kq2i+1, q2i+1 + q2i+2[

and that under the assumption sn+k−1 = pcn−kq2i+1qdn+kp2i+1 the statement

fn+k =
p2i+1

q2i+1
is equivalent to

(6.39)

{
0 ≤dn + kp2i+1 < p2i+2

q2i+1 ≤cn − kq2i+1 < q2i+1 + q2i+2.
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Clearly, the necessary and sufficient condition for (6.37) is (6.19) and not

(6.38) and not (6.39), however, this latter is equivalent to

dn ∈ [0, p2i+2 − (k − 1)p2i+1[(6.40)

and

cn ∈ [kq2i+1, q2i+1 + q2i+2[(6.41)

and
dn ∈]−∞, p2i+1[∪[p2i+1 + p2i+2,∞[

or

cn ∈]−∞, 0[∪[q2i+2,∞[

(6.42)

and
dn ∈]−∞,−kp2i+1[∪[p2i+2 − kp2i+1,∞[

or

cn ∈]−∞, (k + 1)q2i+1[∪[(k + 1)q2i+1 + q2i+2,∞[.

(6.43)

The above system in fact leads to four systems of inequalities depending

on which part of (6.42) and (6.43) is considered. We shall call the solution

set of these systems by Di for i = 1, 2, 3, 4, and the union of the solutions

of these systems is the equivalent condition for (6.37). Depending on the

value of k these solutions may differ, and the corresponding solutions to the

different possibilities for k are just those summarized in Tables 1, 2 and 3.

�

Proof of Theorem 2.4. To prove our theorem it is enough to show that the

sets specified by the relations (6.21), (6.24), (6.27), (6.31) and (6.35) cover

exactly the same possibilities for (cn, dn), as the set D1 ∪ D2 ∪ D3 ∪ D4,

where the sets Di are given in Tables 1, 2 and 3.. We have to split our proof

in three parts.

If k < a2i+2 then (6.21) takes the form

(6.44)

{
p2i+2 − kp2i+1 ≤dn < p2i+2 − (k − 1)p2i+1

q2i+2 ≤cn < q2i+2 + q2i+1.
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This is just the same as D3. Further, in this case the sets specified in (6.24),

(6.27), (6.31) and (6.35) give a pairwise disjoint union of the set D2. Taking

in account that we also have D1 = D4 = ∅ our proof is finished.

If k = a2i+2 then (6.21) takes again the form (6.44). In this case sets Di

are not pairwise disjoint, however, here it is also easy to see that the union

of the pairwise disjoint sets specified by (6.21), (6.24), (6.27) and (6.31) is

just the set D1 ∪D2 ∪D3 ∪D4, which proves our theorem for k = a2i+2.

Finally, the case k = a2i+2 + 1 is the simplest, since in this case (6.21)

take the form

(6.45)

{
0 ≤dn < p2i+2 − (k − 1)p2i+1

kq2i+1 ≤cn < q2i+2 + q2i+1.

Further D2 ⊂ D1 = D3 = D4 shows that D1 ∪D2 ∪D3 ∪D4 = D1, which

is just the set specified by (6.45)

�
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