SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET POSLIJEDIPLOMSKI STUDIJ PRIRODNIH ZNANOSTI FIZIKA

Ante Bilušić

Proučavanje procesa toplinskog transporta u kvazikristalima, niskodimenzionalnim sistemima i fulerenima

Doktorski rad

predložen Fizičkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog stupnja doktora prirodnih znanosti (fizika)

Zagreb, travanj 2003.

Mojim roditeljima

Ovaj je doktorski rad načinjen na Institutu za fiziku pod mentorstvom **dr.** sc Ane Smontare. Želim joj se od srca zahvaliti na idejama i sugestijama, na upornosti i neizmjernoj energiji koje su često bile ključne za nastavak započetog posla, na imanju vizije što je u konačnici i rezultiralo ovim radom. Još jednom, hvala!

Velika hvala i **prof. Boranu Leontiću** te **akademiku Slavenu Barišiću** za potporu i korisne savjete te na pažljivom čitanju teksta ovoga rada.

Prof. Lászlu Forróu veliko hvala na iskazanoj podršci i pomoći pri savladavanju eksperimentalnih problema. **Prof. Janezu Dolinšeku** se iskreno zahvaljujem za bolje razumijevanju fizike kvazikristala te gostoprimstvo iskazano prilikom mojih posjeta Institutu Jožefa Stefana u Ljubljani. Riječi zahvale upućujem **dr. sc Đuri Drobcu** i **dr. sc Eduardu Tutišu** za pažnju i savjete pri prevazilaženju bilo eksperimentalnih bilo teorijskih problema koji izviru gotovo svakodnevno.

Velika hvala prof. Antunu Tonejcu, prof. Anđelki Tonejc i dipl. ing. Silviji Gradečak za rasvjetljavanje tajne strukture tvrdoga ugljika. Za razumijevanje mehanizama vođenja topline u tvrdome ugljiku zahvaljujem dr J.-C. Lasjauniasu, kao i za otkrivanje tajni postizanja vrlo niskih temperatura prilikom mog jednomjesečnog boravka u Grenobleu. Za eksperimente širenja ultrazvuka u tvrdom ugljiku zahvaljujem dr Michelu Saint-Paulu. Želim se najiskrenije zahvaliti i prof. H. R. Ottu na gostoprimstvu za moga boravka u Zürichu, tijekom kojega sam sebi odgovorio ne neka pitanja o načinu vođenja topline u kvazikristalima.

Velika hvala **dr. sc Katarini Uzelac** i **dr. sc Berislavu Horvatiću** na pažljivom čitanju teksta i prijedlozima za njegovo poboljšanje. Ovom prilikom želim zahvaliti svima zaposlenicima Instituta za fiziku koji su mi boravak na njemu učinili lijepim i ugodnim. Želio bih posebno istaknuti izvrsne "meštre" **gosp. Marijana Marukića** i **gosp. Krešu Drvodelića**. Na ugodnim i opuštajućim trenucima provedenim uz nogometnu loptu želim zahvaliti suigračima iz neformalne momčadi Instituta (**Željku**, **Hrgi, Osoru, Ivici, Kreši, Damiru, Predragu**) te suparnicima s Fizičkog odsjeka okupljenima u momčad *Stekli pesi*.

I na kraju dolaze oni bez čije ljubavi, podrške i pomoći ne bi bilo ni ovoga rada: moja obitelj, posebice roditelji. Velika, najveća im hvala na svemu!

SADRŽAJ

1.	Uvo	d		1
	1.1	Kvazil	kristali	2
	1.2	Tvrdi	ugljici	6
	1.3	Niskoo	dimenzionalni sistemi	8
2.	Teor	rijska p	ozadina	11
	2.1	Niskoo	dimenzionalni sistemi s valovima gustoće naboja	11
		2.1.1	Toplinska vodljivost kristala	19
		2.1.2	Kvazijed nodimenzionalni materijal $({\rm TaSe}_4)_2 {\rm I}$	25
	2.2	Ikozae	edarski kvazikristali	27
		2.2.1	Transportna svojstva	41
		2.2.2	Toplinska vodljivost	44
	2.3	Amorf	fne strukture i tvrdi ugljici	50
		2.3.1	Toplinska vodljivost amorfnih struktura	51
		2.3.2	Tvrdi ugljici	57
3.	Eksp	perimer	ntalne metode	61
	3.1	Mjere	nje električne otpornosti	61
	3.2	Mjerer	nje toplinske vodljivosti	62
4.	Rezi	ultati i	analiza	73

Sadržaj

	4.1	$(TaSe_4$	$_{2})_{2}$ I	3
		4.1.1	Električna otpornost	3
		4.1.2	Toplinska vodljivost	7
		4.1.3	Zaključak	3
	4.2	<i>i</i> -AlPd	lMn)
		4.2.1	Električna otpornost)
		4.2.2	Toplinska vodljivost)
		4.2.3	Zaključak	2
	4.3	Tvrdi	ugljik	3
		4.3.1	Struktura	1
		4.3.2	Eksperimenti gušenja ultrazvuka	3
		4.3.3	Toplinska vodljivost	3
		4.3.4	Zaključak)
5.	Saže	tak i za	ıključci	L
_	~			
6.	Sum	mary)
7.	Živo	topis .		L

POPIS SLIKA

1.1	Prvi zapis o postojanju kvazikristala	3
1.2	Difraktogram ikozaedarskog kvazikristala	4
1.3	Toplinska vodljivost ikozaedarskih kvazikristala i amorfnih ma-	
	terijala	5
1.4	Molekula C_{60}	7
1.5	Toplinska vodljivost tvrdih ugljika	8
1.6	$(TaSe_4)_2I$ - spektar ARPES-a	9
2.1	Lindhardova funkcija odziva elektronskog plina na T=0	12
2.2	Gniježđenje Fermijeve plohe	13
2.3	Kohnova anomalija	15
2.4	Shematski prikaz fazonskih i amplitonskih modova titranja $\ .$	16
2.5	Ovisnost elektronske gustoće stanja o međulančanom vezanju	
	kvazijednodimenzionalnih materijala	18
2.6	Struktura $(TaSe_4)_2I$	26
2.7	Tetramerizacija u $(TaSe_4)_2I$	27
2.8	Intenzitet Fourierovovog spektra Fibonaccijevog i 1-D lanca	29
2.9	Samosličnost Fibonaccijevog lanca	30
2.10	Penroseovo popločavanje	32
2.11	Fibonaccijev lanac nastao projekcijom dvodimenzionalne pe-	
	riodične rešetke	33

2.12	Pseudo-Mackayev ikozaedar	34
2.13	Hijerarhijska struktura ikozaedraskog kvazikristala	35
2.14	Disperzijska krivulja titranja Fibonaccijevog lanca	37
2.15	Neelastično raspršenje neutrona na kvazikristalima $i\text{-}\mathrm{AlPdMn}$	39
2.16	Disperzivna krivulja kvazi kristala $i\mathchar`-AlPdMn$	40
2.17	Toplinska vodljivost kristaliničnog i kvarcnog stakla	52
2.18	Toplinska vodljivost epoksi-smole	56
2.19	sp^3 i sp^2 hibridizirane orbitale	57
2.20	Struktura dijamanta i grafita	58
2.21	Fazni dijagram fuleren a ${\rm C}_{60}$	60
3.1	Princip mierenia električnog otpora	62
3.2	Princip mierenja toplinske vodljivosti apsolutnom metodom	64
3.3	Termostruje termočlanaka kromel-konstantan i kromel-AuFe0.07%	65
3.4	Toplinska vodljivost zlata i konstantana	67
3.5	Vrh nosača uzoraka za mjerenje toplinske vodljvosti - tlocrt	68
3.6	Vrh nosača uzoraka za mjerenje toplinske vodljvosti - bokocrt	70
3.7	Nosač za mjerenje toplinske vodljivsti	71
4.1	Električna otpornost $(TaSe_4)_2I$	74
4.2	Poluprocjep u elektronskoj disperziji $(TaSe_4)_2I$	77
4.3	Toplinska vodljivost $({\rm TaSe}_4)_2 {\rm I}$	79
4.4	Toplinska vodljivost $(\mathrm{TaSe}_4)_2\mathrm{I}$ - prilagodba na Umklapp-raspršenj	е
	fonona i efektivni Lorenzov broj	81
4.5	Analiza toplinske vodlji vosti $(\mathrm{TaSe}_4)_2\mathrm{I}$ u smjeru lanaca - polaroni	84
4.6	Analiza toplinske vodljivosti (TaSe ₄) ₂ I u smjeru lanaca - elek-	
	troni	86

4.7	Analiza toplinske vodljivosti $(\mathrm{TaSe}_4)_2\mathrm{I}$ u smjeru okomitom na
	lance
4.8	Električna otpornost kvazikristala i z $i\text{-}\mathrm{AlPdMn}$ obitelji \ldots . 91
4.9	Rezultati prilagod be otpornosti kvazikristala $i\mathchar`-\mbox{AlPdMn}$ na mo-
	dele KG i QIE
4.10	Rezultat prilagod be otpornosti kvazikristala $i\text{-}\mathrm{AlPdMn}_{8.5}$ na
	modificirani model KG
4.11	Toplinska vodljivost kvazikristala iz obitelji $i\text{-}\mathrm{AlPdMn}$ 100
4.12	Elektronski doprinos toplinskoj vodljivosti kvazikristala i z $i\text{-}$
	AlPdMn obitelji
4.13	Prilagodba toplinske vodljivosti kvazikristala iz $i\text{-}\mathrm{AlPdMn}$ obitelji
	na Debye-ov model
4.14	Toplinska vodljivost kvazi rešetke kvazikristala $i\mathchar`-\mbox{AlPdMn}$ 111
4.15	Spektar dobiven difrakcijom X-zraka na tvrdom ugljiku 114
4.16	Slika dobivena transmisijskom elektronskom mikroskopijom na
	tvrdom ugljiku
4.17	Slika dobivena skenirajućom elektronskom mikroskopijom na
	tvrdom ugljiku (veće povećanje)
4.18	Slika dobivena skenirajućom elektronskom mikroskopijom na
	tvrdom ugljiku (manje povećanje)
4.19	Frekvencijska ovisnost gušenja ultrazvuka na sobnoj tempera-
	turi tvrdog ugljika i staklastog kvarca
4.20	Slika dobivena skenirajućom elektronskom mikroskopijom na
	tvrdom ugljiku (veličina zrna) \hdots

4.21	Niskofrekventno gušenje longitudinalnih ultrazvuka na sobnoj
	temperaturi tvrdog ugljika i staklastog kvarca
4.22	Relativna promjena brzine longitudinalnih ultrazvuka na frekven-
	ciji od 15 MHz
4.23	Toplinska vodljivost tvrdog ugljika i staklastog kvarca 124
4.24	Toplinska vodljivost različitih tvrdih ugljika
4.25	Analiza toplinske vodljivosti tvrdog ugljika

POPIS TABLICA

2.1	Fibonaccijev niz
3.1	Procjene gubitka topline preko žica termočlanaka 66
4.1	Vrijednosti električne otpornosti i toplinske vodljivosti te nji-
	hovi omjeri $(TaSe_4)_2I$ na nekim temperaturama $\dots \dots \dots$
4.2	Parametri dobiveni prilagod bom toplinske vodljivosti $({\rm TaSe}_4)_2 {\rm I}~80$
4.3	Pokrate korištene za uzorke kvazikristala $i\mathchar`-AlPdMn,$ metode
	njihovog dobivanja i dimenzije uzoraka
4.4	Parametri dobiveni prilagodbom električnog otpora kvazikristala
	$i\text{-}\mathrm{AlPdMn}$ na modele QIE i KG \ldots
4.5	Vrijednosti toplinske vodljivosti i električne otpornosti kvazikristala
	<i>i</i> -AlPdMn na temperaturi 6 K
4.6	Usporedba toplinskih vodljivosti kvazirešetke različitih uzo-
	raka kvazikristala
4.7	Brzina zvuka u kvazikristalima <i>i</i> -AlPdMn
4.8	Parametri dobiveni prilagodbom toplinske vodljivosti kvazirešetke
	<i>i</i> -AlPdMn na Debye-ov model
4.9	Podaci difrakcije X-zraka za dijamant, grafit i tvrdi ugljik 115
4.10	Metode dobivanja različitih tvrdih ugljika

Popis tablica

1. UVOD

Potraga za novim materijalima fizičarima predstavlja stalan izazov. Taj se izazov ne ogleda samo u traženju objašnjenja fizikalnih svojstava novosintetiziranih materijala, nego i u pokušajima njihove primjene u svakodnevnom životu. Od mnoštva takvih materijala, ovaj će se doktorski rad posvetiti kvazikristalima, tvrdim ugljicima sintetiziranim na bazi fulerena i niskodimenzionalnim sistamima. Istraživani su mehanizmi vođenja naboja i topline; to nam daje uvid u dinamična svojstva i elektrona i rešetke, međudjelovanja koja oni doživljavaju, te na način kako sama struktura, koja je u sve tri promatrane kategorije materijala specifična, utječe na njih. Ova tri tipa materijala nisu odabrana slučajno; razina strukturnog uređenja se kreće od potpune neuređenosti kod tvrdih ugljika, preko neperiodične uređenosti kod kvazikristala, sve do periodične uređenosti uz istaknutu anizotropiju, koja postoji u niskodimenzionalnim sustavima.

U ovome je poglavlju dano kratko objašnjenje ciljeva istraživanja kod sva tri materijala. Poglavlje 2 donosi teorijsku osnovu za objašnjenje rezultata. Eksperimentalne metode korištene u ovome radu su opisane u 3. poglavlju, a rezultati i njihova raščlamba u poglavlju broj 4. Na kraju, 5. poglavlje sadrži zaključke koji se tiču ovoga rada.

1.1 Kvazikristali

Prvi objavljeni rezultati o sintezi kvazikristala su objavljeni 1984. godine [1]. Cinjenica da postoji dugodosežno uređena a neperiodična krutnina je toliko iznenadila same njene tvorce da je dobiveni rezultat stajao 'u ladici' dobre dvije godine prije svog objavljivanja (slika 1.1). Do tada su u svijetu kristalografije pojmovi periodičnosti i dugodosežne uređenosti predstavljali sinonime; novodobiveni difraktogrami, poput onoga prikazanog na slici 1.2, su prisilili Međunarodnu kristalografsku udrugu na redefiniranje pojma kristala. Ta nova definicija kaže da je kristal "... bilo koja krutnina s diskretnim difrakcijskim dijagramom." [2]. A što je, ustvari, kvazikristal? Matematički točan opis kvazikristalne strukture definira je kao onu koju nije moguće opisati modulacijom neke osnovne strukture ili pak kao superpoziciju dviju ili više podstruktura. Na temelju kristalografskih ispitivanja sintetiziranih uzoraka kvazikristala, kvazikristal se može definirati i manje matematički egzaktnim načinom kao krutninu s dugodosežnim uređenjem (vidljivu kroz oštre difrakcijske maksimume) i s osima simetrije bilo petog, osmog, desetog ili dvanaestog reda. Obzirom na red osi njihove simetrije, kvazikristali se redom nazivaju ikozaedarskim, okto-, deka- i dodeka- gonalnim.

Transport naboja i topline u kvazikristalima je uvjetovan specifičnošću njihove strukture, o čemu će više biti riječi u sljedećim poglavljima ovoga rada. Iznos električne otpornosti na sobnim temperaturama kod različitih obitelji ikozaedarskih kvazikristala se kreće između 10 i 40 $\mu\Omega m$ [3–6], što je tri reda veličine viša otpornost nego kod metala, ili pak red veličine do dva manje nego kod poluvodiča [7]. Krivulja električne otpornosti kvazikristala ima negativan temperaturni koeficijent; omjer $\rho(4K)/\rho(300K)$ se kreće od

Slika 1.1: Schechtmanova laboratorijska bilježnica u kojoj je prvi puta zabilježeno postojanje kvazikristalne strukture. Obratiti pažnju na datum u gornjem desnom kutu te na nevjericu kojom je popraćena mogućnost postojanja osi simetrije desetog reda.

1 do 2 za *i*-AlCuFe [3, 5], *i*-AlPdMn [6] i *i*-AlPdRe [4] do 150 za neke pripadnike obitelji *i*-AlPdRe [8]. Na temperaturama nižim od tridesetak Kelvinovih stupnjeva električna otpornost kvazikristala u pravilu ima maksimum, što je objašnjeno učincima kvantne interferencije. U slučaju kvazikristala iz obitelji *i*-AlPdMn maksimum u krivulji $\rho(T)$ je na mnogo višim temperaturama (do oko 150 K); djelovanje kvantne inteferencije na tako visokim temperaturama bi trebalo biti zasjenjeno termičkim fluktuacijama. Kvazikristali iz obitelji *i*-AlPdMn su specifični po tome što atomi mangana posjeduju magnetske momente i predloženi su modeli tipa Kondo [9] za objašnjenje krivulja električne otpornosti. U ovom je radu, na temelju mjerenja krivulja elek-

Slika 1.2: Tipični difrakcijski dijagram jednog ikozedarskog kvazikristala.

trične otpornosti više uzoraka visoke strukturne kakvoće iz obitelji *i*-AlPdMn, predložen alternativni model električne otpornosti koji u obzir također uzima postojanje magnetskih momenata kao centara raspršenja elektrona, ali mehanizam njihovog raspršenja nije Kondo-tipa.

Otvoreno je i pitanje načina na koji se vodi toplina u kvazikristalima: je li on sličniji vođenju topline u amorfnim materijalima ili pak u kristalima? Na temelju rezultata danih na slici 1.3 (preuzete iz izvora [13]), dalo bi se zaključiti da je po temperaturnom ponašanju toplinska vodljivost kvazikristala vrlo slična onoj amorfnih materijala. Jedna od glavnih značajki amorfne prirode vođenja topline je raspršenje fonona malog valnog vektora (a jedino takvi fononi mogu postojati u neuređenoj rešetki) na tunelirajućim stanjima. Zatim, tu je postojanje karakteristične zaravni na temperaturama reda 10 K, te naposljetku linearan porast toplinske vodljivosti s porastom temperature iznad 100 K. Mjerenja toplinske vodljivosti na drugim uzorcima iz obitelji

Slika 1.3: Toplinska vodljivost kvazikristala iz obitelji *i*-AlPdMn te *i*-AlPdRe uspoređena s toplinskom vodljivošću neuređenih materijala a-SiO₂ i a-As₂S₃. Podaci označeni s (a) su preuzeti iz [10], s (b) iz [11], s (c) iz [12], dok su podaci nacrtani crnim kružićima iz [13]; podaci o toplin-skoj vodljivosti *i*-AlPdRe su iz [14]. Dvije isprekidane linije označavaju granične vrijednosti toplinskih vodljivosti mjerenih neuređenih struktura. Iz ovoga se dâ zaključiti da je toplinska vodljivost kvazikristala vrlo slična onoj u amorfnih materijala.

i-AlPdMn [15] te na uzorku iz ikozaedarske obitelji *i*-YMgZn [16] ukazuju na ponašanje različito od onoga prikazanog na slici 1.3: na temperaturama nižim od 1 K dugovalni fononi nisu raspršeni na tunelirajućim stanjima, čije je postojanje, kako je već prije navedeno, jedan od pečata neuređene strukture. Legault i ostali [15] su to u slučaju kvazikristala *i*-AlPdMn povezali sa sastavom uzorka i/ili metodom kojom je uzorak sintetiziran. Zatim, na temperaturama od dvadesetak Kelvinovih stupnjeva krivulje toplinske vodljivosti nemaju zaravni nego blage maksimume [5, 12, 16]. Dakle, postojeći eksperimentalni rezultati toplinske vodljivosti ne daju jednoznačan odgovor na pitanje prirode vođenja topline u ikozaedarskim kvazikristalima. U sklopu ovoga rada izvršena su sustavna mjerenja toplinske vodljivosti u temperaturnom području koje pokriva tri reda veličine (od 0.4 K do 300 K) na uzorcima iz obitelji *i*-AlPdMn vrlo visoke strukturne kakvoće, različitih sastava i sintetiziranih različitim postupcima; željelo se dati odgovore na pitanja o prirodi vođenja topline u kvazikristalima (odn. je li sličnije onome u neuređenim ili uređenim sustavima) te u kolikoj mjeri na nju utječe kemijski sastav i način pripreme uzorka.

1.2 Tvrdi ugljici

Nekako u isto vrijeme kada je objavljena sinteza prvog kvazikristala, mnogo veću pažnju znanstvenika pobudila je sinteza još jednog novog materijala. Riječ je o fulerenu C_{60} , novoj alotropskoj modifikaciji ugljika [17], čiji je izgled molekule prikazan na slici 1.4. Molekule fulerena na sobnoj temperaturi kristaliziraju u prostorno centriranu kubičnu rešetku, da bi na temperaturama između 252 K i 258 K došlo do preraspoređivanja molekula u jednostavnu kubičnu rešetku. Tako dobiveni kristali fulerena su mekani, ali su proračuni čvrstoće jedne molekule fulerena pokazali da bi ona trebala biti veća od čvrstoće dijamanta! Time se otvorila nova mogućnost dobivanja umjetnog dijamanta podvrgavanjem kristala C_{60} visokim tlakovima i temperaturama.

Slika 1.4: Izgled molekule fulerena C₆₀, treće alotropske modifikacije ugljika.

I doista, pri nehidrostatskom tlaku od 20 GPa nastaje polikristalinični dijamant [18]. Primjenom nižih tlakova nastaje čitav niz faza fulerena, jedna od kojih je i amorfna faza tzv. "tvrdog ugljika".

Dosadašnja ispitivanja vođenja topline u tvrdim ugljicima [19] i još nekim amorfnim fazama dobivenih podvrgavanjem fulerena C_{60} visokim tlakovima [20,21] (slika 1.5) ostavila su otvorenim pitanje ponaša li se njihova toplinska vodljivost kao i kod ostalih amorfnih materijala. Tako se zaravan ne javlja na temperaturama od desetak Kelvinovih stupnjeva nego između 50 K i 100 K; karakteristični linearni porast toplinske vodljivosti se kod tvrdih ugljika javlja na mnogo širem temperaturnom intervalu nego je to uobičajeno kod amorfnih struktura; niskotemperaturno ponašanje toplinske vodljivosti je ostalo neistraženo. Ova su pitanja potakla istraživanje toplinske vodljivosti na temperaturama od 0.1 K do 300 K u cilju iznalaženja odgovora na njih, što će biti predstavljeno u ovom doktorskom radu.

Slika 1.5: Toplinska vodljivost tvrdih ugljika. Podaci za tvrdi ugljik-1 su uzeti iz izvora [19], HPS-1 i HPS-2 iz [20], a za polikristalinični C_{60}/C_{70} iz [21].

1.3 Niskodimenzionalni sistemi

Sistemi sa smanjenom dimenzionalnošću privlače pažnju znanstvenika zadnjih nekoliko desetljeća. Pod smanjenom dimenzionalnošću se podrazumijevaju materijali koji su izrazito strukturno anizotropni; tako su primjerice kvazijednodimenzionalni materijali načinjeni od međusobno relativno slabo povezanih molekularnih lanaca. Smanjena dimenzionalnost je plodno tlo za razvoj zanimljivih fizikalnih pojava, poput kolektivnih elektronskih pobuđenja kao što je stvaranje valova gustoće naboja ili spina.

 $(TaSe_4)_2I$ je kvazijednodimenzionalni materijal koji na temperaturama

Slika 1.6: Spektar ARPES-a na temperaturi od 100 K i Fermijevom valnom vektoru k_F [22, 23]. Umetak prikazuje temperaturnu ovisnost energije Δ_0 na kojoj signal postane različitim od nule.

između 240 K i 265 K doživljava Peierlsov prijelaz. Iako je teorijska osnova koja opisuje pojavu Peierlsovog prijelaza i stvaranje valova gustoće naboja dobro razvijena, $(TaSe_4)_2I$ je, u neku ruku, 'karika koja nedostaje'; tek je nedavno i eksperimentalno dokazana tetramerizacija jedinične ćelije, dok je priroda elektronskih stanja i njihovih pobuđenja i dalje zagonetna. Dosadašnji eksperimentalni podaci su dosta kontradiktorni i idu u prilog dvjema oprečnim slikama elektronskih pobuđenja na temperaturama višoj od temperature Peierlsovog prijelaza: polaronskoj i slici fluktuirajućeg parametra uređenja. Na slici 1.6 je prikazan tipični izgled spektra dobivenog kutno razlučivom fotoemisijskom spektroskopijom (ARPES, od engl. Angle Resolved Photoemission Spectroscopy) na $(TaSe_4)_2I$ pri konstantnom valnom vektoru [22, 23]. Ovi rezulati ukazuju da je iznos energetskog procjepa u elektronskoj disperziji veći od onoga procjenjenog mjerenjima transporta; za objašnjenje toga neslaganja predložen je model polaronske prirode stanja kvazičestica. U sklopu ovoga rada su prikazani rezultati podataka električne otpornosti i toplinske vodljivosti mjerenih u smjeru lanaca i okomito na njih. Analizom tih podataka se nastojalo pridonijeti boljem shvaćanju prirode elektronskih i fononskih pobuđenja u $(TaSe_4)_2I$.

2. TEORIJSKA POZADINA

2.1 Niskodimenzionalni sistemi s valovima gustoće naboja

Nestabilnost elektronskog plina na vanjsku pobudu koja se veže na gustoću elektrona je njegovo fundamentano svojstvo, a ogleda se kroz Lindhardovu funkciju odziva [7]:

$$\chi_{\mathbf{q}} = \frac{\langle \rho_{\mathbf{q}} \rangle}{\phi_{\mathbf{q}}} = \sum_{\mathbf{k}} \frac{f_{\mathbf{k}} - f_{\mathbf{k}+\mathbf{q}}}{\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{q}}}$$
(2.1)

gdje je $\langle \rho_{\mathbf{q}} \rangle$ usrednjena gustoća elektronskog plina , $\phi_{\mathbf{q}}$ (skalarni) potencijal vanjske pobude, $f_{\mathbf{k}}$ Fermijeva funkcija raspodele, a $\epsilon_{\mathbf{k}}$ energija elektrona. U jednodimenzionalnom slučaju pri temperaturi apsolutne nule, funkcija odziva χ_q je divergentna za $q = 2k_F$ (k_F je Fermijev valni vektor):

$$\chi_q \propto \frac{1}{q} \ln \left| \frac{q + 2k_F}{q - 2k_F} \right| \tag{2.2}$$

Povećavanjem dimenzionalnosti, divergentno ponašanje funkcije odziva slabi. Na slici je 2.1 je grafički prikazano ponašanje $\chi_{\mathbf{q}}$ za 1-, 2- i 3-D elektronski plin pri T = 0. Razlog zbog kojeg je ponašanje funkcije $\chi_{\mathbf{q}}$ divergentno leži u takozvanom *gniježđenju* Fermijeve plohe. To je pojava kada se pomakom za neki valni vektor \mathbf{Q} čitava Fermijeva ploha, ili samo dio nje, preslikava sama u sebe (čime razlomak u izrazu 2.1 za ugniježđene dijelove Fermijeve plohe postane singularnim). Na slici 2.2 je skicirana pojava

Slika 2.1: Odgovor elektronskog plina na vanjsku pobudu opisan je funkcijom odziva $\chi_{\mathbf{q}}$, danom jednadžbom (2.1). Slika prikazuje ovisnost odzivne funkcije o dimenzionalnosti sustava na temperaturi apsolutne nule. Za $|\mathbf{q}| = 2k_F$ u 1-D slučaju funkcija je divergentna, a povećavanjem dimenzije divergentnost odzivne funkcije slabi. Razlog leži u slabijem gniježđenju Fermijeve plohe, koje je shematski prikazano na slici 2.2.

gniježđenja ovisno o dimenzionalnosti elektronskog plina na T = 0: u 1D čitava se Fermijeva ploha ugnijezdi za vektor $Q = 2k_F$; kako se dimenzija sustava povećava, tako se smanjuje dio Fermijeve plohe koji se može ugnijezditi. Na konačnim temperaturama divergentnost funkcije odziva se gubi i u jednodimenzionalnom slučaju logaritamski divergira s temperaturom [24]:

$$\chi_{q=2k_F} \propto \mathcal{D}(E_F) \ln \frac{k_B T}{1.14E_F} \tag{2.3}$$

 $\mathcal{D}(E_F)$ je gustoća stanja na Fermijevoj energiji E_F .

Fourierov razvoj međudjelovanja elektrona i fonona u principu uključuje

Slika 2.2: Gniježđenje Fermijeve plohe se naziva pojava kada se njen dio pomakom za neki valni vektor **q** preslika sam u sebe. Za jednodimenzionalni elektronski plin na T = 0 ona se čitava preslika sama u sebe za $q = 2k_F$, čime nazivnik izraza (2.1) postane jednak nuli za čitavu Fermijevu plohu. Povećavanjem dimenzionalnosti sustava smanjuje se dio plohe koja ima mogućnost gniježđenja, zbog čega se smanjuje i divergentno ponašanje odzivne funkcije χ_q , prikazano na slici 2.1.

sve valne vektore dozvoljene elektronskom i fononskom disperzijom pa tako i valni vektor čiji je modul $|\mathbf{q}|$ jednak $2k_F$. Znači, međudjelovanje elektronfonon može dovesti do nestabilnosti elektronskog plina; promotrimo stoga jednodimenzionalni vezani elektronski i fononski plin opisan hamiltonijanom

$$\mathcal{H} = \sum_{k} \epsilon_k a_k^{\dagger} a_k + \sum_{k} \hbar \omega_q b_k^{\dagger} b_k + \frac{1}{N^{1/2}} \sum_{k,q} g(k,q) a_{k+q}^{\dagger} a_k (b_q + b_{-q}^{\dagger}) \qquad (2.4)$$

u kojemu su a_k^{\dagger} i a_k operatori stvaranja i poništavanja elektrona, b_k^{\dagger} i b_k odgovarajući fononski operatori, $\hbar \omega_q$ je energija fonona valnog vektora q, N je gustoća elektrona, a g(k,q) je koeficijent međudjelovanja elektrona i fonona. U približenju srednjega polja (i uz pretpostavku da je konstanta međudjelovanja elektron-fonon neovisna o valnom vektoru i jednaka g(q)) međudjelovanje elektron-fonon dovodi do renormalizacije fononske frekvencije:

$$\Omega^2(q) = \omega_q^2 + \frac{2g^2(q)\omega_q}{N\hbar}\chi(q)$$
(2.5)

Renormalizirana frekvencija fonona ovisi dakle o odzivnoj funkciji elektrona $\chi(q)$. Prema tome, za valni vektor $q = 2k_F$ i fononski sustav, poput elektronskog, postaje nestabilnim. Na konačnim temperaturama gornja jednadžba postaje

$$\Omega^2(2k_F) = \omega_{2k_F}^2 - \frac{g^2(q)N(E_F)\omega_{2k_F}}{N\hbar} \ln\left(\frac{1.14E_F}{k_BT}\right)$$
(2.6)

pa na temperaturi

$$T_P^{MF} = 1.14 \frac{E_F}{k_B} e^{1/\lambda} \tag{2.7}$$

gdje je $\lambda = \frac{g^2 N(E_F)}{N \hbar \omega_{2k_F}}$, renormalizirana fononska frekvencija $\Omega(2k_F)$ postane jednaka nuli. Dinamička fononska deformacija time postane statičkom; atomski raspored u rešetki biva moduliran s periodom $2k_F$. Smanjivanje fononske energije na $q = 2k_F$ ("mekšanja" fonona) naziva se Kohnovom anomalijom (slika 2.3). Time je povećavana elastična energija sustava; to povećanje energije je kompenzirano smanjenjem ukupne energije elektrona jer se na $q = 2k_F$ otvara energetski procjep širine 2Δ u elektronskoj disperziji:

$$E_{k} = \pm \left((\epsilon_{k} - E_{F})^{2} + \Delta^{2} \right)^{1/2}$$
(2.8)

Iznos poluprocjepa na temperaturi apsolutne nule je dan relacijom BCS-tipa:

$$\Delta(T=0) = 2E_F e^{1/\lambda} = 1.76k_B T_P^{MF}$$
(2.9)

Slika 2.3: Shematski prikaz Kohnove anomalije. Smanjivanjem temperature se fononske energije u blizini $q = 2k_F$ smanjuju (takozvano "mekšanje" fononskoga moda). Na temperaturi Peierlsovoga prijelaza T_P energija fonona $\hbar \omega_{2k_F}$ postaje jednakom nuli; distorzija rešetke postala je statičkom.

Periodička promjena atomskih položaja, zbog postojanja međudjelovanja elektrona i fonona, dovodi i do periodičke promjene gustoće elektrona; dio vodljivih elektrona biva kondenziran u *val gustoće naboja*. Ova se vrsta faznog prijelaza naziva *Peierlsovim prijelazom*.

Modulacija jednodimenzionalne rešetke se zorno može predočititi uvođenjem pojma okomitog prostora. Na slici 2.4 je prikazan prostor \mathbf{R}_{ok} , okomit na fizikalni prostor (nazvan još i paralelnim prostorom) \mathbf{R}_{par} u kojemu se položaji atoma prije periodičke modulacije označeni presjecima okomica s \mathbf{R}_{par} . Modulacija atomskih položaja je u okomitom prostoru predočena ni-

Slika 2.4: Modulacija rešetke se može predočiti definiranjem prostora okomitog na fizikalni (nazvanog i paralelnim) prostor. Položaji atoma u nemoduliranoj rešetci su označeni strelicom, a funkcija modulacije nizom isprekidanih sinusnih funkcija. Točke u kojima one sijeku paralelni prostor \mathbf{R}_{par} predstavljaju modulirane atomske položaje. Pobuđivanjem amplitude odnosno faze modulacijskih funkcija stvaraju se novi titrajni modovi rešetke nazvani amplitonima odn. fazonima.

zom sinusnih funkcija jednakih amplituda, međusobno pomaknutih za fazu φ . Točke u kojima modulacijske funkcije sijeku fizikalni prostor predstavljaju nove atomske položaje. Promjenom amplituda modulacijskih funkcija mijenja se položaj atoma u fizikalnom prostoru; položaj se atoma isto tako može promijeniti i promjenom faze svih modulacijskih funkcija za isti iznos. Titrajni modovi nastali pobuđivanjem amplituda modulacijskih funkcija nazivaju se amplitonima, dok se modovi nastali faznim pobuđivanjima nazivaju fazonima. U slučaju vezanog sustava elektrona i fonona opisanog hamiltonijanom (2.4), disperzijske relacije novonastalih amplitudnih (ω_{amp}) i fazonskih (ω_{faz}) modova u blizini $2k_F$ su opisani jednadžbama [25]

$$\omega_{amp}^2 = \lambda \omega_{2k_F}^2 + \frac{1}{3} \frac{m}{m^*} v_F^2 |q - 2k_F|^2$$
(2.10)

$$\omega_{faz}^2 = \frac{m}{m^*} v_F^2 |q - 2k_F|^2, \qquad (2.11)$$

gdje je m masa elektrona, v_F Fermijeva energija, a m^* efektivna masa elektrona kondenziranih u valu gustoće naboja jednaka

$$m^* = m \left(1 + \frac{4\Delta^2}{\lambda \omega_{2k_F}^2} \right). \tag{2.12}$$

U razmatranjima Peierlsovog prijelaza u približenju srednjeg polja uzete su one komponente međudjelovanja elektrona i fonona valnog vektora približno jednakog $2k_F$, čime je to kratkodosežno međudjelovanje zamijenjeno dugodosežnim sinusoidalnim potencijalom. U jednoj dimenziji fazni prijelaz nije moguć na $T \neq 0$ u nazočnosti kratkodosežnog međudjelovanja. Razlog zbog kojeg Peierlsov prijelaz ipak postoji na konačnim temperaturama leži u kvazijednodimenzionalnosti materijala u kojima se javlja, odnosno u postojanju međulančanog vezanja opisanog parametrom c_{\perp} , kojim je u hamiltonijan (2.4) dodan pribrojnik linearan u c_{\perp} [26]. Parametar c_{\perp} , opet, mora biti dovoljno malen da pojava trodimenzionalnog vezanja ne bi zasjenila jednodimenzionalnu prirodu sustava. Na slici 2.5 je prikazano ponašanje elektronske gustoće stanja iznad temperature Peierlsovog prijelaza T_P za dvije različite vrijednosti parametra međulančanog vezanja c_{\perp} . Za manju vrijednost c_{\perp} pseudoprocjep u elektronskoj gustoći stanja je jače izražen. Temperaturno područje između stvarne temperature Peierlsovog prijelaza T_P i temperature prijelaza dobivene iz teorije srednjega polja T_P^{MF} , naziva se područjem

Slika 2.5: Vezanje među lancima kod kvazijednodimenzionalnih materijâlâ omogućuje pojavu Peierlsovog prijelaza. Vezanje ne smije biti prejako, jer bi se time potpuno izgubila jednodimenzionalna priroda sustava. Krivulja označena s 1 prikazuje gustoću elektronskih stanja uz jače međulančano vezanje nego krivulja označena s 2. Kod krivulje 1 je pseudoprocjep mnogo manje istaknut, iz čega se može zaključiti da je sustav manje osjetljiv na pojavu Peierlsovog prijelaza.

termičkih fluktuacija i karakterizirano je upravo postojanjem pseudoprocjepa [27]. Temperatura na kojoj dolazi do Peierlsovog prijelaza je manja od T_P^{MF} i s njome je povezana relacijom

$$T_P \approx 0.28 \left(\frac{c_\perp}{\lambda}\right)^{1/2} T_P^{MF} \tag{2.13}$$

Na temperaturama bliskim temperaturama apsolutne nule termičke fluktuacije su zanemarive te je opis dan teorijom srednjeg polja dobar. Prema tome, vrijednost energetskog procjepa $\Delta(0)$ je jednaka onome danom relacijom (2.9) te za sustave u kojima dolazi do Peierlsovog prijelaza ne vrijedi izraz (2.9), nego je $\Delta(T=0) > 1.76k_BT_P$.

2.1.1 Toplinska vodljivost kristala

Toplinska vodljivost elektrona

Struja naboja \mathbf{j} i topline $\mathbf{j}^{\mathbf{q}}$ su u približenju vremena ralaksacije (engl. relaxation-time approximation) jednake [7]:

$$\mathbf{j} = \sum_{n} \frac{1}{4\pi^3} \int \mathbf{v}_n(\mathbf{k}) g_n(\mathbf{k}) \mathrm{d}\mathbf{k}$$
(2.14)

$$\mathbf{j}^{\mathbf{q}} = \sum_{n} \frac{1}{4\pi^{3}} \int (E_{n}(\mathbf{k}) - \mu) \mathbf{v}_{n}(\mathbf{k}) g_{n}(\mathbf{k}) d\mathbf{k}$$
(2.15)

gdje n označuje vrpcu, **k** valni vektor, a **v** brzinu elektrona. $g_n(\mathbf{k})$ je funkcija raspodjele koje je u poluklasičnom približenju jednaka:

$$g_n(\mathbf{k}) = f_{FD}(\mathbf{k}) + \tau(\mathbf{k}) \left(-\frac{\partial f_{FD}}{\partial \mathcal{E}} \right) \mathbf{v}(\mathbf{k}) \cdot \left(-e\mathcal{E} + \frac{E(\mathbf{k}) - \mu}{T} (-\nabla T) \right)$$
(2.16)

gdje je f_{FD} Fermi-Diracova funkcija raspodjele, $\tau(\mathbf{k})$ vrijeme koje elektron provede između dva sudara, $\mathbf{v}(\mathbf{k})$ brzina elektrona, μ kemijski potencijal, a normalizirano električno polje \mathcal{E} je definirano zbrojem električnog polja \mathbf{E} i gradijenta kemijskog potencijala μ :

$$\mathcal{E} = \mathbf{E} + \frac{1}{e} \nabla \mu \tag{2.17}$$

Na temelju gornjih jednadžbi se struje električnog naboja i topline mogu napisati takozvanim *transportnim jednadžbama*:

$$\mathbf{j} = \mathbf{L}^{11} \mathcal{E} + \mathbf{L}^{12} (-\nabla T) \tag{2.18}$$

$$\mathbf{j}^{\mathbf{q}} = \mathbf{L}^{\mathbf{21}} \mathcal{E} + \mathbf{L}^{\mathbf{22}} (-\nabla T) \tag{2.19}$$

Koeficijenti \mathbf{L}^{ij} su definirani izrazom:

$$\mathcal{L}^{(\alpha)} = e^2 \sum_{n} \frac{1}{4\pi^3} \int \mathbf{v}_n \cdot \mathbf{v}_n (E_n(\mathbf{k}) - \mu)^{\alpha} d\mathbf{k}$$
(2.20)

na način:

$$\mathbf{L}^{11} = \mathcal{L}^{(0)} \tag{2.21}$$

$$\mathbf{L}^{21} = T\mathbf{L}^{12} = -\frac{1}{e}\mathcal{L}^{(1)}$$
(2.22)

$$\mathbf{L}^{22} = \frac{1}{e^2 T} \mathcal{L}^{(0)} \tag{2.23}$$

Koeficijentima \mathbf{L}^{ij} se mogu, među ostalim, definirati električna vodljivost σ , termoelektrična struja S i elektronski doprinos toplinskoj vodljivosti κ_{el} . U slučaju da u sustavu nema gradijenta temperature ∇T i kemijskog potencijala $\nabla \mu$, iz transportne jednadžbe (2.18) se dobije da je $\mathbf{j} = \mathbf{L}^{11}\mathbf{E}$; dakle, koeficijent \mathbf{L}^{11} je jednak električnoj vodljivosti σ . Ako je sustavu nametnut gradijent temperature ∇T bez protjecanja električne struje \mathbf{j} i bez postojanja gradijenta kemijskog potencijala μ , na temelju jednadžbe za \mathbf{j} se dobije

$$\mathbf{E} = \frac{\mathbf{L}^{12}}{\mathbf{L}^{11}} \nabla T \tag{2.24}$$

Termostruja S je, prema tome, jednaka omjeru koeficijenata \mathbf{L}^{12} i \mathbf{L}^{11} . Jednadžba za $\mathbf{j}^{\mathbf{q}}$, uz $\mathbf{j} = 0$ i $\boldsymbol{\Delta} \mu = 0$, daje:

$$\mathbf{j}^{\mathbf{q}} = \left[\mathbf{L}^{22} - \frac{\mathbf{L}^{12}\mathbf{L}^{21}}{\mathbf{L}^{11}}\right](-\nabla T) = \kappa_{el}(-\nabla T)$$
(2.25)

Drugi pribrojnik u uglatoj zagradi je puno manji od prvoga jer sadrži množitelj proporcionalan $(k_B T/E_F)^2$ te se može zanemariti. Za koeficijent \mathbf{L}^{22} se Sommerfeldovim razvojem [7] dobije da je jednak

$$\mathbf{L}^{22} = \frac{\pi^2}{3} \frac{k_B^2}{e^2} \sigma \tag{2.26}$$

Dakle, za koeficijent toplinske vodljivosti elektrona vrijedi Wiedemann-Franzov zakon:

$$\kappa_{el} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 T\sigma \tag{2.27}$$

Broj $\frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$ se naziva Lorenzovim brojem i jednak je 2.45×10^{-8} W/ Ω K². Wiedemann-Franzov zakon linaerno povezuje električnu i toplinsku vodljivost elektrona. Dok se god elektroni raspršuju elastično, izraz (2.27) vrijedi. To se događa na niskim (jer se elektroni raspršuju na atomima nečistoća) i visokim temperaturama (jer je tada energija fonona, koji su prevladavajući izvor raspršenja elektrona, mnogo veća od energije elektrona). Kod neelastičnog raspršenja elektrona dio se njihove energije, za razliku od naboja, odljeva te više nema linearne veze između prijenosa naboja i topline; Widemann-Franzov zakon u tome slučaju nije valjan.

Toplinska vodljivost fonona

Toplina se kroz kristal prenosi i titrajima atoma u rešetki (fononima). Ukupna toplina \mathbf{Q} prenesena fononima je jednaka zbroju doprinosa po svim modovima n i valnim vektorima \mathbf{q} :

$$\mathbf{Q} = \sum_{n,\mathbf{q}} f_n(\mathbf{q}) \hbar \omega_n(\mathbf{q}) \mathbf{v}_n(\mathbf{q})$$
(2.28)

 $f_n(\mathbf{q})$ je neravnotežna funkcija raspodjele, $\hbar \omega_n(\mathbf{q})$ energija fonona, a $\mathbf{v}_n(\mathbf{q})$ njihova brzina. Gornja se jednadžba može svesti na jednostavniji oblik pomoću Boltzmannove jednadžbe i približenja vremena relaksacije. Boltzmannova jednadžba kaže da je promjena neravnotežne funkcije raspodjele usljed raspršenja čestica kompenzirano njihovim strujanjem:

$$\left(\frac{\partial f_n}{\partial t}\right)_{struja} + \left(\frac{\partial f_n}{\partial t}\right)_{rasp} = 0 \tag{2.29}$$

Približnjem vremena relaksacije definira se karakteristično vrijeme raspršenja τ kao vrijeme koje čestica provede između dva sudara i pretpostavlja da je odmak funkcije raspodjele od ravotežne (u slučaju fonona riječ je o Bose-Einsteinovoj funkciji f_{BE}) linearan:

$$\left(\frac{\partial f_n}{\partial t}\right)_{rasp} = \frac{f_{BE} - f_n}{\tau} \tag{2.30}$$

Pomoću gornje dvije pretpostavke jednadžbom (2.28) se može izraziti koeficijent toplinske vodljivosti κ_{fon} ($\mathbf{Q} = -\kappa_{fon} \nabla T$):

$$\kappa_{fon} = \frac{1}{3} \sum_{n,\mathbf{q}} \hbar \omega_n(\mathbf{q}) (v_n^{\parallel}(\mathbf{q}))^2 \tau_n(\mathbf{q}) \frac{\partial f_{BE}}{\partial T}$$
(2.31)

gdje je v_n^{\parallel} brzina fonona u smjeru širenja topline. Prelaskom sa zbrajanja po valnim vektorima **q** na integral po frekvencijama fonona ω , gornja jednadžba postaje:

$$\kappa_{fon} = \frac{1}{3} \sum_{n} \int_{0}^{\omega_{max}} \hbar \omega_n(\mathbf{q}) (v_n^{\parallel}(\mathbf{q}))^2 \tau_n(\mathbf{q}) g(\omega_n(\mathbf{q})) \frac{\partial f_{BE}}{\partial T} \mathrm{d}\omega_n \qquad (2.32)$$
gdje je $g(\omega_n(\mathbf{q}))$ funkcija gustoće stanja fonona. Primjenom *Debye-ovog mod*ela (u kojemu frekvencija fonona linearno ovisi o njegovom valnom vektoru, $\omega = \overline{v}q$) i pretpostavljajući da samo jedna vrpca sudjeluje vođenju topline, izraz za κ_{fon} se dodatno pojednostavljuje:

$$\kappa_{fon} = \frac{k_B}{2\pi^2 \overline{v}} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\frac{\theta}{T}} \tau(x) \frac{x^4 e^x}{\left(e^x - 1\right)^2} \mathrm{d}x \tag{2.33}$$

 \overline{v} je srednja brzina zvuka, x bezdimenzionalni parametar $x = \frac{\hbar\omega}{k_BT}$, a θ Debye-ova temperatura. Vrijeme relaksacije τ je, podsjetimo se, vrijeme koje fonon provede između dva rasporšenja; u slučaju da su procesi raspršenja međusobno neovisni, ukupno se vrijeme relaksacije može izračunati na temelju vremêna relaksacije pojedinih procesa raspršenja τ_i (Matthiessenovo pravilo):

$$\tau^{-1} = \sum_{i} \tau_i^{-1} \tag{2.34}$$

Debye-evim modelom se može izračunati i specifična toplina fonona C_{fon} [7] te je toplinska vodljivost (2.33) dana preko C_{fon} :

$$\kappa_{fon} = \frac{1}{3}\overline{v}^2 \int_0^{\theta/T} \tau(x) C_{fon}(x) \mathrm{d}x = \frac{1}{3}\overline{v} \int_0^{\theta/T} l(x) C_{fon}(x) \mathrm{d}x \qquad (2.35)$$

gdje je l(x) srednji slobodni put fonona.

Osim na vrlo niskim temperaturama (obično manjim od 1 K), glavni mehanizam raspršenja fonona je međudjelovanje fonon-fonon. Na temperaturama koje su puno veće od Debye-eve $(T \gg \theta)$ Bose-Einsteinove funkcija raspodjele se pojednostavljuje:

$$f_{BE} = \frac{1}{e^{\hbar\omega/k_B T} - 1} \approx \frac{k_B T}{\hbar\omega}$$
(2.36)

Vrijeme relaksacije fonona je obrnuto proporcionalno njihovom broju (odnosno, f_{BE}). Pošto je specifični toplinski kapacitet fononskog sustava tada u Dulong-Petitovom režimu (C_{fon} =konst.), toplinska vodljivost rešetke je proporcionalna s T^{-1} . Točniji proračuni daju ovisnost $\kappa_{fon} \propto T^{-n}$, gdje je nizmeđu 1 i 2 [28].

U slučaju kada je $T \ll \theta$ glavnu ulogu u fonon-fonon međudjelovanju imaju Umklapp procesi raspršenja kod kojih vrijedi:

$$\mathbf{q}_1 + \mathbf{q}_2 = \mathbf{q'}_1 + \mathbf{q'}_2 + \mathbf{Q} \tag{2.37}$$

gdje su \mathbf{q}_1 i \mathbf{q}_2 valni vektori fonona prije, $\mathbf{q'}_1$ i $\mathbf{q'}_2$ poslije procesa raspršenja, a \mathbf{Q} je valni vektor recipročne rešetke. Za $T \ll \theta$ Bose-Einsteinove funkcija se svede na:

$$f_{BE} = \frac{1}{e^{\hbar\omega/k_BT} - 1} \approx \frac{1}{e^{\theta/T} - 1} \approx e^{-\theta/T}$$
(2.38)

Vrijeme relaksacije fonona je obrnuto proporcionalno broju fonona ($\tau \propto e^{\theta/T}$) te se može očekivati da je i toplinska vodljivost proporcionalna $e^{\theta/T}$. Točnijim proračunima [29] za toplinsku vodljivost rešetke se dobije:

$$\kappa_{fon} \propto \left(\frac{T}{\theta}\right)^3 e^{\theta/\alpha T}$$
(2.39)

gdje je α broj reda jedinice i ovisi o detaljima strukture Brillouinove zone te disperzivnoj relaciji fonona u blizini granica prve Brillouinove zone. Iz jednadžbe (2.38) se vidi da se snižavanjem temperature smanjuje i broj fonona. Zbog toga se povećava njihov srednji slobodni put usljed Umklapp procesa raspršenja te na nekoj dovoljno niskoj temperaturi oni prestanu biti dominantnima; dominantnim postaje raspršenje na nečistoćama ili zidovima uzorka. To je takozvana *Casimirova* granica. Vrijeme relaksacije τ_{Cas} se tada može napisati preko srednje brzine zvuka \overline{v} i srednjeg slobodnog puta l:

$$\tau_{Cas} = \frac{l}{\overline{v}} \tag{2.40}$$

Uvrštavanjem gornjeg izraza u Debye-ev model toplinske vodljivosti (2.33), dobije se da je toplinska vodljivost rešetke u Casimirovoj granici proporcionalna kubu temperature:

$$\kappa_{Cas} = \frac{2}{15} \frac{k_B^4 \pi^2}{\hbar^3} \frac{l}{\overline{v}^2} T^3.$$
 (2.41)

2.1.2 Kvazijednodimenzionalni materijal $(TaSe_4)_2I$

 $(TaSe_4)_2I$ pripada obitelji kvazijednodimenzionalnih dikalkogenida prijelaznih metala. Građen je od lanaca metalnih iona atomske formule TaSe₄ međusobno odvojenih atomima joda I (slika 2.6). Na sobnoj temperaturi jedinična mu je ćelija tetragonalna s parametrima rešetke a=9.531 Å i c=12.824 Å. Mehanizam koji dovodi do Peierlsovog prijelaza u $(TaSe_4)_2I$ je dugo predstavljao zagonetku; teorijski model Grassiera i suradnika [30], temeljen na proračunima elektronskih vrpci, predviđa tetramerizaciju¹ atoma tantala, koji je shematski prikazan na slici 2.7 [31]. U dvama susjednim lancima TaSe₄ pomaci atoma usljed tetramerizacije su u protufazi. Do toga može doći iz dva razloga: jedan je usljed Coulombskog odbijanja elektronskih kondenzata

¹ Na stranici 14 je navedeno da pri Peierlsovom prijelazu dolazi do preraspodjele položaja atoma. Točnije kazano, nastaje nova jedinična ćelija koja je u slučaju tetramerizacije ima četiri puta veću konstantu rešetke od početne.

Slika 2.6: Struktura $(TaSe_4)_2I$.

(odn. valova gustoće naboja) između susjednih lanaca, međusobnim faznim pomakom kojih za π je energija njihovog elektrostatskog odbijanja svedena na minimum [32]. Drugi razlog leži u kvazijednodimenzionalnošću izazvanoj deformaciji Fermijeve plohe. Tek su nedavno u spektrima raspršenja Xzraka nađeni i eksperimentalni dokazi tetramerizacije tantalovih atoma u (TaSe₄)₂I [33]. Do objave tih rezultata kontroverze o prirodi Peierlovog prijelaza kod (TaSe₄)₂I su pobuđivali rezultati o akustičkom pomacima atoma Ta u smjeru okomitom na lance [34] te o nepostojanju "omekšanog" optičkog titrajnog moda [31,35].

Poput ponašanje rešetke, kontroverzu je izazivala, i izaziva je još, priroda elektronskih stanja u $(TaSe_4)_2I$ u okolini Peierlsovog prijelaza. Postojeći eksperimentalni rezultati sugeriraju dva moguća slučaja: (a) 'klasični' model

Slika 2.7: Model tetramerizacije atoma tantala u $(TaSe_4)_2I$ na Peierlsovom prijelazu [31].

fluktuacija parametra reda te zbog njih postojanja pseudoprocjepa u elektronskoj disperziji na temperaturama višim od T_P [27] i (b) postojanja polaronskih stanja zbog relativno snažnog vezanja elektrona s fononima. Model fluktuirajućeg procjepa potvrdu nalazi u mjerenjima električnog transporta [36, 37] i spektrima dobivenim nuklearnom magnetskom rezonancijom [38]. Također i određena mjerenja kutno razlučivog fotoemisijskog spektra (ARPES) [39] ukazuju na to. Druga mjerenja spektara ARPES-a [22, 23, 40] govore, pak, o polaronskoj prirodi kvazičestičnih pobuđenja, s efektivnom masom polarona od desetak elektronskih masa m_e . Eksperimenti elektronske spektroskopije gubitkom energije (EELS, od engl. *Electron Energy Loss Spectroscopy*) [41] te spektri ARPES-a [22] ukazuju na moguće narušavanje zakonitosti koje vrijede za Fermijeve tekućine.

2.2 Ikozaedarski kvazikristali

U uvodnom je poglavlju kvazikristal definiran kao krutnina s neperiodičkim, ali dugodosežno uređenim položajima atoma. Jednodimenzionalni ekvivalent kvazikristalne strukture je *Fibonaccijev lanac*. Postoji nekoliko načina na koji ga je moguće definirati; jedan od njih je da se definira prvi element konačnog

Tablica 2.1: Prvih šest elemenata Fibonaccijevog niza. Prvi element niza (n = 1)je definiran kao segment duljine L, dok je svaki sljedeći korak dobiven zamjenama $L \to LS$ i $S \to L$.

n	Fibonacijev niz n -tog iterativnog koraka
1	L
2	LS
3	LSL
4	LSLLS
5	LSLLSLSL
6	LSLLSLSLLSLLS
÷	÷

Fibonaccijevog niza (Fibanaccijev lanac je beskonačno dug Fibonaccijev niz) kao segment duljine L (i označen sa L). U svakom se sljedećom koraku narastanja niza L zamijeni sLS (gdje je sa S označen segment duljine S, kraći od duljine segmenta L), a S sa L. U tablici 2.1 je dan Fibonaccijev niz za prvih šest iterativnih koraka. Kada je omjer duljina segmenata L/S(i)racionalan broj, promatrani niz je (a)periodičan. U slučaju da je taj omjer jednak τ (gdje je τ jednak zlatnim rezu, odn. $2\cos 36^\circ = (1 + \sqrt{5})/2$), niz se naziva Fibonaccijevim.

Jednodimenzionalna atomska rešetka u kojima međusobna udaljenost atoma čini Fibonaccijev niz predstavlja dobar jednodimenzionalni model za istraživanje svojstava kvazikristalnih struktura. Koordinate atomskih položaja u Fibonaccijevom nizu su dane izrazom [42]:

Slika 2.8: Intenzitet Fourierovog spektra Fibonaccijevog i jednodimenzionalnog lanca. Oba su načinjena od 1000 čvorova, a grafovi prikazuju isti dio recipročnog prostora.

$$x_n = n + \frac{1}{\tau} E\lfloor (n+1)/\tau \rfloor$$
(2.42)

gdje je $E\lfloor (n+1)/\tau \rfloor$ cjelobrojni dio razlomka $(n+1)/\tau$, a duljina segmenta S je normirana na 1. Fourierove komponente funkcije gustoće, F_q , se mogu izračunati relacijom:

$$F_q = \lim_{N \to \infty} \frac{1}{N} \sum_n \exp(iqx_n) \tag{2.43}$$

Gornji zbroj je različit od nule za vektore q koji zadovoljavaju jednakost:

$$q_{h,h'} = \frac{2\pi\tau^2}{\tau^2 + 1}(h + h'/\tau)$$
(2.44)

Dakle, potrebna su dva cijela broja, h i h', da bi se definirao vektor Q za kojeg je $F(Q) \neq 0$. Kod periodičkih struktura taj je broj jednak dimenzionalnosti sustava. Prema tome, Fourierov spektar Fibonaccijevog lanca će, u odnosu na

Slika 2.9: Fibonaccijev lanac (kao i sve ostale kvazikristalne strukture) ima svojstvo samosličnosti: iz Fibonaccijevog lanca ponovno se dobije Fibonaccijev lanac, uz reskaliranje duljina segmenata L i S.

periodički lanac, imati mnogo gušću raspodjelu vektora za koje intenzitet I(q) $(I(q) = |F(q)|^2)$ ne isčezava; na slici 2.8 su uspoređeni intenziteti Fourierovih spektara Fibonaccijevog i periodičkog lanca. Za Fibonaccijev lanac intenzitet I(q) je različit od nule za veći broj vektora recipročnog prostora nego kod periodičkog lanca (dakle, ima gusti skup recipročnih vektora). Zatim, kod Fibonaccijevog lanca intenziteti nisu jednaki za sve valne vektore za koje je $I(q) \neq 0$. Ove dvije činjenice utječu na disperzivnu relaciju Fibonaccijevog lanca (i kvazikristala u cjelini), o čemu će biti više govora kasnije u tekstu.

Važno svojstvo Fibonaccijevog lanca, a koje slijedi iz same defnicije Fibonaccijevog niza, je samosličnost njegove strukture. Samosličnost znači da se operacijama njenog uvećavanja ili sažimanja, struktura preslikava sama u sebe uz renormalizaciju prostorne skale; na primjeru Fibonaccijevog lanca je to prikazano na slici 2.9, gdje je početna struktura označena popunjenim kružićima. Primjenom pravila uvećavanja Fibonaccijevog lanca $(L \rightarrow LS$ i $S \rightarrow L)$, dobije se struktura definirana i popunjenim i nepopunjenim kružićima; ta je novonastala struktura ponovno dio Fibonaccijevog lanca, jednaka, ali reskalirana u odnosu na prethodnu. Svojstvo samosličnosti strukture imaju i realni kvazikristali, što će biti pokazano kasnije u tekstu. Za matematički opis kvazikristalnih struktura koriste se dva pristupa: jedan je postupkom popločavanja, a drugi je projekcijom i odrezivanjem strukture iz prostora više dimenzije. Za metodu popločavanja tipičan primjer je dvodimenzionalno Penroseovo popločavanje, prikazano na slici 2.10. Na dnu su slike debljom linijom označena dva romba čijim se međusobnim slaganjem dobije Penroseova rešetka. Samosličnost rešetke je moguće dobiti definicijom pravila strukturnog uvećavanja koje je za oba romba dano tanjim linijama.

Istaknimo još jednom jednadžbu (2.44), koja kaže da su za definiciju Fourierovog spektra Fibonacciejvog lanca potrebna dva cijela broja, iako je riječ o jednodimenzionalnoj strukturi. Iz toga se može zaključiti da je Fibonaccijev lanac moguće opisati kao projekciju neke dvodimenzionalne strukture na pravac. Na slici 2.11 je popunjenim kružićima označena dvodimenzionalna jednostavna kubična rešetka konstante a. Paralelni prostor \mathbf{R}_{par} je nagnut pod kutom α prema osi apscisa dvodimenzionalne rešetke. U okomitom prostoru \mathbf{R}_{ok} definiran je odsječak širine Δ unutar kojeg se vrši projiciranje atomskih položaja iz 2-D rešetke u \mathbf{R}_{fiz} . Kada je tangens kuta nagiba α jednak zlatnom rezu τ , dobije se Fibonaccijev lanac. Za neku drugu vrijednost kuta α dobila bi se i neka druga struktura na \mathbf{R}_{fiz} ; na primjer, za $\alpha = 0$ nastala bi jednodimenzionalna periodična rešetka konstante a.

Difraktogrami trodimenzionalnih, ikozaedarskih kvazikristala (na primjer, pogledati izvor [43]) govore da je za njihovo indeksiranje potrebno šest prirodnih brojeva. Dakle, valni vektor svakog eksperimentalno dobivenog difrakcijskiog maksimuma \mathbf{Q} može se raspisati preko baze koja sadrži šest vektora:

Slika 2.10: Penroseovim popločavanjem je moguće dobiti dvodimenzionalnu kvazikristalnu strukturu. Dva romba, na donjm dijelu slike označeni debljim linijama, su 'jedinične ćelije' strukture. Tanjim linijama su naznačena pravila uvećavanja, kojima se dobije samosličost Penroseve strukture.

$$\mathbf{Q} = |\mathbf{Q}_0| \sum_{i=1}^6 n_i \mathbf{q}_i \tag{2.45}$$

Jedna od baza \mathbf{q}_i dana je s [42]:

$$\mathbf{q}_{1} = (1, \tau, 0) \qquad \mathbf{q}_{2} = (\tau, 0, 1) \qquad \mathbf{q}_{3} = (\tau, 0, -1) \mathbf{q}_{4} = (0, 1, -\tau) \qquad \mathbf{q}_{5} = (-1, \tau, 0) \qquad \mathbf{q}_{6} = (0, 1, \tau)$$
(2.46)

Slika 2.11: Fibonaccijev lanac može biti dobiven projiciranjem na pravac dijela dvodimenzionalne jednostavne kubične rešetke koji je definiran odsječkom širine Δ . Kada je paralelni prostor \mathbf{R}_{par} nagnut pod kutom α čiji je tangens jednak zlatnom rezu τ , projekcije čvorova 2-D rešetke čine Fibonaccijev lanac.

Ikozaedarska struktura ima svojstvo samosličnosti s faktorom uvećavanja ili sažimanja volumena za τ^3 . To se vidi iz činjenice da je, na primjer, bilo koji vektor $\tau^3 \mathbf{q}_i$ moguće uz cjelobrojne koeficijente razviti preko baze definirane vektorima \mathbf{q}_i , (i = 1, 2, ..., 6). Vektori $\tau^2 \mathbf{q}_i$ i $\tau \mathbf{q}_i$, pak, nemaju to svojstvo. Šest prirodnih brojeva potrebnih za indeksiranje difraktograma ikozaedarskih kvazikristala znači da njihova struktura matematički može biti opisana projekcijom šestdimenzionalne kubične rešetke na trodimenzionalni fizikalni prostor.

Atomska struktura ikozaedarskih kvazikristala može biti predočena hijerarhijom pseudo-Mackayovih ikozaedara (PMI), prikazanog na slici 2.12 [44].

Slika 2.12: Pseudo-Mackayev ikozaedar. Ukupno ima 51 čvor, a sastoji se od prostorno centrirane kocke (9 čvorova), ikozaedra (12) i dodekaikozaedra (30).

Sastoji se od 51 čvora, a sačinjavaju ga kocka s atomom u njenom središtu (9 čvorova), ikozaedar s 12 čvorova i dodekaikozaedar s 30 čvorova. Kod kvazikristala iz obitelji *i*-AlPdMn, s obzirom na njihov kemijski sastav, postoje dvije vrste pseudo-Mackayevih ikozaedara, PMI-A i PMI-T. PMI-A na vrhovima ikozaedra ima po šest atoma mangana i paladija, dok se na ostalih 39 čvorova nalaze atomi aluminija; od trideset čvorova na dodekaikozaedru, kod PMI-T na njih se dvadeset nalaze atomi paladija, dok ostatak od 31 čvora zauzimaju atomi aluminija. Na slici 2.13 se vidi hijerarhijska prirode strukture: osnovni strukturni motiv idućeg koraka uvećavanja je također pseudo-Mackayev ikozaedar, ali sada njegov 51 čvor više ne popunjavaju atomi, nego pseudo-Mackayevi ikozaedri iz prethodnog hijerarhijskog koraka. Omjer promjera dva pseudo-Mackayeva ikozaedra iz susjednih hijerarhijskih koraka je jednak τ^3 . Podsjetimo da je faktor strukturnog uvećavanja za kojeg je projekcija šestdimenzionalne recipročne rešetke na paralelnu recipročnu rešetku invarijantna jednak τ^3 .

U fizikalnom prostoru funkcija raspodjele atomske gustoće $\rho(\mathbf{r})$ se može razviti preko njenih Fourierovih komponenti:

Slika 2.13: Model presjeka strukture jednog ikozaedarskog kvazikristala iz obitelji *i*-AlPdMn. Presjek je načinjen okomito na os simetrije petoga reda pseudo-Mackayevog ikozaedra prikazanog na slici 2.12. Pseudo-Mackayevi ikozaedri su označeni punim linijama; onaj u središtu je iz nultog koraka hijerarhijskog uvećavanja. Prvi korak uvećavanja je također PMI, a sačinjavaju ga pseudo-Mackayevi ikozeadri iz nultog koraka uvećavanja. Omjer promjera dvaju PMI-ova is dva sukcesivna koraka uvećavanja je jednak τ^3 .

$$\rho(\mathbf{r}) = \sum_{\mathbf{Q}} \rho_{\mathbf{Q}} \cdot \exp i[\mathbf{Q} \cdot \mathbf{r} + \phi(\mathbf{r})]$$
(2.47)

Faza $\phi(\mathbf{r})$ opisuje dinamička svojstva rešetke; kod periodičkih struktura

ona je jednaka $\phi(\mathbf{r}) = \mathbf{Q} \cdot \mathbf{u}(\mathbf{r})$, gdje je vektor \mathbf{Q} vektor iz recipročnog prostora dimenzije jednake dimenziji fizikalnog prostora. Funkcija $\mathbf{u}(\mathbf{r})$ opisuje titranja atoma oko položaja ravnoteže u fizikalnom prostoru - *fonone*. Kod kvazikristala \mathbf{Q} je vektor iz *n*-dimenzionalnog recipročnog prostora (kod Fibonaccijevog lanca *n* je jednak 2, a kod ikozaedarskih kvazikristala 6). Zato i fazna funkcija iz jednadžbe (2.47) ovisi i o komponentama valnog vektora \mathbf{Q} iz okomitog recipročnog prostora:

$$\phi(\mathbf{r}) = \mathbf{Q}_{par} \cdot \mathbf{u}(\mathbf{r}) + \mathbf{Q}_{ok} \cdot \mathbf{w}(\mathbf{r})$$
(2.48)

Vektorsko polje $\mathbf{w}(\mathbf{r})$ opisuje *fazonske* stupnjeve slobode i definirano je u okomitom prostoru. Analogno je fazonskim modovima titranja kod moduliranih struktura, shematski prikazanim na slici 2.4.

Atomska dinamika kvazikristala nije obilježena samo postojanjem fazonskih modova; i fononska je dinamika utjecana specifičnošću kvazikristalne strukture. Ovdje treba biti oprezan kod korištenja pojma fonona - fonon, kao prostorno proireno titranje, je dobro definiran isključivo u periodičkim rešetkama. Stoga nema smisla govoriti o fononima u strukturi koja nije periodična. Međutim, u slučaju dugovalnih fonona (kod kojih je ispunjen uvjet $|\mathbf{k}|a \ll 1$, gdje je \mathbf{k} valni vektor fonona, a *a* udaljenost između susjednih atoma), skup diskretnih diferencijalnih jednadžbi koje opisuju atomska titranja u periodičnoj rešetci može biti zamijenjen valnom jednadžbom u elastičnom kontinuumu [45]; dakle, da bi bilo moguće definirati fonon dovoljno malog valnog vektora (odn. dovoljno velike valne duljine), rešetka ne mora nužno biti periodična. Što je to "dovoljno mali valni vektor" može biti određeno eksperimentima neelastičnih raspršenja neutrona ili röntgenskih-

Slika 2.14: Disperzija titranja Fibonaccijevog lanca, uzeta iz izvora [46]. U dugovalnoj granici njeno je ponašanje jednako akustičkim modovima titranja periodičnog lanca. Za veće valne vektore do izražaja dolazi utjecaj strukturne kvaziperiodičnosti u smislu postojanja energetskih procjepa međusobno nejednakih širina.

(X-) zraka. Za ikozaedarske kvazikristale ti će rezultati biti dani kasnije u tekstu.

Dakle, u kojemu je smislu dinamika fonona utjecana kvazikristalnom strukturom rešetke (skraćeno, kvazirešetke)? Vratimo se na trenutak na sliku 2.8 koja prikazuje usporedbu intenziteta Fourierovog spektra Fibonaccijevog lanca i jednodimenzionalnog periodičnog kristala. Intenzitet periodične strukture je predočen jednako razmaknutim i visokim šiljcima smještenih na čvorovima recipročne rešetke. U slučaju Fibonaccijevog lanca stvar je bitno drugačija: raspored šiljaka nije periodičan niti je njihova visina međusobno jednaka. Uz to, gustoća njihovog pojavljivanja je mnogo veća nego kod periodičnog lanca.

Na rubu Brillouinove zone kristala (koja je definirana vektorima recipročne rešetke) fononska disperzija periodičnih struktura ima energetski procjep; zato se kod kvazikristala može očekivati da se u disperziji njihovih titrajnih modova češće javljaju energetski procjepi. Također, njihova širina ne mora biti homogena zbog nehomogenosti visina šiljaka u krivulji intenziteta Fourierovog spektra. Proračun disperzije titranja atoma za Fibonaccijev lanac je prikazan na slici 2.14 [46]. Vidi se postojanje niza energetskih procjepa različitih širina. Zatim, za male valne vektore titrajni mod poprima svojstva akustičkih modova periodičnog lanca. Dakle, u dugovalnoj granici smisleno je govoriti o postojanju dobro definiranih fonona, proširenih duž čitavoga lanca, o čemu je bilo više riječi u prethodnom paragrafu.

Može se pretpostaviti da je disperzivna krivulja trodimenzionalnih ikozaedarskih kvazikristala u principu jednaka onoj za Fibonaccijev lanac (slika 2.14). Eksperimenti neelastičnog raspršenja neutrona potvrđuju akustičku prirodu disperzije u dugovalnoj granici; postojanje niza energetskih procjepa nije potvrđena zbog nedovoljne razlučivosti eksperimenta. Na slici 2.15 [47,48] je prikazana funkcija odgovora neelastičnog raspršenja neutrona. Valni vektor q je valni vektor promatranog titrajnog moda-fonona, koji se u funkciji odgovora vidi kao maksimum usredišten oko njegove energije. Važan parametar je širina maksimuma: što je ona manja, to je bolje definiran fonon. Na slici 2.16 praznim je kružićima prikazana širina maksimuma ovisno o valnom vektoru, dok puni kružići prikazuju disperziju (dobivenu ucrtavanjem koordinata maksimuma funkcija odgovora sa slike 2.15). Za valne vektore koji su veći od 0.3 Å⁻¹ širina naglo počinje rasti. Zbog toga su titrajni modovi čiji

Slika 2.15: Niz grafova pokazuje funkciju odgovora neelastičnog raspršenja neutrona na kvazikristalu iz obitelji *i*-AlPdMn. Vrijednost q u kutu svakog grafa pokazuje kolika je vrijednost promatranog valnog vektora. Maksimum u funkciji odgovora govori o postojanju titrajnog moda naznačenog valnog vektora i energije (koja je jednaka energiji maksimuma). Podaci su uzeti iz izvôra [47] i [48].

Slika 2.16: Puni kružići prikazuju disperzivnu relaciju kvazikristala *i*-AlPdMn, dobivenu na temelju grafova prikazanih na slici 2.15. Prazni kružići pokazuju širinu maksimuma funkcija odgovora danih na slici 2.15, koja je za q < 0.3 Å⁻¹ zanemariva, što, zajedno s disperzijom, govori da su ti titrajni modovi ustvari akustički fononi. Za energije veće od 3 THz (odn. valne vektore veće od 1 Å⁻¹) modovi su nedisperzivni, odn. lokalizirani [47,48].

su valni vektori manji od 0.3 Å⁻¹ identificirani kao akustički fononski modovi; odgovarajuće fononske energije su 1.4 THz (6 meV). Eksperimentalno je pokazana i izotropnost ovih modova. Između 6 i 12 meV (što odgovara valnim vektorima od 0.3 do 0.6 Å⁻¹ disperzija se postupno izravnava. Za energije više od 3 THz (12 meV) vibracijski modovi postaju nedisperzivnima - titrajna stanja su lokalizirana. Valni vektor tih titranja je veća od 1 Å⁻¹, što daje da im je valna duljina manja od 10 Å, kolika je dimenzija pseudo-Mackayevog ikozaedra u početnom stupnju strukturnog uvećavanja (slika 2.13). Dakle, titrajna stanja s velikim valnim vektorima su lokalizirana na volumen veličine jednog pseudo-Mackayevog ikozaedra, što je potvrđeno i eksperimentima Mössbauerove spektroskopije [49]. Sva su ova zapažanja potvrđena i eksperimentima neelastičnog raspršenja X-zraka [50].

2.2.1 Transportna svojstva

Elektronska valna funkcija $\psi_{\mathbf{k}}(\mathbf{r})$ u periodičkim strukturama zadovoljava Blochov teorem, odnosno može se prikazati umnoškom ravnog vala $e^{i\mathbf{k}\cdot\mathbf{r}}$ i neke periodičke funkcije $u_{\mathbf{k}}(\mathbf{r})$ s periodom jednakim periodu rešetke. Gustoća vjerojatnosti dana tom valnom funkcijom govori da je dano elektronsko stanje delokalizirano duž čitavog volumena kristala. Kod neperiodičnih struktura Blochova stanja nije moguće definirati te se očekuje da su elektronska stanja prostorno lokalizirana. Točniji proračuni za kvazikristalne strukture daju kritičnost elektronskih stanja (valna funkcija je proporcionalna s r^{-n}) [44,51, 52], odnosno na granici su između proširenih i lokaliziranih stanja (za koje vrijedi $\psi(r) \propto e^{-r/a}$). Razmatranjem strukturnog modela koji ikozaedarske kvazikristale opisuje kao hijerarhijski organizirane pseudo-Mackayeve ikozaedre (slike 2.12 i 2.13), može se zaključiti o lokalizaciji elektronskih stanja u ikozaedarskim kvazikristalima [53]. Kako? Potencijal atoma u pseudo-Mackayevom ikozaedru na elektrone djeluje kao potencijalna jama s energijama obrnuto proporcionalnim kvadratu njene širine a $(E \propto 1/a^2)^2$. Pošto

 $^{^2}$ Taj se rezultat dobije rješavanjem Schrödingerove jednadžbe za sfernosimetričnu potencijalnu jamu [54]

su susjedni koraci u strukturnom uvećavanju skalirani s τ^3 , uvećavanjem se volumen potencijalne jame povećava za faktor τ^9 , a dubina smanjuje τ^6 puta. Broj energetskih stanja je, za svaki korak strukturnog uvećavanja, u jednom pseudo-Mackayevom ikozaedru jednak pa se, prema tome, gustoća elektronskih stanja po PMI-u smanjuje za faktor τ^9 kako se povećava korak uvećavanja strukture. Iz ovoga se nameće zaključak da su elektroni lokalizirani unutar pseudo-Mackayevih ikozaedara te da se njihov broj po jednom PMI-u uvećavanjem smanjuje τ^9 puta. Činjenica da gustoća elektronskih stanja strukturnim uvećavanjem za faktor τ^3 opada s faktorom τ^{-9} je u sfernom sfernom koordinatnom sustavu zapisana na sljedeći način:

$$\tau^{-9} \cdot 4\pi r^2 |\psi(r)|^2 = 4\pi (\tau^3 \cdot r)^2 |\psi(\tau^3 \cdot r)|^2$$
(2.49)

Valna funkcija elektrona u kvazikristalima je kritična, odnosno opada potencijskim zakonom s udaljenošću, $\psi(r) \propto r^{-\alpha}$, što zajedno s jednakošću (2.49) daje [44]:

$$\psi(r) \propto \frac{1}{r^{5/2}} \tag{2.50}$$

I kod amorfnih struktura elektronska stanja, iako lokalizirana, mogu doprinositi električnoj vodljivosti (tzv. *Mottova* vodljivost). Do nje dolazi kada integral preklapanja elektronskih valnih funkcija lokaliziranih na različitim mjestima nije nula; proračuni daju da je Mottova električna vodljivost σ proporcionalna s exp $(-T_0/T)^{1/4}$ [42]. Model *kvantne interferencije*, razvijen za objašnjenje električnih svojstava amorfnih struktura [55,56], je primjenljiv i u slučaju kvazikristala [57]. Pod kvantnom interferencijom podrazumijevaju se dva različita efekta, koji mijenjaju bilo elektronsku difuzivnost (učinci slabe lokalizacije) bilo gustoću elektronskih stanja na Fermijevom nivou (međudjelovanje elektron-elektron). Pod pojmom *slabe lokalozacije* podrazumijevaju se mnogobrojna slučajna elastična raspršenja elektrona koja mogu dovesti do toga da njihova putanja postane zatvorenom petljom. Time je vjerojatnost povratka elektrona na početni položaj veća nego kod slučajnog hoda; elektron kao da je (slabo) lokaliziran. Da bi učinci slabe lokalizacije bili vidljivi, elektronska raspršenja moraju biti elastična jer ih termičke fluktuacije ili neki drugi neelastični procesi elektronskog raspršenja uništavaju. U neuređenim sustavima je, zbog slučajnih fluktuacija u gustoći iona, Coulombovsko međudjelovanje elektron-elektron manje zasjenjeno nego u uređenima. Time je utjecana gustoća stanja na Fermijevom nivou, zbog čega se javlja dodatni doprinos električnoj vodljivosti proporcionalan korjenu temperature. Poput slabe lokalizacije, termičke fluktuacije narušavaju i učinke međudjelovanja elektron-elektron.

Kod kvazikristala iz obitelji *i*-AlPdMn dodatni učinak na raspršenje elektrona (te na električnu otpornost) ima i magnetizam manganovih atoma. Ispitivanja magnetizacije i spektara nuklearne magnetske rezonancije (na primjer, izvori [58–60]) su pokazali da samo manji dio atoma mangana (njih oko 1%) ima magnetske momente. Sustavna ispitivanja električne vodljivosti i magnetizacije na nizu uzoraka iz obitelji *i*-AlPdMn visoke strukturne kakvoće [9] su pokazala da je električna vodljivost σ ($\sigma = 1/\rho$) jednaka zbroju dvaju pribrojnika, jednog ovisnog (σ_0) i drugog neovisnog ($\Delta \sigma$) o temperaturi:

$$\sigma(T) = \sigma_0 + \Delta \sigma(T) \tag{2.51}$$

Gornja je jednakost karakteristična za ikozaedarske kvazikristale (na primjer

pogledati izvore [57, 61]) i naziva se inverznim Matthessenovim pravilom. I "rezidualni" (σ_0) i temperaturno ovisni dio ($\Delta\sigma(T)$) inverznog Matthiessenovog pravila se kod *i*-AlPdMn razlikuju od svojih pandana u ostalim ikozaedarskim kvazikristalima [57, 61]: u njima je upisano prisustvo magnetskih manganovih atoma. Autori su za objašnjenje toga predložili raspršenje elektrona tipa Kondo u kojemu dolazi do promjene spina raspršenih elektrona. Medjudjelovanje između atoma mangana preko vodljivih elektrona dovodi do pojave magnetskih momenata u njima [62]. U slučaju nekakvih lokalnih defekata kvazirešetke može se zamisliti da je veći broj atoma Mn relativno blizu jedan drugoga i međusobno jače međudjeluju, zbog čega više atoma mangana posjeduje magnetski moment; veći je magnetski doprinos raspršenju vodljivih elektrona te uzorci manje strukturne kakvoće imaju veću otpornost³.

2.2.2 Toplinska vodljivost

Za razliku od eksperimentalnih podataka električne vodljivosti, toplinska vodljivost kvazikristala ne pokazuje tako velike razlike u odnosu na amorfne materijale. Usporedba postojećih krivulja toplinske vodljivosti kvazikristala s onima amorfnih materijala je prikazana na slici 1.3, na temelju čega se toplinska vodljivost κ i kvazikristala i amorfnih materijala može po svom temperaturnom ponašanju podijeliti u tri temperaturna područja. Prvo je do otprilike jednog Kelvinovog stupnja, gdje je κ proporcionalna s T^n , uz $n \approx 2$. Zatim dolazi temperaturni interval od desetak do stotinjak Kelvina, gdje se kod amorfnih materijala javlja zaravan, a kod kvazikristala ili zara-

³ Kod ostalih ikozaedarskih kvazikristala uzorci veće strukturne kakvoće imaju i veću električnu otpornost [57]!

van ili vrlo blago istaknuti maksimum. Iznad 100-ak K, toplinska vodljivost ponovno počinje rasti.

Elektronski doprinos toplinskoj vodljivosti kvazikristala se može procijeniti Wiedemann-Franzovim zakonom (2.27). Tipične vrijednosti toplinske vodljivosti kvazikristala na sobnim temperaturama leže između 1 i 5 W/mK [10, 15, 16, 63]. Tipične vrijednosti električnih otpornosti kvazikristala su između 10 i 50 $\mu\Omega$ m, što za elektronski doprinos toplinskoj vodljivosti κ_{el} daje za barem red veličine manju vrijednost od ukupne toplinske vodljivosti. Teorijski proračun Lorenzovog broja za ikozaedarske kvazikristale iz obitelji *i*-AlCuFe [64] pokazuje da može poprimiti vrijednost i do 30-ak % višu od vrijednosti dane u jednadžbi (2.27). Međutim, to ne povećava znatno udio doprinosa elektrona u ukupnoj toplinskoj vodljivosti, posebice ne na niskim temperaturama.

Toplinska vodljivost na temperaturama nižim od 1 K

Ranije je u tekstu bilo riječi o eksperimentima neelastičnog raspršenja neutrona na kvazikristalima (slike 2.15 i 2.16) kojima je pokazano da u kvazikristalima iz obitelji *i*-AlPdMn titranja rešetke s frekvencijama manjim od $\omega_0 = 1.4$ THz imaju svojstva akustičnih fonona. Dakle, na temperaturama nižim od neke granične temperature T_0 pobuđena su samo akustična titranja te matematički modeli za fononsku toplinsku vodljivost razvijeni za periodičke strukture mogu biti primjenjeni i u slučaju kvazikristala. Vrijednost granične temperature T_0 se može jednostavno procijeniti pomoću relacije $k_BT_0 = \hbar\omega_0$, što za $\omega_0 = 1.4$ THz daje T_0 od šezdesetak Kelvinovih stupnjeva. Dakle, na temperaturama ispod nekoliko desetaka K, fononsku toplinsku vodljivost kvazikristala je moguće opisati Debyeovim modelom (2.33).

Niskotemperaturno ponašanje toplinske vodljivosti kvazikristala, dane na slici 1.3, pokazuje da je $\kappa(T)$, poput amorfnih materijala, proporcionalan s T^2 . Ta temperaturna ovisnost dolazi od raspršenja fonona na tunelirajućim stanjima, što je svojstvo amorfnih materijala i podrobnije je opisano u odjeljku sa svojstvima tvrdih ugljika na stranici 53. Iz tih se podataka dâ zaključiti da je fononska dinamika kvazikristala amorfne prirode. Štoviše, i akustička mjerenja [13,65,66] potvrđuju postojanje tunelirajućih stanja u kvazikristalima. Međutim, drugi rezultati toplinske vodljivosti na kvazikristalima iz obitelji *i*-AlPdMn [15] pokazuju da tunelirajuća stanja nisu glavni mehanizam raspršenja fonona; autori su zaključili da je pojava raspršenja fonona na tunelirajućim stanjima ovisna o sastavu uzorka i/ili načinu njegove priprave. Isto tako, niskotemperaturna toplinska vodljivost kvazikristala iz obitelji i-YMgZn [16] također ne pokazuje da su fononi raspršeni na tunelirajućim stanjima; u oba je slučaja uzeto u obzir raspršenje na 'pogreškama u slaganju' (engl. *stacking faults*) te nije dano objašnjenje što bi u kvazikristalnim strukturama moglo uzrokovati takvu vrstu raspršenja fonona.

Područje zaravni odnosno blagog maksimuma

Slika 1.3 pokazuje da postoje dvije vrste temperaturnog ponašanja toplinskih vodljivosti kvazikristala na temperaturama od nekoliko desetaka K. Kod jednih dolazi do zasićenja u $\kappa(T)$ (što je inače osobina toplinske vodljivosti amorfnim materijala), o čemu će biti više riječi u poglavlju s transportnim svojstvima amorfnih struktura, dok kod drugih postoji blago izraženi maksimum. Teorijski model, kojega su iznijeli Kalugin i suradnici [46], u kvazikristalnim strukturama predviđa postojanje poopćenog Umklapp procesa raspršenja fonona (*quasiumklapp*), posljedica čega je opadanje toplinske vodljivosti kvazirešetke s temperaturom po potencijskom zakonu: $\kappa_{qlatt} \propto T^{-3}$. Autori su pošli od pretpostavke da je disperzivna relacija kvazikristala (poput one za Fibonaccijev lanac prikazane na slici 2.14) ispunjena energetskim procjepima međusobno različitih širina. Kada se valni vektor raspršenog fonona nađe u blizini procjepa, fonon biva raspršen unatrag. Kod te vrste raspršenja bitni su samo oni procjepi s većom širinom; oni se nalaze na valnim vektorima q_n , koji se u ikozaedarskim kvazikristalima skaliraju s τ^{-3n} (to je posljedica strukturnog skaliranja s τ^{3n} ; kod Fibonaccijevog lanca vektori q_n se skaliraju s τ^{-n} jer je Fibonaccijev lanac toploški invarijantan na faktor skaliranja τ). Vjerojatnost strukturnog (ili quasiumklapp) raspršenja fonona, što je detaljnije pokazano u izvoru [46], je proporcionalna s ω , $P \propto \omega$. Frekvencija pojave quasiumklapp raspršenja, τ_{qu}^{-1} , je dana umnoškom udarnog presjeka σ trofononskih procesa raspršenja i vjerojatnosti raspršenja P: $\tau_{qu}^{-1} \propto P \sigma \propto \omega^2 T^4$. Uvrštavanjem τ_{qu} u izraz (2.33) dobije se da je toplinska vodljivost obrnuto proporcionalna kubu temperature.

Porast toplinske vodljivosti iznad 100 K

Porast na temperaturama višim od stotinjak Kelvinovih stupnjeva je zajednička osobina krivulja toplinske vodljivosti amorfnih materijala i kvazikristala. Posljedica je to doprinosa lokaliziranih titrajnih stanja koji preskakivanjem s jednog mjesta na drugo stvaraju dodatni kanal vođenja topline. Mehanizam preskakanja lokaliziranih stanja (nazvanih *fraktonima*, po fraktalnoj prirodi amorfnih struktura, o čemu će biti više riječi u poglavlju 2.3.1 na stranici 53) principijelno je jednak i kod amorfnih i kod kvazikristalnih struktura; razlike se ispoljavaju u temperaturnoj ovisnosti krivulje toplinske vodljivosti i posljedica je različitosti struktura. Fraktonska titrajna stanja, zbog svoje prostorne lokaliziranosti, sama po sebi ne doprinose toplinskoj vodljivosti. Međutim, fraktoni međudjeluju s fononima, što rezultira pojavom prenošenja fraktonskog titranja s jednog mjesta rešetke na drugo. Time se rešetkom prenosi energija titranja, i stvara se novi doprinos toplinskoj vodljivosti. Za matematički opis doprinosa fraktona toplinskoj vodljivosti [44], polazi se od osnovne relacije za toplinsku vodljivost (2.35) ($\kappa = \frac{1}{3}Cv^2\tau$), koja korištenjem izraza $v = l/\tau$ prelazi u

$$\kappa_{fr}(T) = \frac{1}{3} C_{fr} \lambda^2 \tau_{fr}^{-1}$$
(2.52)

gdje je s κ_{fr} označen doprinos fraktona toplinskoj vodljivosti, C_{fr} je njihov specifični toplinski kapacitet, λ je udaljenost koju frakton 'preskoči', a τ_{fr}^{-1} je frekvencija preskakivanja. Formalno, τ_{fr}^{-1} je dana izrazom:

$$\tau_{fr}^{-1} = |\psi(\lambda)|^2 \exp\left(-\frac{\Delta E}{k_B T}\right)$$
(2.53)

Preklapanje fraktonskih valnih funkcija na udaljenosti λ je dano s $|\psi(\lambda)|^2$, a ΔE je energetska barijera koju frakton treba savladati prilikom 'preskakivanja'. U slučaju kvazikristalne strukture gornji izraz može biti procjenjen na temelju argumenata o energetskom spektru ikozaedarskih kvazikristala iznesenih na stranici 41 ($\Delta E \propto a^{-2}$), te relacije (2.50), kojom je pokazano da valna funkcija opada po potencijskom zakonu ($\psi(r) \propto r^{-\alpha}, \alpha = 5/2$):

$$\tau_{fr}^{-1} \propto \frac{1}{\lambda^{2\alpha}} \exp\left(-\frac{\gamma}{\lambda^2 k_B T}\right)$$
 (2.54)

Najviša frekvencija preskoka τ_{fr}^{-1} nastupa kada je udaljenost λ jednaka λ_{max} :

$$\lambda_{max}^2 = \frac{\gamma}{\alpha} \frac{1}{k_B T} \tag{2.55}$$

što za τ_{fr}^{-1} daje

$$\tau_{fr,max}^{-1} \propto T^{\alpha} \tag{2.56}$$

Specifični toplinski kapacitet C, potreban za izračunavanje toplinske vodljivosti pomoću jednadžbe (2.52), uključuje doprinose fonona i fraktona uključenih u proces međudjelovanja fonon-frakton. Za fonone specifiči toplinski kapacitet je temperaturno neovisan, jer na temperaturama ovoga reda veličine vrijedi Dulong-Petitov režim; u slučaju fraktona početno i konačno stanje su identični, nema promjene u energiji i fraktoni, prema tome, ne doprinose specifičnom toplinskom kapacitetu. Na temelju ovih argumenata, te jednadžbi (2.52), (2.55) i (2.56), za fraktonski doprinos toplinskoj vodljivosti vrijedi:

$$\kappa_{fr}(T) \propto T^{\alpha - 1} \propto T^{1.5} \tag{2.57}$$

Eksperimentalne krivulje toplinske vodljivosti kvazikristala (neke od kojih su prikazane na slici 1.3, zatim podaci dani u [16], [44] i [63]) pokazuju da $\kappa(T)$ raste na temperaturama višim od stotinjak Kelvinovih stupnjeva. Analize dane u izvorima [16] i [63] pokazuju da je toplinska vodljivost između 100 K i 300 K proporcionalna T^n , gdje je za kvazikristale iz obitelji *i*-AlCuFe *n* jednak 0.6 (*i*-Al₆₃Cu₂₅Fe₁₂) odn. 1.4 (*i*-Al_{62,5}Cu_{25,5}Fe_{12,5}) [63] te 1.7 za pripadnike obitelji *i*-YMgZn [16]. Rezultat $\kappa(T) \propto T^{0.6}$, opažen za *i*-Al₆₃Cu₂₅Fe₁₂, dosta odstupa od teorijskog predviđanja danog jednadžbom (2.57). Eksperimentalni rezultati električne otpornosti i Hallovog koeficijenta [67] sugeriraju da je struktura toga kvazikristala daleko od idealne te je odstupanje od zakona $\kappa \propto T^{1.5}$ posljedica nesavršenosti strukture [63].

2.3 Amorfne strukture i tvrdi ugljici

Raspored atoma u amorfnim strukturama (staklima) nije uređen, osim na skali reda veličine nekoliko atomskih udaljenosti (tzv. kratkodosežna uređenost). Stoga je teorijsko modeliranje amorfne strukture i njenih posljedica na fizikalna svojstva amorfnih materijala vrlo teška. U tu se svrhu koriste modeli, poput modela *fraktalne strukture*, koji se po svojoj koncepciji nalaze između kristala i neuređenih struktura, čiji je raspored atomskih položaja slučajan.

Fraktalni su objekti, za razliku od Euklidskih prostora koji su invarijantni na translacijsku simetriju, invarijantni na promjenu skale. Posljedica toga su posebna svojstva funkcije gustoće: kod Euklidskog prostora dimenzije dvolumen sfere radijusa R je jednak $V_{Eu} = \alpha R^d$. α je konstantni bezdimenzionalni parametar koji je, na primjer, u trodimenzionalnom slučaju (d = 3) jednak $4\pi/3$. Kod objekata koji se podvrgavaju zakonitostima fraktalne geometrije, volumen V_{fr} više nije funkcija Euklidske, nego fraktalne dimenzije sustava \overline{d} (tzv. Hausdorffova dimenzionalnost, koja je manja od ili jednaka d): $V_{fr} = \beta R^{\overline{d}}$, gdje parametar β nije konstantan, nego ovisi o stvarnoj gustoći sustava. Fraktalna svojstva realnih objekata postoje uvijek unutar određenih prostornih granica: $a \leq r \leq \xi$, gdje je donja granica a određena na primjer međuatomskom udaljenosti. Na prostornim skalama većim od granične duljine ξ vrijede zakoni Euklidske geometrije.

Titrajna se stanja fraktalne mreže zovu *fraktonima*. Titrajni spektar fraktalnih struktura se kvalitativno može podijeliti u dva dijela [68,69]: na fraktonski, prostorno lokalizirani dio, čije su valne duljine titrajnih stanja λ manje od granične dimenzije ξ ($\lambda < \xi$) te na fononski, propagirajući dio $(\lambda > \xi)$. Granična frekvencija ω_{co} između dva titrajna režima je dana preko granične dimenzije ξ [68]:

$$\omega_{co} \propto \xi^{-\overline{d}/\overline{d}} \tag{2.58}$$

gdje je $\overline{\overline{d}}$ tzv. fraktonska dimenzija i definirana je u [68]. Za gustoće fononskih i fraktonskih stanja, $g_{fon}(E)$ i $g_{fr}(E)$, vrijedi [68,69]:

$$g_{fon}(\omega) \propto \omega^{d-1} \tag{2.59}$$

$$g_{fr}(\omega) \propto \omega^{\overline{d}-1}$$
 (2.60)

2.3.1 Toplinska vodljivost amorfnih struktura

Toplinska vodljivost amorfnih materijala pokazuje određena generalna pravila: na temperaturama nižim od nekoliko Kelvinovih stupnjeva toplinska vodljivost je proporcionalna kvadratu temperature, zatim na temperaturama reda veličine 10 K javlja se karakteristična zaravan, dok krivulja toplinske vodljivosti ponovno počinje rasti na temperaturama višim od nekoliko desetaka K. Usporedba toplinske vodljivosti jednog tipičnog amorfnog materijala (kvarcnog stakla) s toplinskom vodljivošću kristalnog materijala (kristalinični kvarc) je dana na slici 2.17 [70].

Dok je toplinska vodljivost kristalnog izolatora na temperaturama manjim od jednog Kelvina proporcionalna kubu temperature (zbog raspršenja fonona na nečistoćama i/ili zidovima uzorka, jednadžba (2.41) na stranici 25), krivulja toplinske vodljivosti amorfnih materijala proporcionalna je kvadratu temperature. To sporije opadanje $\kappa(T)$ s temperaturom kod amorfnih ma-

Slika 2.17: Usporedba toplinske vodljivosti kristaliničnog kvarca i kvarcnog stakla
[70].

terijala sugerira da oni imaju višu entropiju od kristalnih, što je potvrđeno mjerenjima specifičnog toplinskog kapaciteta [70]. Viša entropija znači veću termodinamičku vjerojatnost, odnosno veći stupanj degeneracije mikroskopskog stanja. Model *tunelirajućih stanja* (ili *sustava s dva energetska nivoa*) [71–73] pretpostavlja postojanje dva (ili više) potencijalnih minimuma između kojih atomi (ili grupe njih) mogu tunelirati. Red veličine degeneracije energija potencijalnih minimuma je 10^{-4} eV te se doprinos tunelirajućih stanja npr. toplinskoj vodljivosti može očekivati na temperaturama reda 1 K. Te su temperature dovoljno niske da propagirajuća atomska titranja, fononi, mogu biti definirani bez obzira na činjenicu što nema periodičnosti rešetke; u analizi toplinske vodljivosti može se primjeniti Debyeov model (jednadžba (2.33) na stranici 23).

Inverzno vrijeme života fonona raspršenih na tunelirajućim stanjima je dano relacijom [73]:

$$\tau_{fon-ts}^{-1}(\omega) = \frac{\overline{P}\gamma^2}{\rho \overline{v}^2} \frac{\Delta_0^2}{E^2} \pi \omega \tanh\left(\frac{E}{2k_B T}\right)$$
(2.61)

 \overline{P} je gustoća tunelirajućih stanja, γ srednja konstanta vezanja fonona i tunelirajućih stanja, \overline{v} je srednja brzina zvuka, ρ je gustoća mase, a E i Δ energija odn. degeneracija jednog tunelirajućeg stanja. Ova relacija, uvršena u Debyeov model toplinske vodljivosti daje kvadratnu ovisnost toplinske vodljivosti o temperaturi:

$$\kappa(T) = \frac{k_B^3}{6\pi\hbar^2} \frac{\rho\overline{\nu}}{\overline{P}\gamma^2} T^2$$
(2.62)

U modelu fraktalne strukture, opisanom u uvodnom dijelu ovoga poglavlja, definira se ω_{co} kao karakteristična frekvencija atomskih titranja kojom je određena granica između propagirajućih ($\omega < \omega_{co}$) i lokaliziranih titranja, $\omega > \omega_{co}$ (odnosno, između fonona i fraktona). Time je definirana i karakteristična temperatura T_{co} ($T_{co} \approx \hbar \omega_{co}/k_B$), iznad koje više nije moguće pobuđivanje novih propagirajućih, fononskih stanja. Tu leži razlog postojanja zaravni u krivuljama toplinske vodljivosti amorfnih materijala: nepobuđivanjem novih fonona i ulaskom specifičnog toplinskog kapaciteta u DulongPetit-ov režim, toplinska vodljivost postaje konstantnom. Porast toplinske vodljivosti s temperaturom na temperaturama višima od onih na kojima se javlja zaravan posljedica je otvaranja novog kanala u vođenju topline - anharmoničkim međudjelovanjem fonona s fraktonima postaju mogući preskoci fraktona s jednog mjesta na drugo.

Hamiltonijan anharmoničnog međudjelovanja je [74]:

$$\mathcal{H}_{anh} = \frac{\lambda}{V} \int \left(\nabla \cdot \mathbf{u}\right)^3 d\mathbf{r}$$
 (2.63)

gdje je λ konstanta anharmoničkog međudjelovanja, V jedinični volumen, a $\mathbf{u}(\mathbf{r})$ je operator pomaka atoma iz njihovih položaja ravnoteže, koji se može raspisati preko normalnih titrajnih modova:

$$\mathbf{u}(\mathbf{r}) = \sum_{\alpha} \left(\frac{1}{2\rho\omega_{\alpha}}\right)^{1/2} \hat{\mathbf{e}}_{\alpha} \left[\phi_{\alpha}(\mathbf{r})b_{\alpha} + \phi_{\alpha}^{*}(\mathbf{r})b_{\alpha}^{\dagger}\right]$$
(2.64)

gdje je α indeks moda, ρ prosječna gustoća mase, $\hat{\mathbf{e}}_{\alpha}$ jedinični vektor u smjeru polarizacije normalnog moda α , $\phi_{\alpha}(\mathbf{r})$ njegova normalizirana valna funkcija, a b_{α} i b_{α}^{\dagger} operatori poništavanja, odn. stvaranja. Uvrštavanjem jednadžbe (2.64) u hamilonijan (2.63) dobije se zbroj čiji je tipični pribrojnik jednak:

$$\mathcal{H}_{anh} = \lambda \sum_{\alpha, \alpha', \alpha''} \left(\dots + A_{\alpha, \alpha', \alpha''} b^{\dagger}_{\alpha} b_{\alpha'} b_{\alpha''} + A^{*}_{\alpha, \alpha', \alpha''} b_{\alpha} b^{\dagger}_{\alpha'} b^{\dagger}_{\alpha''} + \dots \right)$$
(2.65)

gdje je s $A_{\alpha,\alpha',\alpha''}$ definiran matrični element:

$$A_{\alpha,\alpha',\alpha''} \equiv \frac{1}{V} \left[\left(\frac{1}{2\rho\omega_{\alpha}} \right) \left(\frac{1}{2\rho\omega_{\alpha'}} \right) \left(\frac{1}{2\rho\omega_{\alpha''}} \right) \right]^{1/2} \int \frac{\partial\phi_{\alpha}(\mathbf{r})}{\partial r} \frac{\partial\phi_{\alpha'}(\mathbf{r})}{\partial r} \frac{\partial\phi_{\alpha''}(\mathbf{r})}{\partial r} d\mathbf{r}$$
(2.66)

Hamiltonijan dan jednadžbom (2.65) u sebi sadrži fononske i fraktonske operatore stvaranja i poništavanja, b^{\dagger}_{α} i b_{α} . Procesi koji su bitni za razmatranje fraktonskog doprinosa toplinskoj vodljivosti su:

fonon + fonon
$$\leftrightarrow$$
 frakton
fonon + frakton \leftrightarrow frakton (2.67)

Proces

 $\mathrm{fonon}\,+\,\mathrm{fonon}\,\leftrightarrow\,\mathrm{fonon}$

je uključen u Debyeov model toplinske vodljivosti, koji kod amorfnih materijala, kako je već kazano, vrijedi na niskim temperaturama, dok je proces

 $\mathrm{fonon} + \mathrm{frakton} \leftrightarrow \mathrm{fonon}$

zabranjen s gledišta sačuvanja energije (jer su fononi nisko-, a fraktoni visokoenergetska pobuđenja atomskih titranja). Korištenjem vremenski ovisnog računa smetnje i približenja vremena relaksacije (engl. *relaxation time approximation*) [74], za procese odgovorne za fraktonsko vođenje topline (2.67), mogu se izračunati vremena života fraktona za oba procesa:

$$\frac{1}{\tau_{\alpha''}} = 2\pi\lambda^2 \sum_{\alpha,\alpha'} \left| A_{\alpha,\alpha',\alpha''} \right|^2 \left(1 + n^0_\alpha + n^0_{\alpha'} \right) \delta(\omega_{\alpha''} - \omega_{\alpha'} - \omega_\alpha)$$
(2.68)

gdje je n^0_{α} je Bose-Einsteinova funkcija raspodjele. Doprinos toplinskoj vodljivosti fraktonskih modova titranja se može izračunati relacijom:

$$\kappa = \int g_{fr}(\omega_{\alpha''}) C(\omega_{\alpha''}) D(\omega_{\alpha''}) d\omega_{\alpha''}$$
(2.69)

Slika 2.18: Toplinska vodljivost epoksi-smole [74]. Iznad 40-ak Kelvinovih stupnjeva $\kappa(T)$ je linearna temperaturi, što je u skladu s modelom doprinosa fraktona toplinskoj vodljivosti, danog jednadžbom (2.70).

gdje je $g_{fr}(\omega_{\alpha''})$ gustoća stanja fraktona, $C(\omega_{\alpha''})$ njihov specifični toplinski kapacitet i računa se relacijom $C(\omega_{\alpha''}) = \hbar \omega_{\alpha''} \frac{\partial}{\partial T} n^0_{\alpha''}$, a $D(\omega_{\alpha''})$ konstanta difuzije koja je jednaka $C(\omega_{\alpha''}) \simeq \frac{1}{\tau_{\alpha''}} R^2(\omega_{\alpha''})$. $R(\omega_{\alpha''})$ je srednja udaljenost preskoka fraktona, detalji računanja kojeg su dani u [74]; toplinska vodljivost fraktonskog kanala vođenja topline je po tome:

$$\kappa_{fr}(T) \propto T$$
 (2.70)

Eksperimentalna krivulja toplinske vodljivosti epoksi-smole je prikazana na slici 2.18. Iznad 40-ak Kelvinovih stupnjeva toplinska vodljivost je linearna s temperaturom, kako i predviđa model fraktonskog doprinosa toplinskoj vodljivosti.

2.3.2 Tvrdi ugljici

Ugljik se u prirodi javlja u svoje tri čiste forme: u formi dijamanta, grafita i fulerena C₆₀. Raznolikost pojavnosti u čistom stanju ugljik može zahvaliti različitim hibridizacijema njegova četiri valentna elektrona $(sp^3 i sp^2)$. U slučaju sp^3 hibridizacije jedna s i tri p orbitale stvaraju četiri nove orbitale međusobno razmaknute za kut od 109.5° i usmjerene su u vrhove tetraedra (slika 2.19 lijevo). Ugljik s elektronima hibridiziranim u veznu konfiguraciju sp^3 gradi dijamant, čija je struktura prikazana na slici 2.20 lijevo. Kod sp^2 hibridizacije jedna s- i dvije p- orbitale stvaraju tri orbitale smještene u istoj ravnini i međusobno zatvaraju kut od 120° (slika 2.19 desno); treća, nehibridizirana p- orbitala je okomita na ravninu definiranu orbitalama sp^2 . Grafit je građen of atoma ugljika s sp^2 -hibridiziranim elektronskim orbitalama (slika 2.20 desno). Unutar grafitnih ravnina atomi ugljika su međusobno jače vezani nego u dijamantu (jer je veza između sp^2 orbitala snažnija od veza između sp^3 orbitala). Grafitne ravnine su međusobno vezane slabim vezama

Slika 2.19: sp^3 (lijevo) i sp^2 (desno) hibridizirane orbitale.

Slika 2.20: Struktura dijamanta (lijevo) i grafita (desno).

između nehibridizirani
h $p{\rm -orbitala}.$

Treća alotropska modifikacija ugljika, fuleren C₆₀, je prvi puta sintetizirana 1985. godine [17], za što su R. F. Curl, H. W. Kroto i R. E. Smalley 1996. godine dobili Nobelovu nagradu za kemiju. 1990. godine su Krätschamer i Hauffman pronašli postupak kojim je moguće proizvesti fulerene u velikim količinama [75]. Postupak se bazira na električnim lûkom ili grijanjem induciranim isparavanju ugljika s grafitnog štapa u helijevoj atmosferi od 100 do 200 torra. To je potaklo vrlo intenzivno istraživanje bogatih svojstava fulerena. Nabrojimo samo neke: 1991. godine je pronađena supravodljovost ispod 18 K u K₃C₆₀, fulerenu kojemu su u kavez C₆₀ umetnuta tri atoma kalija [76]; 1992. je uočen itinerantni feromagnetizam u TDAE-C₆₀⁴ [77]; ova zadivljujuća molekula pod određenim uvjetima ima i sposobnost zaustavljanja širenja virusa HIV-a [78]!

Atomi ugljika u molekuli C_{60} su međusobno vezani sp^2 -hibridiziranim orbitalama. Teorijski proračuni tvrdoće molekule C_{60} su pokazali da je veća od tvrdoće dijamanta [79–81]. To je otvorilo mogućnost primjene fulerena u

⁴ TDAE je pokrata za tetrakis(dimetilamino)etilen.
proizvodnji vrlo tvrdih materijala. Kristali fulerena su vrlo mekani; molekule C_{60} na sobnim temperaturama kristaliziraju u plošno centriranu kubičnu rešetku s van der Waalsovim silama između pojedinih molekula. Podvrgavanjem kristala fulerena povišenom tlaku bi se, u principu, mogao dobiti materijal velike tvrdoće pod uvjetom da ne dolazi do kolabiranja molekula C_{60} . Teorijski proračuni su pokazali da bi molekule fulerena trebale biti stabilne do tlakova od 20 GPa ⁵. Eksperimenti podvrgavanja kristala fulerena visokim tlakovima i temperaturama su dali pravo bogatstvo novih faza i struktura, shematski prikazanih faznim dijagramom 2.21 (izvor [83] i reference u njemu).

Podvrgavanjem fulerena relativno niskim tlakovima (oko 1 GPa) i temperaturama (oko 700 K) dolazi do polimerizacije molekula C₆₀. U međumolekularno vezanje su uključene nehibridizirane p-orbitale te su elektronska stanja atoma ugljika koji vežu različite molekule C₆₀ sp^3 -hibridizirane. Ortorompsku fazu karakteriziraju dimeri C₆₀. Podvrgavanjem kristala fulerena višim temperaturama (višim od 700 K) stvaraju se polimeri tetragonalne i romboedarske faze. Polimeri fulerena su dobiveni i njihovim izlaganjem ultraljubičastom ili vidljivom dijelu spektra (bez izlaganja povišenom tlaku ili temperaturi) [84].

Pri tlakovima između 9 i 13 GPa molekule C_{60} su već dovoljno blizu da se veze među molekulama stvaraju već pri relativno malo povišenim temperatrama (oko petstotinjak K). Jedinična ćelija je (i dalje) plošno centrirana kubična, ali blago narušena zbog defromacija molekula C_{60} . Ove se faze nazivaju *tvrdim fcc* fazama jer pokazuju vrlo veliku tvrdoću (usporedivu s

 $^{^5}$ To vrijedi za hidrostatske tlakove. Podvrgavanjem nehidrostatskom tlaku molekule C₆₀ postaju nestabilnima već pri 16 GPa [82].

Slika 2.21: Fazni dijagram fulerena C_{60} .

tvrdoćom dijamanta). Grijanjem iznad 600 K pri ovim tlakovima (9 - 13 GPa) nastaju potpuno nove strukturne faze koje pokazuju svojstva volumno centrirane kubične rešetke. Iznad 850 K javlja se monoklinska struktura, da bi se iznad 900 K počele pojavljivati i amorfne faze. Na temperaturama višim od 1300 K nastaju strukture koje su potpuno amorfne i *tvrđe od dijamanta*.

3. EKSPERIMENTALNE METODE

Za izradbu ovoga doktorskog rada potrebno je bilo razviti novi uređaj za mjerenje toplinske vodljivosti, u cilju postizanja veće preciznosti mjerenja u temperaturnom području od temperature ključanja tekućeg dušika do temperature ključanja tekućega helija. Uređaj je detaljno opisan u ovome poglavlju, a prikazan je osnovni princip mjerenja električne otpornosti, detalji kojeg su dani u izvoru [63].

3.1 Mjerenje električne otpornosti

Na slici 3.1 je shematski prikazan princip mjerenja električne otpornosti. Na uzorak¹ se srebrenom pastom (koja je dobar električni vodič) zalijepe četiri zlatne žice (po dvije strujne i naponske) promjera do 25 μ m. Električni otpor uzorka se računa relacijom R = U/I (gdje je U izmjereni napon, a I struja koja se šalje kroz uzorak). Pošto je struja koja se šalje istosmjerna, kroz uzorak se šalje u oba smjera u cilju poništavanja parazitnih otpora koji se javljaju na spojištu zlatnih žica i uzorka. Električna otpornost se dobije na temelju izmjerenog otpora uzorka R:

$$\rho = R \frac{A}{l} \tag{3.1}$$

¹ Isti je uzorak korišten i za mjerenje toplinske vodljivosti.

Slika 3.1: Principijelna shema mjerenja električnog otpora.

A je površina poprečnog presjeka uzorka, a l udaljenost između dva naponska kontakta. Nesigurnost u točnom određivanju ove dvije geometrijske veličine unosi i najveću sistematsku pogrešku u mjerenje (koje je, u pravilu, oko desetak posto).

3.2 Mjerenje toplinske vodljivosti

Kada kroz neki materijal protječe toplina, duž njega se stvara temperaturni gradijent; toplinska vodljivst κ je veličina definirana na način:

$$\Phi_{\mathbf{Q}} = \frac{\mathbf{Q}}{A} = \kappa \nabla T \tag{3.2}$$

gdje je $\Phi_{\mathbf{Q}}$ toplinski tok definiran kao omjer toplinske snage \mathbf{Q} i površine poprečnog presjeka A kroz kojega toplina prolazi, a ∇T temperaturni gradijent. Za precizno mjerenje toplinske vodljivsti κ potrebno je točno poznavanje toplinske snage koja prolazi uzorkom, koja se određuje ovisno o vrsti metode kojom se toplinska vodljivost mjeri. Kod *poredbene* metode (detaljnije opisane u izvoru [63]) između izvora topline (grijača) i ispitivanog uzorka nalazi se poredbeni uzorak čije je temperaturno ponašanje toplinske vodljivosti κ poznato. Mjerenjem temperaturnog gradijenta stvorenog protjecanjem topline poredbenim uzorkom može se izračunati toplinska snaga; za nju se pretpostavlja da sva s poredbenog prijeđe na ispitivani uzorak. U *apsolutnoj* se metodi mjerenja toplinske vodljivosti grijač stavlja izravno na uzorak; toplinska snaga grijača je jednaka umnošku struje kroz i napona na njemu, UI.

U uređaju za mjerenje toplinske vodljvosti razvijenom za potrebe izradbe ovog doktorskog rada rabi se, pored poredbene, i apsolutna metoda mjerenja, shematski princip koje je prikazan na slici 3.2 (apsolutna metoda je u nekim slučajevima pogodnija zbog specifičnih dimenzija uzoraka). Kao grijač se koristi otpornik rutenij-oksida RuO_2^2 čiji je otpor na sobnoj temperaturi jednak 1 k Ω ; za uzorak je zalijepljen lakom IMI 7031³. Drugi kraj uzorka je, također lakom IMI 7031, zalijepljen na bakreni toplinski spremnik. Za termometriju uzorka koristi se dvostruki diferencijalni termočlanak kromelkonstantan⁴ (tipa E) promjera žica od 25μ m i njihove duljine od 5 cm; dva su njegova spojišta lakom IMI 7031 zalijepljeni na uzorak, a treći na bakreni spremnik topline. Time je, osim gradijenta temperature duž uzorka ΔT , moguće mjeriti i razliku temperature između spremnika topline (za kojeg se pretpostavlja da jednak temperaturi čitavoga kućišta) i hladnijeg kraja uzorka, ΔT_{uz-spr} te je srednja temperatura uzorka, T_{sr} , jednaka:

 $^{^2}$ Ti se otpornici koriste u elektroničkoj industriji.

³ Prije poznatiji kao lak GE 7031.

 $^{^4}$ Kromel je legura načinjena 90% od nikla i 10 % od kroma , a konstantan legura s55%udjela bakra i 45% nikla.

Slika 3.2: Princip mjerenja toplinske vodljivosti apsolutnom metodom.

$$T_{sr} = T_0 + \Delta T_{uz-spr} + \frac{1}{2}\Delta T \tag{3.3}$$

gdje je T_0 temperatura kućišta, a ΔT razlika temperatura mjerena duž uzorka.

Odabir termočlanka

Zašto je odabran termočlanak kromel-konstantan? Osjetljivost termočlanka S je definirana kao omjer razlike potencijala ΔU i razlike temperatura ΔT između dva njegova spojišta:

$$S = \frac{\Delta U}{\Delta T} \tag{3.4}$$

Na slici 3.3 su prikazane osjetljivosti termočlanaka kromel-konstantan i kromel-AuFe0.07%. Iznad četrdesetak Kelvinovih stupnjeva osjetljiviji je termočlanak kromel-konstantan; suprotno, na temperaturi tekućeg helija termočlanak kromel-AuFe0.07% je osjetljiviji oko šest puta. Na temperaturi od oko 8 K tipična vrijednost temperaturnog gradijenta duž uzorka je oko 0.3 K; to

Slika 3.3: Termostruje termočlanaka kromel-konstantan i kromel-AuFe0.07%.

odgovara naponu od 1 μ V za termočlanak kromel-konstantan, odnosno 6 μ V u slučaju kromel-AuFe0.07%. Dakle, logičniji je izbor, posebno za mjerenja na niskim temperaturama, odabir ovog potonjeg. Međutim, na umu treba imati i činjenicu da se dio topline koja prolazi uzorkom jednim dijelom gubi i kroz žice termočlanka, iznos koje se može procijeniti preinakom jednadžbe (3.2):

$$Q_{gub} = \kappa \frac{A}{l} \Delta T \tag{3.5}$$

gdje je A površina poprečnog presjeka žice a l njena duljina. U tablici 3.1

Tablica 3.1: Procjena gubitaka topline preko žica termočlanaka kromel-konstantan i kromel-AuFe0.07% na temperaturama od 10 K i 100 K. Pretpostavljen je temperaturni razmak između spojišta termočlanka od 0.2 K, a promjer njegovih žica je 25 μ m. Račun je izvršen pomoću relacije (3.5) za duljine žica termočlanaka od 5 i 15 cm (podsjetimo se da je drugi naziv termočlanka kromel-konstantan termočlanak tipa E).

l=5 cm			$l{=}15$ cm		
	tip E	kromel-AuFe0.07\%	tip E	kromel-AuFe0.07\%	
$T{=}10 \text{ K}$	$0.03~\mu {\rm W}$	$25~\mu {\rm W}$	$0.01~\mu {\rm W}$	$8 \ \mu W$	
$T{=}100 {\rm ~K}$	$0.15~\mu \mathrm{W}$	$3 \ \mu W$	$0.05~\mu {\rm W}$	$1 \ \mu W$	

su navedene procjene gubitaka topline (pomoću jednadžbe (3.5) i slike 3.4 na kojoj su dane toplinske vodljivosti zlata [85] i konstantana) kroz zlatne odnosno konstantanove žice termočlanaka na temperaturama od 10 i 100 K te za dvije različite duljine žica (5 i 15 cm). Pretpostavljena je temperaturna razlika između spojišta termočlanka od 0.2 K i promjer žica od 25 μ m.

Tipične snage koje se stvaraju na grijaču su nekoliko stotina mikrovata. Vrijednosti iznesene u tablici 3.1 govore da gubici topline u slučaju termočlanka kromel-konstantan dva do tri reda veličine manje nego kod termočlanka kromel-AuFe0.07%, kod kojega, prema ukupnoj toplini, ti gubici znaju narasti i do desetak posto. To bi se moglo smanjiti korištenjem duljih i tanjih žica, ali treba pri umu imati i skučenost prostora u kojega termočlanci trebaju biti smješteni. Zato je, unatoč većoj osjetljivosti termočlanka kromel-AuFe0.07% na niskim temperaturama (slika 3.3), odabran termočlanak kromel-konstantan s duljinama žica od 5 cm.

Slika 3.4: Toplinska vodljivost zlata i konstantana.

Na slici 3.5 je shematski prikazan izgled vrha nosača na kojem se nalazi uzorak. Mjedeni poklopac (na kojega je namotan i grijač) ujedno služi i kao štit od toplinskog zračenja. Zračenje topline predstavlja još jedan izvor toplinskih gubitaka; izračena snaga Q_{rad} je, po Stefan-Boltzmannovom zakonu, jednaka:

$$Q_{rad} = \tilde{\sigma} E A_{\check{s}t} (T^4 - T^4_{\check{s}t}) \tag{3.6}$$

gdje je $\tilde{\sigma}$ Stefan-Boltzmann-ova konstanta ($\tilde{\sigma} = 5.67 \times 10^{-8} \text{W/m}^2 \text{K}^4$), E efektivna emisivnost, T temperatura, a $T_{\tilde{s}t}$ temperatura štita. Radi jed-

Slika 3.5: Shematski tlocrt mjedenog vrha nosača uzoraka za mjerenje toplinske vodljivosti.

nostavnosti se uzorak i štit mogu zamisliti kao dva koaksijalna valjka te je efektivna emisivnost E tada jednaka [86]:

$$E = \frac{\varepsilon_{\check{s}t}\varepsilon_{uz}}{\varepsilon_{uz} + \frac{A_{\check{s}t}}{A_{uz}} \left(1 - \varepsilon_{uz}\right)\varepsilon_{\check{s}t}}$$
(3.7)

gdje su $\varepsilon_{\check{s}t}$ i ε_{uz} emisivnosti štita i uzorka, a $A_{\check{s}t}$ i A_{uz} površine štita i uzorka. Emisivnost uzorka ε_{uz} je, po Drude-u, jednaka:

$$\varepsilon_{uz} = 365 \sqrt{\frac{\rho_{uz}}{\lambda_m}} \tag{3.8}$$

gdje je ρ_{uz} električna otpornost uzorka u [Ω m], a λ_m valna duljina zračenja (u $[\mu m]$) na kojoj je intenzitet najveći; λ_m se računa po Wien-ovom zakonu $\lambda T = 2.9 \times 10^{-3} \ {\rm Km}$ i na 300 K je jednak 9.7 $\mu {\rm m}.$ Za električnu otpornost reda 50 $\mu\Omega m$, emisivnost uzorka po Drude-u je reda 0.8. Za emisivnost mjeda, od kojega je načinjen štit, postoje različiti podaci i poprima vrijednosti između 0.04 i 0.6 [87]. Tipične vrijednosti opsega i duljine uzorka su između 2 i 3 mm, pa je A_{uz} tipično između 5 i 10 mm². Opseg štita se može procijeniti na 50 mm, a njegova duljina na 20 mm; dakle, $S_{\check{s}t}$ je reda 1000 mm². Uvrštavanjem gornjih vrijednosti u jednadžbu (3.7) dobije se da je efektivna emisivnost reda 0.03. Na temperaturi kućišta (odnosno štita $T_{\tilde{s}t}$) od 300 K srednja temperatura uzorka T_{uz} je 300.1 K. Na temelju ovih vrijednosti i jednadžbe (3.7) se može snaga zračenja, Q_{rad} , procijeniti između 10 i 20 μ W. Tipična snaga grijača, Q, na uzorku na tim temperaturama je oko 1 mW te je snaga izgubljena zračenjem na temperaturi od 300 K između 1 i 2 % ukupne snage. Na nižim temperaturama taj je udio opada s četvrtom potencijom temperature (jednadžba (3.6)) te se može zaključiti da su gubici toplinske snage zbog zračenja praktički zanemarivi.

Na slici 3.6 je shematski prikazan bokocrt vrha nosača uzorka sa slike 3.5). Uzorak je jednim svojim krajem lakom IMI 7031 zalijepljen na bakreni spremnik topline; i grijač uzorka (RuO₂) i termočlanci su na njega zalijepljeni na isti način. U mjedenome kućištu se nalazi termometar željezo-rodij. Temperatura se stabilizira proporcionalno-integracijsko-derivacijskim (PID) algoritmom kojim se snaga \mathcal{P} kroz grijač vrha nosača (prikazanog na slici 3.5) računa formulom:

Slika 3.6: Shematski bokocrt mjedenog vrha nosača uzoraka za mjerenje toplinske vodljivosti.

$$\mathcal{P} = P\left[(T_0 - T) + I \int (T_0 - T) dt + I \frac{d}{dt} (T_0 - T) \right]$$
(3.9)

gdje je T_0 temperatura na koju sustav teži doći, T trenutna temperatura, t vrijeme, a P, I i D takozvani PID-parametri. Oni se, u principu, mogu odrediti računski, ali je puno lakša i brža bila metoda pokušaja i pogrešaka. PID-parametri su na različitim temperaturama različiti i ovise o specifičnom toplinskom kapacitetu vrha nosača.

Uz kondukciju (vođenjem žicama termočlanka) i radijaciju (zračenje), konvekcija plinom koji okružuje uzorak je još jedan izvor gubitaka topline. Zbog toga je potrebno održavati tlak u okolini uzorka što je moguće nižim; u uređaju za mjerenje toplinske vodljivosti predstavljenog u ovome radu, prostor oko uzorka se ispumpava turbomolekularnom crpkom. Testovi su pokazali da su pri tlakovima manjima od 5×10^{-6} mbara (tlakomjer je smješten na vrhu turbine crpke!) gubici konvekcijom okolnim plinom zanemarivi. Međutim, manji tlak znači i slabije hlađenje prostora s uzorkom kriogenim tekućinama.

 $Slika \ 3.7:$ Nosač za mjerenje toplinske vodljivosti

Zato je on smješten u međuprostor koji se ispumpava rotacijskom crpkom i u kojega se, po potrebi, upušta plinoviti helij kao izmjenjivač topline (slika 3.7), čime se pospješuje hlađenje kriogenim tekućinama (tekući helij i dušik) u koje je nosač uronjen.

4. REZULTATI I ANALIZA

4.1 $(TaSe_4)_2I$

Mjerenja električne otpornosti i toplinske vodljivosti su načinjena na dva uzorka $(TaSe_4)_2I$ dimenzija $0.6 \times 0.9 \times 2.7 \text{ mm}^3$ i $0.7 \times 1.9 \times 2.9 \text{ mm}^3$, sintetiziranim na Saveznoj politehničkoj školi u švicarskoj Lausanne (EPFL) u laboratoriju H. Bergera. Na potonjem su uzorku mjerenja toplinske vodljivosti bila napravljena (samo) između 80 K i 320 K, dok će ovdje biti prikazani rezultati mjerenja obavljena na prvome uzorku u širem temperaturnom području, između 8 K i 320 K.

4.1.1 Električna otpornost

Na slici 4.1 je prikazana električna otpornost $(\text{TaSe}_4)_2$ I mjerena u smjeru lanaca TaSe₄ (ρ_c) i okomito na njih (ρ_a). Na temperaturi od oko 253 K u krivulju otpornosti u smjeru lanaca, ρ_c , se uočava anomalija kao posljedica Peierlsovog prijelaza. Na temperaturama višim i nižim od T_P električna otpornost ima poluvodičko ponašanje, odnosno povećava se smanjivanjem temperature. Otpornost ρ_a , mjerena okomito na lance TaSe₄, također pokazuje poluvodičko temperaturno ponašanje bez neke vidljive anomalije u okolini T_P . Teorije koje opisuju valove gustoće naboja, o kojoj je bilo više riječi u poglavlju 2.1, predviđa postojanje energetskog procjepa u elektronskoj dis-

Slika 4.1: Električna otpornost (TaSe₄)₂I mjerena u smjeru lanaca TaSe₄ (ρ_c) i okomito na njih (ρ_a). Donji dio slike prikazuje derivaciju prirodnog logaritma otpornosti po inverznoj temperaturi.

perziji ispod i iznad temperature Peierlsovog prijelaza T_P . Za temperature više od T_P to je posljedica termodinamičkih fluktuacija parametra reda [27] između T_P i T_P^{MF} , temperature na kojoj bi se trebao pojaviti Peierlsov prijelaz u približenju srednjega polja (vidjeti stranicu 13). U slučaju (TaSe₄)₂I T_P^{MF} je jednaka 720 K [88] te su u promatranom temperaturnom području (do 320 K) fluktuacije parametra reda još relativno velike.

Električna otpornost poluvodiča se, općenito, može izraziti eksponencijalnim zakonom [7]:

$$\rho(T) \propto e^{\Delta/T} \tag{4.1}$$

gdje je T temperatura, a Δ polovica iznosa energetskog procjepa. Deriviranjem logaritma otpornosti po inverznoj temperaturi bi se, u principu, mogla dobiti informacija o energetskom procjepu poluvodiča. Donji dio slike 4.1 prikazuje temperaturnu ovisnost izraza $\frac{dln\rho}{d1000/T}$; niskotemperaturni dio je za ρ_c i ρ_a saturiran na vrijednosti od približno 1.6, što odgovara iznosu poluprocjepa od oko 1600 K. Na temperaturi Peierlsovog prijela T_P se kod obje krivulje uočava anomalija, mnoga jače izražena za ρ_c . Dakle i ρ_a , električna otpornost (TaSe₄)₂I u smjeru okomitom na lance TaSe₄, je utjecana pojavom Peierlsovog prijelaza; modulacijom položaja atoma tantala (tetramerizacijom [33] i pomacima okomito na lance [89]) mijenjaju se integrali preklapanja elektronskih valnih funkcija.

Brüting i suradnici [36] su razvili model električne otpornosti kvazijednodimenzionalnih materijala koji daje:

$$\rho(T) = C \frac{\Delta(T)}{\ln\left(1 + e^{-\Delta(T)/k_B T}\right)}$$
(4.2)

gdje je $\Delta(T)$ temperaturno ovisan energetski poluprocjep, a C konstanta definirana izrazom:

$$C = \frac{\pi \hbar a}{2e^2 \mathcal{N} M \overline{v}^2} \left(\frac{E_a}{\hbar v_F}\right)^2 \tag{4.3}$$

u kojemu je *a* konstanta rešetke, \mathcal{N} broj lanaca po jedinici površine, Mmolarna masa, \overline{v} brzina zvuka, E_a akustički deformacijski potencijal, a v_F Fermijeva brzina. Iz donjeg dijela slike 4.1 je procijenjen iznos energetskog poluprocjepa Δ na niskim temperaturama (stotinjak K) na približno 1600 K te se izraz 4.2 može, zbog uvjeta $\Delta/k_B \ll T$, pojednostavniti na:

$$\rho(T) = C\Delta(T)e^{\Delta(T)/k_B T} \tag{4.4}$$

Pomoću te jednadžbe je izračunat energetski procjep u elektronskoj disperziji u smjeru lanaca (Δ_c) i okomito na njih (Δ_a). Usprkos tome što je model razvijen za električnu otpornost u smjeru lanaca, primjenjen je i za ρ_a pretpostavljajući da se "cik-cak" gibanje elektrona može zanemariti. Na slici 4.2 su prikazane temperaturne ovisnosti poluprocjepa Δ_c i Δ_a u skali temperature izračunate relacijom 4.4; umetak prikazuje teorijsko predviđanje temperaturnog ponašanja energetskog poluprocjepa (na temperaturama nižima od T_P korišten je model približenja srednjeg polja, a za $T > T_P$ model fluktuirajućeg procjepa [36]). Energetski poluprocjep u smjeru lanaca u principu slijedi teorijsko predviđanje prikazano u umetku, s napomenom na je omjer $\Delta(T_P)/\Delta(0) \approx 0.72$, za razliku od 0.4, koliko predviđa teorija. Sličan je rezultat za (TaSe₄)₂I dobio i Brüting sa suradnicima [36], dok su krivulje tempereaturne ovisnosti poluprocjepa za (Fa)₂PF₆ i plavu broncu (K_{0.30}MnO₃) slijedile predviđanja teorije. Stvarna priroda elektronskih stanja kod (TaSe₄)₂I

Slika 4.2: Temperaturna ovisnost energetskog poluprocjepa $(TaSe_4)_2I$ u smjeru TaSe₄ lanaca (Δ_c) i okomito na njih (Δ_a) , izračunati relacijom 4.4. Umetak prikazuje teorijsko predviđanje energetskog poluprocjepa [36].

predstavlja zagonetku (poglavlje 2.1.2); eksperimenti kutno razlučive fotoemisijske spektroskopije (ARPES-a, slika 1.6 na stranici 9) ukazuju na polaronsku prirodu kvazičestičnih pobuđenja. Mjerenjima toplinske vodljivosti (TaSe₄)₂I, prikazanih u sljedećem paragrafu, pokušalo se doprinijeti njihovom boljem razumijavanju.

4.1.2 Toplinska vodljivost

Na slici 4.3 je prikazana toplinska vodljivost $(TaSe_4)_2 I$ u smjeru (κ_c) i okomito na TaSe₄ lance (κ_a) . Obje su krivulje toplinske vodljivosti karakteristične

Tablica 4.1:	Vrijednosti električne otpornosti (dane u $[\mu\Omega m])$ i toplinske vodljivosti
	(u [W/mK]) te njihovi omjeri (TaSe ₄) ₂ I na 10 K, 120 K i 300 K.

	$\rho(300 \text{ K})$	$\rho(120~{\rm K})$	$\kappa(300~{\rm K})$	$\kappa(120~{\rm K})$	$\kappa(10~{\rm K})$
paralelno lancima	17.6	2.3×10^5	6.45	6.44	8.84
okomito na lance	3600	1.9×10^7	0.64	0.73	0.98
omjer	1:205	1:83	10.1:1	8.8:1	9.0:1

za uređene materijale s maksimumom na temperaturi od oko 20 K. Umeci prikazuju područje oko temperature Peierlsovog prijelaza T_P . Krivulja toplinske vodljivosti u smjeru lanaca, κ_c , na temperaturi od otprilike 220 K ima lokalni minimum, a na T_P mali šiljak (šiljak na T_P postoji i u krivulji specifičnog toplinskog kapaciteta [90]), što je karakteristično za kvazijednodimenzionalne materijale koji doživljavaju Peierlsov prijelaz [91]. Na krivulji κ_a se na temperaturi Peierlsovog prijelaza ne uočava anomalija, ali na malo nižoj temperaturi od T_P ima lokalni minimum; slično je ponašanje uočeno i kod plave bronce $K_{0.3}MnO_3$ [92]. U tablici 4.1 su navedene vrijednosti električne otpornosti i toplinske vodljivosti na nekim odabranim temperaturama za oba smjera te njihovi omjeri; anizotropija u električnoj otpornosti odgovara tipičnim vrijednostima kod drugih materijala u kojima dolazi da Peierlsovog prijelaza [93] i za red veličine je veća nego kod toplinske vodljivosti. Anizotropija toplinske vodljivosti plave bronce [92] je istoga reda veličine kao u ovdje prikazanim mjerenjima za (TaSe₄)₂I.

Na temperaturama nižima od temperature Peierlsovog prijalza T_P dio vodljivih elektrona je kondenziran u val gustoće naboja; Fermijev nivo se

Slika 4.3: Toplinska vodljivost $(TaSe_4)_2I$ u smjeru (κ_c) i okomito na TaSe₄ lance (κ_a) . U umecima su prikazane toplinske vodljivosti u okolini Peierlsovog prijelaza koji je kod κ_c okarakteriziran malim šiljkom, a kod κ_a lokalnim minimumom.

Tablica 4.2: Parametri dobiveni prilagodbom toplinske vodljivosti $(TaSe_4)_2I$ na jednadžbu (4.5), prikazano linijom na slici 4.4.

	$A \; [W/mK]$	n	$\theta/\alpha \; [{\rm K}]$	od - do
paralelno lancima	9.25	-0.094	10.355	30 K - 200 K
okomito na lance	2.81	-0.284	0.711	30 K - 240 K

našao u energetskom procjepu pa materijal pokazuje poluvodičko ponašanje (slika 4.1). Usporedbom vrijednosti električne otpornosti ρ i toplinske vodljivosti κ na 120 K i 300 K za oba smjera se vidi da je toplinska vodljivost istoga reda veličine, za razliku od električne otpornosti koja je na 120 K četiri reda veličine veća od one na 300 K. Sve to ukazuje da je na dovoljno niskim temperaturama doprinos elektrona toplinskoj vodljivosti praktički zanemariv i da su glavni nositelji topline titranja rešetke - fononi. Toplinska vodljivost fonona usljed fonon-fonon Umklapp raspršenja je dana jednadžbom (2.39):

$$\kappa_{\rm Umklapp} \propto \left(\frac{T}{\theta}\right)^3 e^{\theta/lpha T}$$

U realnom slučaju je vrlo teško krivulju fononske toplinske vodljivosti prilagoditi na gornji izraz; umjesto toga se koristi općenitija jednadžba [94]:

$$\kappa_{\rm Umklapp} \propto T^n e^{\theta/\alpha T}$$
 (4.5)

gdje parametar *n* može biti između -1 i 3, a α između 2 i 6. U tablici 4.2 su navedene vrijednosti parametara dobivenih prilagodbom na jednadžbu (4.5); zadnji stupac govori u kojemu je temperaturnom području numerička prilagodba podataka izvršena. Omjer θ/α je u slučaju κ_c red veličine veći

Slika 4.4: Punom je linijom prikazana prilagodba krivulja toplinske vodljivosti na Umklapp-raspršenja fonona. Umeci prikazuju temperaturnu ovisnost efektivnog Lorenzovog broja, podrobnije opisanog u tekstu.

nego kod κ_a ; parametar α ovisi o detaljima strukture Brillouinove zone i disperzivnoj relaciji fonona u blizini granica prve Brillouinove zone [29]. Razlika između omjera θ/α za toplinsku vodljivost u smjeru lanaca i okomito na njih može biti posljedica različitih vrijednosti parametara α . Međutim, ne smije se isključiti niti mogućnost različitih Debyeovih temperatura θ koje vrijede za širenje topline u c- i u a-smjeru. Kod anizotropnih materijala moguće je definirati više Debyeovih temperatura koje se mogu izraziti putem elastičnih konstanti (Huntington u izvoru [95] navodi da je u kubičnom kristalu definirana jedna, a u heksagonalnom dvije Debyeove temperature); Siethoff je u izvoru [96] Debyeovu temperaturu tetragonalnih rešetki izračunao preko elastičnih konstanti c_{12} , c_{44} i c_{66} . Anizotropnost ponašanja konstante c_{44} u (TaSe₄)₂I za širenje valova ultrazvuka u smjeru lanaca TaSe₄ i okomito na njih je pokazao M. Saint-Paul sa suradnicima [97]. Dakle, anizotropija se može očekivati i kod Debye-ovih temperatura θ te je razlika omjera θ/α između κ_c i κ_a posljedica različitih vrijednosti i α i θ .

U poglavlju 2.1.2, gdje je bilo riječi o fizikalnim svojstvima (TaSe₄)₂I, su naglašene kontroverze o prirodi elektronskih stanja u okolini T_P . Jedni eksperimentalni rezultati idu u prilog modela fluktuirajućeg energetskog procjepa za $T > T_P$ [36–39]; drugi daju prednost polaronskoj slici elektronskih stanja koja možebitno nisu Fermijeva tekućina [22, 23, 40]. Wiedemann-Franzov zakon, dan jedandžbom (2.27), je za polaronski sustav [98,99], kao i za Luttingerove tekućine [100], narušen: efektivni Lorenzov broj, L_{eff} , u slučaju Luttingerove tekućine je uvijek veći od Lorenzovog broja L_0 ; u slučaju polarona L_{eff} može biti i manji od L_0 .

Krivulje toplinske vodljivosti iznad temperature Peierlsovog prijelaza T_P

rastu s temperaturom; model dominantne fononske toplinske vodljivosti (prikazan linijom na slici 4.4) predviđa njezin pad. Porast toplinske vodljivosti na tim temperaturama može biti posljedica učinaka zračenja topline; međutim, razmatranja na stranici 67 o utjecaju zračenja na eksperimente toplinske vodljivosti pokazuju da je ono zanemarivo. Porast se može pripisati i doprinosu elektrona toplinskoj vodljivosti (Wiedemann-Franzov zakon (2.27) na stranici 21). Zastanimo tu na trenutak: Wiedemann-Franzov zakon je, kako je kazano u prethodnom paragrafu, narušen za polaronske i sustave koji se ne podvrgavaju zakonitostima Fermijeve tekućine. Pretpostavi li se da je porast toplinske vodljivosti isključivo posljedica doprinosa kvazičestica, efektivni Lorenzov broj, $L_{\rm eff}$, se može izračunati iz izmjerenih podataka toplinske vodljivosti oduzimanjem doprinosa fonona ($\kappa_{\rm Umklapp}$) od ukupne toplinske vodljivosti κ :

$$\frac{L_{\rm eff}}{L_0} = \frac{\kappa - \kappa_{\rm Umklapp}}{L_0 T/\rho} \tag{4.6}$$

Umeci na slici 4.4 prikazuju omjer L_{eff}/L_0 (gdje je L_0 Lorenzov broj) za širenje topline u smjeru lanaca i okomito na njih. Ono što je posebno zanimljivo je to da se za slučaj širenja topline u smjeru lanaca za temperature veće od 260 K omjer L_{eff}/L_0 saturira na vrijednosti približno jednakoj 2. Proračuni efektivnog Lorenzovog broja za Luttingerove tekućine [100] ili polarone [98,99] daju upravo iznose toga reda veličine. Prema tome, može se pretpostaviti da postoje kvazičestična pobuđenja (polaroni¹) i da su isključivo ona odgovorna za porast toplinske vodljivosti iznad T_{P} . Na gornjem dijelu slike 4.5 je sivim simbolima prikazan procijenjen doprinos polarona toplinskoj

 $^{^{1}}$ O tome podvrgavaju li se oni zakonima koji vrijede za Fermijeve tekućine ili ne se iz raspoloživih podataka ne može suditi. No, to za analizu nije niti bitno.

Slika 4.5: Na gornjem dijelu slike je sivim simbolima prikazana procjena toplinske vodljivosti polarona na temelju efektivnog Lorenzovog broja, $L_{\rm eff}$ =2. Bijeli simboli prikazuju razliku između ukupne toplinske vodljivosti $\kappa_{\rm c}$ i toplinske vodljivosti fonona $\kappa_{\rm Umklapp}$ (puna linija na slici 4.4). Na donjem dijelu slike je razlika $\Delta \kappa = (\kappa_{\rm c} - \kappa_{\rm c, Umklapp}) - \kappa_{\rm c, el}$.

vodljivosti (izračunat relacijom $\kappa_{c,qp} = L_{eff}T/\rho$); bijeli simboli daju razliku između ukupne i fononske toplinske vodljvosti (izračunate jednadžbom (4.5) i prikazane linijom na slici 4.4). Na donjem dijelu slike je prikazana razlika između razlike ukupne i fononske toplinske vodljivosti, ($\kappa_{\rm c} - \kappa_{\rm c,Umklapp}$) i toplinske vodljivosti kvazičestica (polarona), $\kappa_{\rm c,qp}$:

$$\Delta \kappa = (\kappa_{\rm c} - \kappa_{\rm c, Umklapp}) - \kappa_{\rm c, qp} \tag{4.7}$$

Krivulja $\Delta \kappa$ raste s temperaturom do T_P i zatim se počinje smanjivati, što slijedi sliku temperaturnog ponašanja doprinosa toplinskoj vodljivosti usljed fazonskih pobuđenja rešetke [91].

Na slici 4.6 je prikazana analiza slična prethodnoj, s razlikom da su kvazičestična pobuđenja pripisana elektronima te je njihova toplinska vodljivost izračunata Wiedemann-Franzovim zakonom (2.27). Donji dio slike 4.6 ponovno daje razliku $\Delta \kappa = (\kappa_c - \kappa_{c,Umklapp}) - \kappa_{c,el}$: u ovom slučaju $\Delta \kappa$ raste i na temperaturama višima od temperature Peierlsovog prijelaza T_P . To temperaturno ponašanje fazonskih pobuđenja rešetke ne slijedi model iznesen u izvoru [91], što daje potporu tvrdnji o kvazičestičnoj prirodi elektronskih pobuđenja.

Umetak na donjem djelu slike 4.4 prikazuje proračun, pomoću relacije (4.6), efektivnog Lorenzovog broja iz izmjerenih podataka toplinske vodljivosti u smjeru okomitom na lance, κ_{a} . Na temperaturi malo nižoj od T_P postoji dobro izražen i oštar minimum, koji je posljedica minimuma u toplinskoj vodljivosti κ_a (donji dio slike 4.3). Na slici 4.7 je prikazana razlika ($\kappa_a - \kappa_{a,\text{Umklapp}}$), zajedno s $\kappa_{a,\text{el}}$, izračunate Wiedemann-Franzovim zakonom (2.27); vidi se da je doprinos elektrona barem red veličine manji od ($\kappa_a - \kappa_{a,\text{Umklapp}}$). Pokušajima primjene poluvodičkog modela za doprinos parova elektrona i šupljina toplinskoj vodljvosti (izvor [101], račun je proveden pomoću

Slika 4.6: Na gornjem dijelu slike je sivim simbolima prikazana procjena toplinske vodljivosti elektrona na temelju Wiedemann-Franzovog zakona (2.27). Bijeli simboli prikazuju razliku između ukupne toplinske vodljivosti κ_c i toplinske vodljvosti fonona κ_{Umklapp} (puna linija na slici 4.4). Na donjem dijelu slike je razlika $\Delta \kappa = (\kappa_c - \kappa_{c,\text{Umklapp}}) - \kappa_{c,\text{el}}$.

podataka iz izvora [102]) nije dao zadovoljavajući rezultat. Iz toga se može zaključiti da je porast toplinske vodljivosti s temperaturom iznad $T \approx T_{\rm P}$,

Slika 4.7: Bijelim simbolima je prikazana razlika između ukupne toplinske vodljivosti κ_a i doprinosa fonona izračunatog pomoću relacije (4.5). Sivi simboli daju doprinos toplinskoj vodljivosti kvazičestica izračunatog Wiedemann-Franzovim zakonom.

osim elektronskih, posljedica postojanja i drugih kanala vođenja topline. I uz pretpostavku da učinci zračenja topline nisu zanemarivi, ostaje za primjetiti da postoji dosta nagla promjena u nagibu krivulje toplinske vodljvosti na $T \approx T_{\rm P}$ pa se može zaključiti da je porast κ_a s temperaturom posljedica postojanja Peirlsovog prijelaza i pobuđenja rešetke koja dolaze s njime.

4.1.3 Zaključak

U ovom su poglavlju prikazana mjerenja električne otpornosti i toplinske vodljivosti $(TaSe_4)_2I$ u smjeru lanaca $TaSe_4$ i okomito na njih. Električna otpornost ρ u oba smjera pokazuje poluvodičko ponašanje; u slučaju otpornosti u smjeru lanaca, $\rho_c,$ poluvodičko ponašanje na temperaturama višim od T_P postoji zbog fluktuacija parametra uređenja vala gustoće naboja. Na temelju krivulja električnih otpornosti izračunate su temperaturne ovisnosti energetskog procjepa u smjeru lanaca i okomito na njih; po svome temperaturnom ponašanju procjep u smjeru lanaca slijedi predviđanja teorija o niskodimenzionalnim materijalima s valovima gustoće naboja; odstupanje postoji u omjeru $\Delta(T_P)/\Delta(0)$ koji je u slučaju (TaSe₄)₂I jednak 0.72, dok teorija predviđa 0.4. Toplinska vodljivost u smjeru lanaca, $\kappa_c,$ je u čitavom ispitivanom temperaturnom području (8 K - 320 K) red veličine veća od one mjerene u smjeru okomitom na lance, κ_a . Na niskim temperaturama dominantni kanal vođenja topline i u smjeru i okomito na lance su fononi čiji je srednji slobodni put definiran Umklapp-procesima. Numeričkom prilagodbom eksperimentalnih podataka na teorijski model fononske toplinske vodljivosti je dobivena anizotropija parametra θ/α (θ je Debye-ova temperatura, a α bezdimenzionalan parametar), što je u suglasju s podacima iz literature s mjerenjima elastičnih konstanti i brzine zvuka na $(TaSe_4)_2I$. U okolini Peierlsovog prijelaza i κ_c i κ_a rastu s temperaturom. U slučaju širenja topline u smjeru lanaca (κ_c) izvršena je analiza pokazala da se kvazičestična pobuđenja mogu pripisati *polaronskim stanjima* čije je postojanje potvrđeno nedavnim mjerenjima spektara kutno razlučive fotoemisije [22, 23, 40] te da u samoj okolini Peierlsovog prijelaza postoji nezanemariv doprinos toplinskoj vodljivosti usljed pobuđenja faze vala gustoće naboja [91]. U smjeru okomitom na lance toplinska vodljivost raste s temperaturom i pokazuje izraženu promjenu nagiba u blizini Peierlsovog prijelaza. Taj porast nije moguće objasniti pobuđenjima elektrona i/ili kvazičestica, nego je vjerojatno posljedica pobuđenja sustava usljed prisustva Peierlsovog uređenja.

4.2 i-AlPdMn

Ispitivanja električne otpornosti i toplinske vodljivosti kvazikristala napravljana su na tri pripadnika obitelji *i*-AlPdMn različitog kemijskog sastava. Njihov sastav, skraćenice korištena u daljnjem tekstu, metode dobivanja te dimenzije su navedeni u tablici 4.3. Uzorak i-AlPdMn_{8.5} je sintetiziran u Sjedinjenim Državama na Državnom sveučilištu Iowe u laboratoriju Ames od strane I. R. Fishera i P. C. Canfielda. Korištena je metoda self-flux kojom se taljevina elemenata pomiješanih u zadanom omjeru sporo hladi. Time je izbjegnuta potreba za velikim temperaturnim gradijentima koji postoje u metodi Czochralskoga te bi tako dobiveni uzorci trebali imati manje unutarnjih naprezanja i, kao posljedicu, manje strukturnih defekata [103]. Uzorci i-AlPdMn_{8.3} i i-AlPdMn_{7.1} su proizveli K. Urban i M. Feuerbacher u Istraživačkom centru u Jülichu u Njemačkoj metodom Czochralskoga. Ta se metoda sastoji u tome da se taljevina konstitutivnih elemenata drži na stalnoj temperaturi u koju se stavi substrat u obliku diska ili štapića koji se polako (brzinom od 1 do 80 mm/h) izvlači iz taljevine i hladi tokom zraka ili vode [104]. U cilju smanjivanja broja strukturnih defekata u uzorcima, *i*-AlPdMn_{8.3} je podvrgnut 'supra-napuštanju', odnosno držan je u vakuumu na temperaturi od 800°C u trajanju od 35 dana; *i*-AlPdMn_{7.1} je također podTablica 4.3: Pokrate korištene za uzorke kvazikristala *i*-AlPdMn, metode njihovog dobivanja (podrobnije opisane u tekstu) i dimenzije uzoraka.

Sastav uzorka		skraćenica	metoda	dimenzije $[mm^3]$
i-Al ₇₂ Pd _{19.5} Mn _{8.5}	\longmapsto	i-AlPdMn _{8.5}	self-flux	$0.5 \times 0.6 \times 5.9$
i-Al _{70.5} Pd _{21.2} Mn _{8.3}	\longmapsto	i-AlPdMn _{8.3}	Czochralsky-s	$0.7 \times 1.0 \times 4.4$
$i\text{-Al}_{72.4}\text{Pd}_{20.5}\text{Mn}_{7.1}$	\longmapsto	<i>i</i> -AlPdMn _{7.1}	Czochralsky	$0.5 \times 0.6 \times 2.7$

vrgnut napuštanju u vakuumu i to u trajanju od jednog dana na temperaturi od 800°C.

4.2.1 Električna otpornost

Na slici 4.8 je prikazana električna otpornost kvazikristala iz obitelji *i*-AlPdMn. Za amorfne materijale je razvijen teorijski model električne vodljivosti koji predviđa postojanje maksimuma u krivuljama električne otpornosti. Riječ je o modelu kvantne interferencije, opisan je na stranici 42, a za električnu otpornost daje popravak:

$$\rho^{-1}(T) = \sigma(T) = \sigma(0) + \Delta \sigma_{EEI}(T) + \Delta \sigma_{WL}(T)$$
(4.8)

 $\Delta \sigma_{EEI}(T)$ je popravak usljed učinaka međudjelovanja elektron-elektron (engl. electron-electron interaction) i ovisan je o korjenu temperature [105, 106], $\Delta \sigma_{EEI}(T) \propto \sqrt{T}$. Popravak usljed učinaka slabe lokalizacije (engl. weak localization) je dan pribrojnikom $\Delta \sigma_{WL}(T)$ koji u sebi sadrži neelastična i raspršenja spin-orbita [105–107]:

Slika 4.8: Električna otpornost kvazikristala iz obitelji i-AlPdMn.

$$\Delta\sigma_{WL}(T) = \frac{e^2}{2\pi^2 \hbar \sqrt{D\tau_{so}}} \left(3\sqrt{\frac{\tau_{so}}{4\tau_i(T)} + 1} - \sqrt{\frac{\tau_{so}}{4\tau_i(T)}} - 3 \right)$$
(4.9)

gdje je Dkonstanta difuzije, τ_{so} karakteristično vrijeme raspršenja međudjelovanja spin-orbita,
a τ_i neelastičnog međudjelovanja. Pretpostavlja se da je neelastični proces raspršenja, barem u ograničenom temperaturnom području, ovisan o temperaturi po potencijskom zakonu: $\tau_i \propto T^{-p}$. Iznos parametara p ovisi o vrsti neelastičnog raspršenja (elektron-elektron, elektronfonon, ...) i nalazi se u intervalu 1.5 \Delta \sigma_{EEI}(T) monotono opada smanjivanjem temperature, dok $\Delta\sigma_{WL}(T)$ za $\tau_{so}/\tau_i(T)~=~1/2$ ima lokalni minimum. Prema tome, teorija slabe lokalizacije predviđa postojanje maksumuma u krivulji električne otpornosti; međutim, postojanje toga maksimuma *nije* posljedica magnetskih učinaka. Ispitivanja električne otpornosti kvazikristala iz obitelji *i*-AlPdMn [9,108] su pokazala da u raspršenju vodljivih elektrona važnu ulogu igraju magnetski momenti manganovih atoma na kojima elektroni doživljavaju raspršenja Kondo-tipa (mijenja im se smjer spina). U ovome je radu predložen alternativni model električne vodljivosti kvazikristala *i*-AlPdMn u kojemu se elektroni raspršuju na magnetskim atomima mangana, ali bez promjene spina.

Početkom pedesetih godina prošloga stoljeća Korringa i Gerritsen [109] su predložili fenomenološki model kojim je objašnjeno postojanje maksimuma u krivuljama električne otpornosti kristalnih metalnih slitina plemenitih metala koje u sebi sadržavaju rijetko raspoređene primjese magnetskih prijelaznih metala (mangan Mn, željezo Fe). Zbog različitih valencija magnetskih primjesa i atoma-domaćina u rešetci, elektroni se raspršuju na primjesama. Time se u njihovoj okolini stvara višak (manjak) elektronskog naboja koji zasjenjuje potencijal nastao razlikom u valencijama, posljedica čega je formiranje oscilirajuće gustoće naboja (tzv. Friedelovih oscilacija) [110]. Ti elektroni zauzimaju virtualna vezana i lokalizirana stanja s energijama smještenim u vodljivoj vrpci [111]. U slučaju da su primjese nemagnetske, energije tih stanja su koncentrirane oko Fermijeve energije E_F ; kada su primjese magnetske, stanja su rascjepljena i leže u intervalima $E_F-E_1\pm\Delta/2$ i $E_F + E_1 \pm \Delta/2$, gdje je E_1 spinska energija usljed međudjelovanja između s-elektrona atoma-domaćina i d-elektrona atoma-primjesa; širina stanja je Δ . Model Korringe i Gerritsena (KG) pretpostavlja da vodljivi elektroni Coulombskim međudjelovanjem izbace elektrone iz lokaliziranih, virtualnih stanja u okolici magnetske primjese te sami zauzmu jedno takvo stanje, s energijom $E_F - E_1$ ili $E_F + E_1$, ovisno o spinu samoga vodljivog elektrona. Efektivno, vrijeme sudara jednog takvog procesa je gotovo jednako nuli pa ta raspršenja daju relativno veliki doprinos električnoj otpornosti. Model Korringe i Gerritsena pretpostavlja najjednostavniju sliku za karakteristično vrijeme raspršenja elektrona:

$$\tau(E) \begin{cases} \approx 0 & \text{za } E \in E_F \pm (E_1 \pm \Delta/2) \\ = konst. \neq 0 & \text{za ostale } E \end{cases}$$
(4.10)

Električna vodljivost se može izračunati pomoću jednostavne relacije [7]:

$$\sigma = \left(\frac{e^2 k_F^2}{3\pi^2 \hbar^2}\right) \int_{-\infty}^{+\infty} \tau(E) \frac{\mathrm{d}E}{\mathrm{d}k} \left(-\frac{\mathrm{d}f_{FD}}{\mathrm{d}E}\right) \mathrm{d}E \tag{4.11}$$

gdje je e naboj elektrona, k_F Fermijev valni vektor a f_{FD} Fermi-Diracova funkcija raspodjele. Uvrštavanjem izraza (4.10) u (4.11) za električnu otpornost se dobije:

$$\rho^{-1}(T) = \rho_0^{-1} \left\{ 1 - \left[\tanh\left(\frac{E_1 + \Delta/2}{2k_B T}\right) - \tanh\left(\frac{E_1 - \Delta/2}{2k_B T}\right) \right] \right\}$$
(4.12)

gdje je $\rho_0^{-1}=ne^2\tau/m,$ a ishodište energetskog koordinatnog sustava smješteno na Fermijevu energiju $E_F.$

U slučaju nemagnetskih primjesa energetska stanja nisu rascjepljena, nego su koncentrirana oko Fermijeve energije E_F . U tome je slučaju $E_1 = 0$ te je električna otpornost jednaka:

$$\rho^{-1} = \rho_0^{-1} \left[1 - \tanh\left(\frac{\Delta}{2k_B T}\right) \right] \tag{4.13}$$

Jednadžba (4.12), za razliku od (4.13), ima maksimum na temperaturi T_m koja je proporcionalna energiji izmjene E_1 ($T_m = 0.65E_1/k_B$). U drugu ruku, za male koncentracije magnetskih primjesa, energija izmjene je proporcionalna koncentraciji c te je, prema tome, i temperatura maksimuma proporcionalna koncentraciji primjesa, $T_m \propto c$.

Pri razmatranju modela Korringe i Gerritsena treba uzeti u obzir i ograničenja nametnuta njegovom jednostavnošću. Najprije, pretpostavka o energetskoj ovisnosti relaksacijskog vremena $\tau(E)$ (jednadžba (4.10)) je (samo) fenomenološka. Zatim, pretpostavlja se 'elastično' raspršenje elektrona na atomima-primjesama (odnosno, nema promjene spina vodljivih elektrona). Treće, zanemareno je međudjelovanje elektron-fonon, čime je primjenljivost modela ograničena samo na niske temparture. I četvrto, pretpostavljena je mala koncentracija primjesa.

Što je s mogućnošću primjene gornjeg modela na slučaj kvazikristala *i*-AlPdMn? Model pretpostavlja postojanje lokaliziranih i slobodnih elektronskih stanja. Lokaliziranim elektronskim stanjima mogu se smatrati ona
lokalizirana na pseudo-Mackayevim ikozeadrima (PMI) u najnižem stupnju strukturnog uvećavanja; slobodni elektroni su oni vezani za PMI-e visoko u strukturnoj hijerarhiji. Dalje, uvjet o maloj koncentraciji magnetskih primjesa je ispunjen jer samo oko 1% od svih manganovih atoma ima magnetski moment [59]; uz to, atomski udio svih atoma mangana u kvazikristalima iz obitelji *i*-AlPdMn je između sedam i devet posto. Međutim, teorija Korringe i Gerritsena je razvijena za periodične strukture te, u principu, kod kvazikirstala mogu predstavljati samo polaznu osnovu za teorijsko modeliranje električne vodljivosti.

Na slici 4.9 su uspoređene prilagodbe krivulja električne otpornosti na modele kvantne interferencije (QIE) te Korringe i Gerritsena (KG). Prije provedbe numeričke prilagodbe relacija s učincima kvantne interferencije (4.8) je trebala biti prilagođena: pribrojnik koji uključuje međudjelovanje elektrona ($\Delta \sigma_{EEI}$) nije uzet u obzir jer se on koristi kako bi $\Delta \sigma_{WL}$ na temperaturi apsolutne nule bio jednak nuli [105]. Zatim, u svrhu smanjenja broja slobodnih parametara u postupku numeričke prilagodbe, definirana je nova varijabla T_0 :

$$T_0 = \left(\frac{4\tau_i^0}{\tau_{so}}\right)^{1/p} \tag{4.14}$$

gdje je τ_i^0 definiran kao $\tau_i(T) = \tau_i^0 T^p$. Stoga je jednadžba na koju je vršena prilagodba u sklopu modela kvantne interferencije jednaka:

$$\rho^{-1}(T) = \rho_0^{-1} + A \left[3\sqrt{\left(\frac{T}{T_0}\right)^{1/p} + 1} - \sqrt{\left(\frac{T}{T_0}\right)^{1/p}} - 3 \right]$$
(4.15)

gdje je

Tablica 4.4: Parametri dobiveni prilagodbom električnog otpora kvazikristala *i*-AlPdMn na modele kvantne interferencije (QIE, jednadžba (4.15)) te Korringe i Gerritsena (KG, jednadžba (4.12))

	QIE			KG			
Uzorak	$\rho_0 ~[\mu \Omega m]$	$A~[\mu\Omega\mathrm{m}]$	T_0	p	$\rho_0 \; [\mu \Omega m]$	E_1	δ
<i>i</i> -AlPdMn _{8.5}	11.9	35.1	230	3.1	11.0	155	48
i-AlPdMn _{8.3}	21.7	64.5	207	1.66	18.4	88	40
<i>i</i> -AlPdMn _{7.1}	19.2	57.8	291	2.23	17.5	180	58

$$A = \frac{e^2}{2\pi^2 \hbar \sqrt{D\tau_{so}}} \tag{4.16}$$

Krivulje dobivene prilagodbom podataka električne otpornosti na model kvantne interferencije (jednadžba (4.15)) su na slici 4.9 prikazane punim linijama i označene s QIE. Na istoj su slici sivom isprekidanom linijom prikazane prilagodbe na model Korringe i Gerritsena (KG). U tablici 4.4 su dani parametri dobiveni numeričkom prilagodbom.

Oba modela električne vodljivosti predviđaju postojanje maksimuma, s time da je kod modela Korringe i Gerritsena (KG), za razliku od modela kvantne interferencije (QIE), to posljedica činjenice postojanja magnetskih momenata. Oba modela, u pravilu, samo kvalitativno objašnjavaju krivulje. Problem sa spomenutim modelima je taj što je relativno veliki broj slobodnih parametara koji se numerički izračunavaju (tri kod KG i četiri kod QIE) te je potreban veliki oprez pri izboru uvjeta da bi se dobili parametri s fizikalnim značenjem. Kako je u tekstu već ranije spomenuto, model KG je razvijen za kristalne strukture, što treba imati na umu kod njegove primjene na

Slika 4.9: Rezultati prilagodbe otpornosti kvazikristala *i*-AlPdMn na modele kvantne interferencije (QIE, jednadžba (4.15), puna linija) te Korringe i Gerritsena (KG, jednadžba (4.12), siva isprekidana linija).

Slika 4.10: Rezultat prilagodbe otpornosti kvazikristala i-AlPdMn_{8.5} na modificirani model KG.

slučaj kvazikristala. Neperiodičnost kvazikristalne strukture može dovesti do raspodjele energije E_1 ; na slici 4.10 je prikazana najjednostavija mogućnost jedne takve raspodjele: $g(E_1)$ koja je usredištena oko energije E_1^0 i širine je ΔE_1 . Za modeliranje električne otpornosti je korišten izraz:

$$\rho(T) = \int \rho(E_1, T) g(E_1) dE_1$$
(4.17)

gdje je $\rho(E_1, T)$ dan jednadžbom (4.12). Parametri dobiveni ovom numeričkom prilagodbom su $\rho_0=11.2 \ \mu\Omega m$, $\Delta=57 \text{ K}$, $E_1^0=231 \text{ K}$ i $\Delta E_1=382 \text{ K}$. Tako dobivena krivulja je linijom prikazana na slici 4.10; relativno dobro reproducira eksperimentalnu krivulju. Međutim, treba imati na umu da je u odnosu na 'obični' model KG broj slobodnih parametara pri numeričkoj prilagodbi povećan s tri na četiri.

4.2.2 Toplinska vodljivost

Na slici 4.11 je prikazana toplinska vodljivost kvazikristala *i*-AlPdMn_{8,5}, *i*- $AlPdMn_{8.3}$ i i- $AlPdMn_{7.1}$ u temperaturnom području od 0.4 K do 300 K. Za njenu analizu potrebno je najprije procijeniti elektronski doprinos toplinskoj vodljivosti, što je učinjeno Wiedemann-Franzovim zakonom (2.27). Ovdje je potrebno naglasiti da podaci električne otpornosti ispod 4 K nisi izmjereni; međutim, na temelju podataka o toplinskoj vodljivosti, procijenjenom elektronskom doprinosu i njihovom omjeru na temperaturi od 6 K, danim u tablici 4.5, mogu se donijeti zaključci o ponašanju κ_{el} na nižim temperaturama. Iz trećeg stupca u tablici se vidi da je na 6 K doprinos elektrona toplinskoj vodljivosti manji od 1%. Na nižim temperaturama taj se udio može samo smanjivati: u električnom vođenju sudjeluju elektroni koji tuneliraju s manjeg pseudo-Mackayevog ikozaedra na veći. Snižavanjem temperature smanjuje se i broj elektrona koji imaju dovoljno energije za savladavanje energetske barijere; električna otpornost raste. Na slici 4.12 punim je linijama prikazan elektronski doprinos toplinskoj vodljivosti iznad temperature od 4 K. Isprekidana linija prikazuje ekstrapolaciju κ_{el} na niže temperature, napravljenu polinomnim razvojem κ_{el} između 4 i 30 K. Vidi se da je u čitavom temperaturnom području elektronski doprinos barem za red veličine manji od ukupne toplinske vodljivosti.

Slika 4.11: Toplinska vodljivost kvazikristala i-AlPdMn_{8.5}, i-AlPdMn_{8.3} i i-AlPdMn_{7.1}. Umetci prikazuju toplinsku vodljivost kvazirešetke, κ_{qlatt} , normiranu na vrijednost svoga lokalnog minimuma.

Tablica 4.5: Vrijednosti toplinske vodljivosti κ , električne otpornosti ρ i omjera elektronskog doprinosa κ_{el} (procjenjenog na temelju Wiedemann-Franzovog zakona) i ukupne toplinske vodljivosti na temperaturi od 6 K.

Uzorak	$\kappa~[{\rm W/mK}]$	$\rho~[\mu\Omega~{\rm m}]$	κ_{el}/κ
i-AlPdMn _{8.5}	1.9	13.6	$6 imes 10^{-3}$
i-AlPdMn _{8.3}	1.8	21.4	4×10^{-3}
<i>i</i> -AlPdMn _{7.1}	2.8	17.8	3×10^{-3}

Doprinos kvazikristalne rešetke toplinskoj vodljivosti κ_{qlatt} (od engl. quasilattice za kvazirešetku) se dobije odbijanjem elektronskog doprinosa, κ_{el} , od ukupne toplinske vodljivosti κ :

$$\kappa_{qlatt}(T) = \kappa(T) - \kappa_{el}(T) \tag{4.18}$$

Pojava blagog maksimuma u toplinskoj vodljivosti kvazirešetke na temperaturama od desetak Kelvinovih stupnjeva je njeno intrinsično svojstvo, detalji čega su u sažetom obliku dani na stranici 46. U umecima na slici 4.11 prikazane su krivulje $\kappa_{qlatt}(T)/\kappa_{qlatt}(T_{min})$, gdje je $\kappa_{qlatt}(T_{min})$ vrijednost toplinske vodljivosti kvazirešetke na temperaturi u kojoj doseže lokalni minimum. Iznosi omjera $\frac{\kappa_{qlatt}(T_{max})}{\kappa_{qlatt}(T_{min})}$ (gdje je $\kappa_{qlatt}(T_{max})$ vrijednost na temperaturi u kojoj se javlja lokalni maksimum krivulje $\kappa_{qlatt}(T)$) za tri uzorka ispitivana u ovome radu te za neke druge uzorke ikozaedarskih kvazikristala su prikazani u tablici 4.6. Relativna visina maksimuma u κ_{qlatt} može poslužiti i kao mjera strukturne kvalitete uzorka: te su vrijednosti za uzorke istraživane u ovome radu mnogo veće od vrijednosti drugih uzoraka iz obitelji kvazikristala *i*-

Slika 4.12: Linijama su označeni elektronski doprinosi toplinskoj vodljivosti procijenjeni Wiedemann-Franz-ovim zakonom. Isprekidana linija predstavlja ekstrapolaciju na temelju postojećih podataka električne otpornosti, što je detaljnije objašnjeno u tekstu. Ukupna toplinska vodljivost je označena simbolima.

Tablica 4.6: Usporedba omjera toplinske vodljivosti kvazirešetke na temperaturama lokalnog maksimuma, $\kappa_{qlatt}(T_{max})$, i lokalnog minimuma, $\kappa_{qlatt}(T_{max})$.

Uzorak	$\frac{\kappa_{qlatt}(T_{max})}{\kappa_{qlatt}(T_{min})}$	izvor
i-AlPdMn _{8.5}	1.70	ovaj rad
i-AlPdMn _{8.3}	1.52	ovaj rad
<i>i</i> -AlPdMn _{7.1}	1.58	ovaj rad
<i>i</i> -AlPdMn	1.03	Chernikov i suradnici [10]
<i>i</i> -AlPdMn	1.22	Chernikov i suradnici [11]
<i>i</i> -AlPdMn	1.27	Legault i suradnici [12]
<i>i</i> -YMgZn	1.75	Giannó i suradnici [16]

AlPdMn [10–12] i usporedive su s vrijednošću za '*single-grain*' kvazikristal iz obitelji *i*-YMgZn [16].

Na stranici 45, u poglavlju o općenitim aspektima toplinske vodljivosti kvazikristala, rečeno je da je, zbog neperiodičnosti strukture, moguće definirati isključivo fonone (odn. *propagirajuće* kvante atomskog titranja) malog valnog vektora. Eksperimenti neelastičnog raspršenja neutrona (slike 2.15 i 2.16) govore da su kod kvazikristala iz obitelji *i*-AlPdMn titrajni modovi propagirajući za valne vektore manje od 0.3 Å i energiju manju od 6 meV. Ta energija na temperaturnoj skali odgovara temperaturi od šezdesetak Kelvinovih stupnjeva te se na nižim temperaturama može koristiti Debye-ov model fononske toplinske vodljivosti (2.33): Tablica 4.7: Vrijednosti longitudinalne v_l i transverzalne brzine zvuka v_t određene eksperimentima neelatičnog raspršenja neutrona (NRN) i gušenja ultrazvuka (UZ). Ove su vrijednosti potvrđene i neelastičnim raspršenjima X-zraka [50].

$v_l \mathrm{[m/s]}$	$v_t \; [\mathrm{m/s}]$	mjerna metoda	izvor
6300 ± 300	3500 ± 100	NRN	Boissieu i suradnici [47]
6520 ± 10	3593 ± 3	UZ	Amazit i suradnici [112]

$$\kappa_{Debye} = \frac{k_B}{2\pi^2 \overline{v}} \left(\frac{k_B}{\hbar}\right)^3 T^3 \int_0^{\frac{\theta}{T}} \tau(x) \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx$$

 k_B i \hbar su Boltzmannova odn. reducirana Planckova konstanta, \overline{v} je srednja brzina zvuka, T je temperatura, θ Debye-ova temperatura, τ relaksacijsko vrijeme fonona, a $x = \hbar \omega / k_B T$. Vrijednosti brzine zvuka određene su eksperimentima gušenja ultrazvuka [112] i neelastičnog raspršenja neutrona [47], i dane su u tablici 4.7. Tim je eksperimentima potvrđena i izotropnost titrajnih stanja te se srednja brzina zvuka \overline{v} može dobiti usrednjavanjem longitudinalne, v_l , i trasnverzalne brzine zvuka, v_t , relacijom:

$$\frac{3}{\overline{v}^3} = \frac{1}{v_l^3} + \frac{2}{v_t^3} \tag{4.19}$$

Pomoću podataka za v_l i v_t uzetih iz [112], dobije se da je $\overline{v} = 4004$ m/s.

Li i Liu [113] su na temelju mjerenja specifičnog toplinskog kapaciteta Wältija i suradnika [114] odredili da je Debye-ova temperatura kvazikristala iz obitelji *i*-AlPdMn jednaka 492 K; ta je vrijednost uzeta i pri analizi rezultata toplinske vodljivosti prikazanih u ovome radu. Procesi raspršenja fonona su u jednadžbi (2.33) dani preko njihovog vremena relaksacije τ ; pretpostavlja se da su različiti procesi raspršenja fonona međusobno neovisni pa vrijedi Matthiessenovo pravilo (2.34):

$$\tau^{-1} = \sum_i \tau_i^{-1}$$

 τ_i je vrijeme života fonona usljed procesa raspršenja *i*. Niskotemperaturna fononska dinamika utjecana je njihovim raspršenjem na nečistoćama ili zidovima uzorka (tzv. *Casimirova* granica).

Neperiodičnost kvazirešetke nameće i pitanje o prirodi fononske dinamike u njoj - je li ona sličnija dinamici u kristalima ili pak staklima? Na niskim se tempereturama amorfna (staklasta) struktura manifestira kroz postojanje tunelirajućih stanja, o čemu je u ovome radu bilo riječi na stranici 53; tunelirajuća stanja se odražavaju i na toplinsku vodljivost stakala (jednadžba (2.62)). Mjerenja širenja ultrazvuka na kvazikristalima iz obitelji *i*-AlPdMn [13,65] su pokazala staklastu prirodu fononske dinamike. Štoviše, isti eksperiment na kvazikristalima iz obitelji *i*-AlCuFe [66] je pokazao isto, što je sugeriralo da je postojanje tunelirajućih stanja (odn. staklima slična fononska dinamika) intrinsično svojstvo kvazirešetke. Eksperimenti toplinske vodljivosti načinjeni na ikozaedarskim kvazikristalima na to pitanje ne daju jednoznačan odgovor. Mjerenja načinjena na kvazikristalima *i*-AlPdMn dobivenim metodom lučnog taljenja (engl. arc-melting) [10] i metodom Czocharlskoga [11] pokazuju da je na niskim temperaturama glavni mehanizam raspršenja fonona upravo onaj na tunelirajućim stanjima. U drugu ruku, eksperimentalno dobivene krivulje toplinske vodljivosti na kvazikristalima *i*-AlPdMn dobivenim Bridgemanovim postupkom [15] pokazuju da glavni mehanizam

fononskog raspršenja nisu tunelirajuća stanja, nego defekti u slaganju (engl. *stacking faults*). Legault i suradnici [15] su zaključili da je prisustvo tunelirajućih stanja osjetljivo na sastav ili način pripreme uzorka. Eksperimenti načinjeni na kvazikristalima iz obitelji *i*-YMgZn [16] također pokazuju da je glavni mehanizam raspršenja fonona onaj na defektima u slaganju, a ne tunelirajuća stanja. Raspršenje fonona na defektima u slaganju je opisano vremenom relaksacije [29]:

$$\tau_{sf}^{-1} = \frac{7}{10} \frac{a^2}{\overline{v}} \gamma^2 \omega^2 N_s \tag{4.20}$$

gdje je *a* konstanta rešetke, γ Grüneisenov parametar, a N_s linearna gustoća defekata u slaganju. Ovaj izraz, zajedno s jednadžbom (2.33), daje da je toplinska vodljivost linearna temperaturi, $\kappa(T) \propto T$.

Kvazirešetka predstavlja dodatni izvor strukturalnog raspršenja fonona, o čemu je detaljnije bilo riječi na stranici 46. Taj se tip raspršenja naziva *quasiumklapp* raspršenjem i opisan je relacijom [46]:

$$\tau_{qu}^{-1} \propto \omega^2 T^4 \tag{4.21}$$

Umetci na slici 4.13 prikazuju toplinsku vodljivost kvazirešetke, izračunatu relacijom (4.18) na temperaturama nižim od 5 K. Sve tri krivulje su za T < 1K o temperaturi ovisne potencijskim zakonom, $\kappa \propto T^n$. Parametar n je za uzorke *i*-AlPdMn_{8.5} i *i*-AlPdMn_{8.3} manji od 2. Pošto je toplinska vodljivost fonona usljed njihovog raspršenja na tunelirajućim stanjima proporcionalna kvadratu temperature, to ukazuje da barem u ova dva uzorka raspršenje fonona na tunelirajućim stanjima nije dominantno. U cilju iznalaženja mehanizama raspršenja fonona prisutnih u ispitivanim uzorcima, krivulje $\kappa_{qlatt}(T)$

Slika 4.13: Prilagodba toplinske vodljivosti kvazikristala iz *i*-AlPdMn obitelji na Debye-ov model (2.33). Vodoravne linije pokazuju koju vrijednost ima omjer κ_{qlatt}/T^3 u Casimirovoj granici, uz koje su navedene i vrijednosti srednjeg slobodnog puta. Umeci prikazuju toplinsku vodljivost kvazirešetke ispod 5 K, gdje se jasno, za T < 1 K, vidi njena potencijska ovisnost o temperaturi.

su prilagođene na Debye-ev model toplinske vodljivosti (2.33); za relaksacijsko vrijeme fonona je korišteno Matthiessenovo pravilo (2.34) uz različite kombinacije relaksacijskih vremena Casimirovog raspršenja (2.40), raspršenja na tunelirajućim stanjima (2.61), pogreškama u slaganju (4.20) i quasiumklapp raspršenja (4.21). Postupak numeričke prilagodbe podataka je proveden za temperature niže od 40 K; model je najbolje reproducirao krivulje $\kappa_{qlatt}(T)$ kada su u obzir uzeti procesi Casimirovog raspršenja, raspršenja na defektima u slaganju i modificirani quasiumklapp proces raspršenja fonona:

$$\tau^{-1} = \tau_{Cas}^{-1} + \tau_{sf}^{-1} + \tau_{qu}^{*-1} \tag{4.22}$$

Pod modificiranim procesom *quasiumklapp* rasprešenja se podrazumijeva to da se umjesto jednadžbe (4.21) koristi izraz

$$\tau_{qu}^{*-1} \propto \omega^2 T^2 \tag{4.23}$$

Ovakva se vjerojatnost raspršenja, po svojoj temperaturnoj ovisnosti sporija od one koju daje račun Kalugina i suradnika [46], može rastumačiti pomoću eksperimenata neelastičnog raspršenja neutrona [50]. Podaci indiciraju postojanje niskoležećih titrajnih stanja čije su frekvencije niže od frekvencija akustičkih i lokaliziranih ('optičkih') modova. Vjerojatno su pobuđenja tih modova razlogom za potrebu modificiranja vjerojatnosti *quasiumklapp* procesa raspršenja.

Na slici 4.13 simbolima su prikazane eksperimentalne krivulje $\kappa_{qlatt}(T)/T^3$, a linijama krivulje dobivene prilagodbom na Debye-ov model pomoću jednadžbe (4.22). Vodoravne linije prikazuju koliki bi omjer $\kappa_{qlatt}(T)/T^3$ bio u Casimirovoj granici; uz linije su navedeni i iznosi srednjeg slobodnog puta

Tablica 4.8: Parametri dobiveni prilagodbom toplinske vodljivost kvazirešetke, κ_{qlatt} , kvazikristala iz obitelji *i*-AlPdMn na Debye-ov model.

uzorak	$l [{\rm mm}]$	$N_s~[\mu {\rm m}^{-1}]$
<i>i</i> -AlPdMn _{8.5}	0.82	81
i-AlPdMn _{8.3}	0.44	81
<i>i</i> -AlPdMn _{7.1}	0.26	56

fonona l. Iznos veličine srednjeg slobodnog puta daje jedinicu mjere bilo čistoće uzorka bilo njegovih dimenzija. Pošto su sva tri uzorka bila približno jednakog poprečnog presjeka (vidjeti tablicu 4.3), na temelju vrijednosti srednjeg slobodnog puta može se donijeti zaključak o strukturnoj kvaliteti uzor(a)ka. Na temelju podataka o parametru l sva tri uzorka, može se zaključiti da je uzorak označen s i-AlPdMn_{8.5} strukturno najkvalitetniji.

Uz proračun srednjeg slobodnog puta l, numeričkom prilagodbom je, iz jednadžbe (4.20) moguće dobiti i linearnu gustoću defekata u slaganju N_s . Grüneisenov parametar γ je izračunat na temelju Grüneisenovih parametara aluminija Al, paladija Pd i mangana Mn [115]; kao težinski faktori su uzete nominalne atomske koncentracije pojedinih elemenata. Na taj način izračunati Grüneisenovi parametri za sva tri uzorka su jednaki i iznosa su 2.1. U jednadžbi (4.20) se javlja i parametar konstante rešetke *a*. Kvazikristali nemaju periodičnu strukturu te je teško definirati i veličinu jedinične ćelije. Strukturni model iznesen u izvoru [116] za kvazikristale iz obitelji *i*-AlPdMn definira strukturu koja je ekvivalentna jediničnoj ćeliji i veličine je 7.38 Å te je za parametar *a* uzet upravo taj iznos. Na temelju ovih vrijednosti Grüneisenovog parametra γ i 'jedinične ćelije' *a*, mogu se izračunati linearne gustoće defekata u slaganju N_s , vrijednosti kojih su dani u trećem stupcu tablice 4.8. Te su vrijednosti za red veličine manje od onih iznesenih u izvoru [15]; dakle, i po linearnoj gustoći defekata u slaganju se može zaključiti da su uzorci *i*-AlPdMn_{8.5}, *i*-AlPdMn_{8.3} i *i*-AlPdMn_{7.1} vrlo visoke strukturne kvalitete.

Na slici 4.14 su simbolima prikazane toplinske vodljivosti kvazirešetke uzoraka *i*-AlPdMn_{8.5}, *i*-AlPdMn_{8.3} i *i*-AlPdMn_{7.1}; linijama su prikazane krivulje dobivene prilagodbom tih podataka na Debye-ov model (2.33). Na temperaturama iznad pedesetak Kelvinovih stupnjeva Debye-ov model više ne objašnjava dobro toplinsku vodljivost kvazirešetke. Razlog leži u pobuđivanju prostorno lokaliziranih titrajnih modova, koji u međudjelovanju s fononima preskaču s jednog mjesta kvazirešetke na drugo i time vode toplinu (model preskakivanja promjenljivog dosega, stranica 47). Doprinos fraktona toplinskoj vodljivosti ima potencijsku ovisnost o temperaturi:

$$\kappa_{fr}(T) \propto T^{1.5} \tag{4.24}$$

Umetci na slici 4.14 prikazuju temperaturnu ovisnost razlike $\kappa_{qlatt} - \kappa_{Debye}$. Linijama su prikazane prilagodbe na potencijski zakon i vidi se da je za uzorak *i*-AlPdMn_{8.5} ($\kappa_{qlatt} - \kappa_{Debye}$) proporcionalna $T^{1.5}$, kako i predviđa model preskakivanja promjenljivog dosega! U slučaju druga dva uzorka (*i*-AlPdMn_{8.3} i *i*-AlPdMn_{7.1}) potencijska ovisnost $\kappa_{qlatt} - \kappa_{Debye}$ o temperaturi ne slijedi zakonitost predviđenu jednadžbom (4.24), nego je u slučaju *i*-AlPdMn_{8.3} navedena razlika proporcionalna $T^{0.8}$, a kod *i*-AlPdMn_{7.1} $T^{1.1}$. Vjerojatni razlog tomu leži u činjenici da je od sva tri promatrana uzorka *i*-AlPdMn_{8.5} najbliže idealu savršene ikozedarske strukture.

Slika 4.14: Toplinska vodljivost kvazirešetke, κ_{qlatt} kvazikristala *i*-AlPdMn. Krivulje prikazane linijom su dobivene prilagodbom na Debye-ov model (2.33). U umetku su prikazane razlike između κ_{qlatt} i κ_{Debye} , a linijama prilagodbe na model preskivanja promjenljivog dosega (poglavlje 2.2.2).

4.2.3 Zaključak

Ispitivana je električna otpornost i toplinska vodljivost tri ikozaedarska kvazikristala, pripadnika obitelji *i*-AlPdMn različitih koncentracija i dobivenih različitim metodama rasta. Električne otpornosti pokazuju temperaturno ponašanje karakteristično za kvazikristale *i*-AlPdMn. Za njihovo je objašnjenje predložen model koji u obzir uzima raspršenja elektrona na magnetskim atomima mangana koji nisu tipa Kondo (model Korringe i Gerritsena). Taj je model razvijen za periodične rešetke s rijetkim magnetskim primjesama i kvalitativno opisuju električne otpornosti ispitivanih kvazikristala.

Toplinska vodljivost je istraživana u temperaturnom području od 0.4 K do 300 K. Primjenom Wiedemann-Franzovog zakona procijenjen je elektronski doprinos toplinskoj vodljivosti, koji u čitavom ispitivanom temperaturnom području red veličine do dva manji od ukupne toplinske vodljivosti. Toplinska vodljivost kvazirešetke, dobivena odbijanjem elektronskog doprinosa od ukupne toplinske vodljivosti, je na temperaturama nižim od 40 K analizirana Debye-ovim modelom. Izračunati srednji slobodni putevi fonona u Casimirovoj granici su reda veličine jednog milimetra, što je upravo red veličine dimenzija uzoraka. Ono što je posebno zanimljivo je to da analizom podataka toplinske vodljivosti nije primjećeno raspršenje fonona na tunelirajućim stanjima. Umjesto tunelirajućih stanja, fononi se raspršuju na defektima u slaganju. Iz toga se nameće zaključak da je toplinska vodljivost kvazirešetke sličnija onoj kod kristala nego amorfnih struktura. Uz to, eksperimentalno je uočen za kvazikristale relativno visok maksimum u krivuljama toplinske vodljivosti na temperaturama između 20 i 30 K; time je i eksperimentalno pokazano da je to intrinsično svojstvo kvazirešetke, teorijski predviđeno u izvoru [46]. Iznad 50-ak Kelvinovih stupnjeva krivulje toplinske vodljvosti kvazirešetke odstupaju od onih predviđenih Debye-ovim modelom; dolazi do otvaranja novog kanala vođenja topline nastalog preskakivanjem fraktona (lokaliziranih titrajnih stanja). Analizom krivulja toplinske vodljivosti kvazirešetke iznad 100 K potvrđena je teorija preskoka promjenljivog dosega [44].

4.3 Tvrdi ugljik

Uzorak tvrdog ugljika je dobiven iz fulerena C_{60} u Nacionalnom istraživačkom institutu u japanskoj Osaki [117,118]. Uzorak fulerena u obliku praha, 99.9%tne čistoće, je tijekom dva sata bio podvrgnut nehidrostatskom tlaku od 3 GPa i temperaturi od 973 K (postupak je detaljnije opisan u izvoru [119]). Tako dobiveni uzorci su relativno homogeni (odn. bez pora i šupljina na površini) i crne su boje. Gustoća uzorka od 2.06 g/cm³ je neznatno veća od gustoće drugih uzoraka tvrdog ugljika (HC1) dobivenog istim postupkom (1.9 g/cm³), veća od gustoće uzorka fulerena iz kojega je tvrdi ugljik dobiven (1.7 g/cm³) i manja od gustoće dijamanta (3.5 g/cm³)². Testovi tvrdoće po Vickersu su pokazali da je tvrdoća uzorka jednaka približno dvije trećine tvrdoće dijamanta. Eksperimenti difrakcije neutrona [117] nisu pokazali da uzorak ima dugodosežno kristalno uređenje.

 $^{^2}$ Ta je gustoća tvrdog ugljika unutar granica tvrdoće amorfnog ugljika, koja je između 1.8 i 2.1 g/cm³ [120]

Slika 4.15: Spektar dobiven difrakcijom X-zraka na tvrdom ugljiku.

4.3.1 Struktura

Na uzorku tvrdog ugljika je napravljeno detaljno istraživanje strukture metodama difrakcije X-zraka, skenirajuće i transmisijske elektronske mikroskopije te akustičke skenirajuće mikroskopije [121]. Ta je analiza u cilju razumijevanja temperaturnog ponašanja podataka toplinske vodljivosti bila nužna jer, iako do sada postoji relativno veliki broj istraživanja strukture tvrdog ugljika [83,117,119,122,123], detalji njihove strukture još nisu sasvim poznati.

Na slici 4.15 je prikazana difrakcija X-zraka na uzorku tvrdog ugljika. Uočavaju se tri široka maksimuma na kutovima 2θ od 25.8°, 43.7° i 51.7°, koji odgovaraju međuravninskim udaljenostima od 0.349, 0.207 i 0.173 nm,

Materijal		$d_{hkl} \; [nm]$	
dijamant	$d_{111} = 0.206$	$d_{220} = 0.126$	$d_{311} = 0.108$
grafit	$d_{002} = 0.338$	$d_{100} = 0.214$	$d_{004} = 0.168$
		$d_{101} = 0.204$	
tvrdi ugljik	$d_{002} = 0.349$	$d_{100/101} = 0.207$	$d_{004}0.173$

Tablica 4.9: Podaci difrakcije X-zraka za dijamant, grafit i tvrdi ugljik

što je slično refleksijama grafita (00.2), (10.0) i (00.4) (tablica 4.9). Difuznost šiljaka govore da je struktura *neuređena*, a relativno najizraženiji šiljak (00.2) o većoj razini strukturne uređenosti u c-smjeru (odn., u smjeru nametnutoga tlaka tijekom sinteze uzorka). Struktura početnog uzorka fulerena je potpuno izgubljena, jer niti jedan od uočenih šiljaka nema svoga ekvivalenta u difrakciji X-zraka na C_{60} . Isto tako, ne uočava se nikakva sličnost niti sa strukturom dijamanta. Štoviše, eksperimenti neelastičnog raspršenja neutrona [117] ili mikro-Ramanove spektroskopije [119] ne pokazuju da gustoća stanja ima ikakvog dodira s gustoćom stanja fulerena C_{60} ili njegovih ortorombskih faza.

Na slici 4.16 je prikazana slika tvrdog ugljika dobivena transmisijskom elektronskom mikroskopijom; vide se područja srednjedosežnog uređenja na skali nanometra. Snimke istog dijela uzorka tvrdog ugljika dobivene skenirajućom elektronskom mikroskopijom u dva različita povećanja su prikazane na slikama 4.17 i 4.18. Na prostornoj skali između 1 i 100 μ m je struktura neuređena i samoslična (odn. fraktalna).

Slika 4.16: Slika dobivena transmisijskom elektronskom mikroskopijom na tvrdom ugljiku. Uočava se uređenje srednjeg dosega na skali od nekoliko nanometara.

4.3.2 Eksperimenti gušenja ultrazvuka

Na uzorku tvrdog ugljika su izvršena i mjerenja gušenja ultrazvuka [121], čime je omogućeno bolje razumijevanje dinamičkih svojstava strukture. Za usporedbu, isti su eksperimenti napravljeni i na kvarcnom staklu, inače tipičnom neuređenom sustavu.

Na slici 4.19 je prikazana ovisnost keeficijenta gušenja ultrazvuka, $\alpha(f)$, o frekvenciji za tvrdi ugljik i kvarcno staklo na sobnoj temperaturi. Razlike su očigledne: dok je $\alpha(f)$ staklastog kvarca gotovo neovisan o frekvenciji, u slučaju tvrdog ugljika mogu se definirati dva frekventna područja. Jedno je iznad pedesetak MHz, gdje je gušenje ultrazvuka proporcionalno kubu frekvencije:

Slika 4.17: Slika dobivena skenirajućom elektronskom mikroskopijom na tvrdom ugljiku (veće povećanje). Uspoređena sa donjom slikom, vidi se samosličnost (odnosno fraktalnost) strukture tvrdog ugljika.

Slika 4.18: Slika dobivena skenirajućom elektronskom mikroskopijom na tvrdom ugljiku (manje povećanje).

Slika 4.19: Frekvencijska ovisnost gušenja longitudinalnih ultrazvuka, $\alpha(f)$, na sobnoj temperaturi tvrdog ugljika i staklastog kvarca. Linijom je prikazana prilagodba podatka $\alpha(f)$ tvrdog ugljika na kubični zakon (jednadžba (4.25)).

$$\alpha(f) = 2.2 \cdot 10^{-5} f^3 [\text{dB/mm}] \tag{4.25}$$

a drugo je pri frekvencijama nižim od 50 MHz, gdje krivulja gušenja $\alpha(f)$ odstupa od kubičnog zakona (4.25) i prikazano je na slici 4.21.

Gušenje ultrazvuka pri visokim frekvencijama

Kod polikristaliničnih materijala sa širokom raspodjelom veličine zrna, u gušenju ultrazvuka najvećim dijelom sudjeluju granice zrna [124, 125]. Kada je ispunjen uvjet

$$\lambda \gg 2\pi D \tag{4.26}$$

(gdje je λ valna duljina ultrazvuka, a D promjer zrna), dolazi do Rayleighovog raspršenja ultrazvuka na granicama zrna, gušenje kojeg je proporcionalno četvrtoj potenciji frekvencije $\alpha_{Ray}(f) \propto f^4$. Međutim, drugi učinci dovode do smanjenja eksponenta u Rayleighovom raspršenju [125], koji tada obično biva približno jednak tri. Prema tome, pomoću jednadžbe (4.25) i uvjeta (4.26)moguće je procijeniti veličine zrna koje sudjeluju u Rayleighovom raspršenju ultrazvuka. Pri frekvenciji od 100 MHz valna duljina ultrazvuka je približno $50 \ \mu m$, što za promjer zrna daje približno $8 \ \mu m$; na $30 \ MHz$ (kada se kubični zakon (4.25) ekstrapolira do te frekvencije) valna duljina ultrazvuka je oko 170 μ m, što za promjer zrna D daje približno 30 μ m. Dakle, visokofrekvencijski rezultati gušenja ultrazvuka daju promjere zrna između 8 i 30 μ m. Na slici 4.20, dobivena skenirajućom elektronskom mikroskopijom, se vidi zrnata struktura uzorka sa zrnima veličine od nekoliko μ m do nekoliko desetaka μ m; upravo onih veličina koje sugeriraju mjerenja gušenja ultrazvuka! Za usporedbu su prikazani i podaci gušenja ultrazvuka staklastog kvarca: imaju mali i frekventno gotovo neovisni koeficijent gušenja $\alpha(f)$, što je dokaz homogenosti njegove strukture u mikrometarskoj skali.

Gušenje ultrazvuka pri niskim frekvencijama

Na gornjem dijelu slike 4.21 je prikazan koeficijent gušenja ultrazvuka α na niskim frekvencijama. Linijom je prikazana prilagodba na oblik $\alpha \propto f^3$ dobivena na frekvencijama višim od 50 MHz komentirana u prethodnom poglavlju. Razlika između izmjerenih vrijednosti α i kubičnog oblika je

Slika 4.20: Slika dobivena skenirajućom elektronskom mikroskopijom na tvrdom ugljiku. Vide se zrna čiji promjeri leže u intervalu od nekoliko μ m do nekoliko desetaka μ m, što potvrđuje rezultate dobivene gušenjem ultrazvuka na visokim frekvencijama (vidjeti tekst).

prikazana na donjem dijelu slike. Šiljak koji se vidi na 28 MHz je karakterističan za rezonantno raspršenje ultrazvuka na međusobno jednakim centrima raspršenja (radi jednostavnosti, ti centri raspršenja se mogu zamisliti kao kugle polumjera R); javlja se na frekvenciji na kojoj je ispunjen uvjet [126]:

$$kR = 1 \tag{4.27}$$

gdje je k valni vektor ultrazvuka ($k = 2\pi/\lambda$). Na frekvenciji od 28 MHz valna duljina ultrazvuka λ je 210 μ m, što uporabom relacije (4.27) za polumjer R rezonantnih centara raspršenja daje 35 μ m. Ovaj eksperiment ne može dati informaciju o tome što to na skali veličine 70 μ m (odn., 2R) rezonira s

Slika 4.21: Niskofrekventno gušenje longitudinalnih ultrazvuka, $\alpha(f)$, na sobnoj temperaturi tvrdog ugljika gdje se vidi odstupanje od kubičnog zakona (4.25). Donji dio prikazuju razliku između izmjerenih vrijednosti gušenja i vrijednosti koje predviđa kubični zakon.

Slika 4.22: Relativna promjena brzine longitudinalnih ultrazvuka na frekvenciji od 15 MHz.

ultrazvukom: vjerojatno je riječ o modulaciji gustoće ili elastičnih modula.

Na slici 4.22 je prikazana temperaturna ovisnost relativne promjene brzine ultrazvuka, $\Delta v/v$, mjeren na frekvenciji od 15 MHz. Na temperaturama nižim od otprilike 100 K $\Delta v/v$ je linearan temperaturi:

$$\frac{\Delta v}{v} = -2.91 \cdot 10^{-5} T \tag{4.28}$$

što je značajka amorfnih i neuređenih krutnina [127, 128].

Prolaskom kroz materijal intenzitet ultrazvuka opada eksponencijalno s udaljenošću:

$$I \propto \exp(-\alpha x) \propto \exp\left(-\frac{x}{\Lambda}\right)$$
 (4.29)

gdje je Λ srednji slobodni put elastičnih titranja i obrnuto je proporcionalan koeficijentu gušenja α . Prema jednadžbi (4.25), na frekvenciji f od 300 MHz, srednji slobodni put Λ je jednak 15 μ m; valna duljina ultrazvuka na toj frekvenciji je 20 μ m. Dakle, veća je od srednjeg slobodnog puta: na toj je frekvenciji titranje lokalizirano. Pretpostavljaući da iznad 120 MHz koeficijent gušenja ima sporiju ovisnost o frekvenciji (kvadratnu umjesto kubične), granična frekvencija pri kojoj dolazi do lokalizacije titranja je 1000 MHz. Prema tome, može se pretpostaviti da titrajni modovi postaju lokaliziranima za frekvencije veće od granične f_0 , koja leži između 300 i 1000 MHz.

4.3.3 Toplinska vodljivost

Na slici 4.23 je prikazana toplinska vodljivost tvrdog ugljika i kvarcnog stakla [70, 129]. U potonjem slučaju radi se o krivulji tipičnoj za amorfne materijale: na niskim temperaturama (odn. ispod 1K) toplinska je vodljivost proporcionalna kvadratu temperature, što je posljedica rezonantnog raspršenja fonona na tunelirajućim stanjima (jednadžba (2.62) na stranici 53); zatim na desetak Kelvinovih stupnjeva postoji zaravan zbog iscrpljivanja broja pobuđenih fonona; iznad nekoliko desetaka K toplinska vodljivost ponovno počinje rasti zbog doprinosa lokaliziranih titrajnih stanja koja, usljed međudjelovanja s fononima, preskaču s jednog mjesta na drugo i tako vode toplinu (podrobnije objašnjenje se nalazi na stranici 54). Tvrdi ugljik, iako su proučavanja njegove strukture (poglavlje 4.3.1) pokazala da se radi o neuređenom materijalu, nema toplinsku vodljivost tipičnu za neuređene sus-

Slika 4.23: Toplinska vodljivost tvrdog ugljika i kvarcnog stakla [70,129]. Umetak prikazuje električnu otpornost tvrdog ugljika.

tave: na temperaturama manjim od 1 K toplinska vodljivost s temperaturom raste sporije od T^2 (proporcionalna je s $T^{1.4}$); na desetak K umjesto zaravni postoji infleksija; iznad nekoliko desetaka Kelvinovih stupnjeva krivulja toplinske vodljivosti je linearna sve do sobnih temperatura. Je li ovakvo temperaturno ponašanje tipično za sve ostale tvrde ugljike? Na slici 4.24 su, uz toplinsku vodljivost tvrdog ugljika sa slike 4.23, prikazane i toplinske vodljivosti različitih tvrdih ugljika dobivenih podvrgavanjem različitim tlakovima (tablica 4.10). Zanimljivo je primjetiti da uzorci podvrgnuti višim tlakovima imaju i veću toplinsku vodljivost te šire temperaturno područje u kojima je toplinska vodljivost linearna temperaturi.

Uzorak	P [GPa]	izvor
polikristalinični C_{60}/C_{70}	0.3	[21]
$HPS-1^{a}$	1.0	[20]
$HPS-2^{b}$	1.0	[20]
tvrdi ugljik-1	2.6 - 3.0	[19]
tvrdi ugljik	3.0	ovaj rad

Tablica 4.10: Vrijednosti tlaka kojima su podvrgnuti različiti tvrdi ugljici prilikom njihove sinteze, a čija je toplinska vodljivost prikazana na slici 4.24.

^a Uzorak je najprije podvrgnut visokoj temperaturi pa tek onda visokom tlaku.

^b Uzorak je najprije podvrgnut visokom tlaku pa tek onda visokoj temperaturi.

Umetak slike 4.23 prikazuje električnu otpornost tvrdog ugljika, na temelju kojega je izračunat doprinos elektrona toplinskoj vodljivosti Wiedemann-Franzovim zakonom (2.27). Na slici 4.25 je linijom prikazan elektronski doprinos toplinskoj vodljivosti; na temperaturama nižim od 2 K κ_{el} je procjenjen ekstrapolacijom podataka električne otpornosti. Sivi kružići prikazuju doprinos toplinskoj vodljivosti atomskih titranja, dobiven oduzimanjem κ_{el} od ukupne toplinske vodljivosti κ . Već je ranije u ovome radu bilo riječi o tome da i u strukturno neuređenim sustavima (samo na niskim temperaturama, doduše) ipak mogu postojati propagirajuća titranja rešetke (odnosno fononi).

Na kraju poglavlja o mjerenjima gušenja ultrazvuka navedeno je da do lokalizacije titrajnih stanja dolazi na frekvencijama višim od 300 - 1000 MHz. Na temperaturnoj skali to odgovara temperaturama od nekoliko desetaka mK, iako dio dugovalnih fonona mogu biti dobro definirani i do desetak puta većih temperatura (u ovom slučaju, dakle, do nekoliko stotina mK) [130,131];

Slika 4.24: Toplinska vodljivost tvrdih ugljika podvrgnutih različitim tlakovima pri njihovom dobivanju. U tablici 4.10 su navedene vrijednosti tlakova te izvori podataka.

zato se može pretpostaviti da se do 0.3 K može primjeniti Debye-ov model. Na tim se temperaturama fononi raspršuju na zidovime uzorka ($\kappa \propto T^3$); uz to pretpostavlja se i raspršenje koje daje potencijsku temperaturnu ovisnost toplinske vodljivosti $T^{1.4}$:

$$\kappa_{fon}^{-1} = (AT^3)^{-1} + (BT^{1.4})^{-1} \tag{4.30}$$

Numerička prilagodba za parametar A daje vrijednost od $7.1 \times 10^{-2} \text{ W/mK}^4$. Uzimanjem u obzir pogreške pri procjeni κ_{el} , može se procjeniti da parametar A leži između $6 \times 10^{-2} \text{ W/mK}^4$ i $10 \times 10^{-2} \text{ W/mK}^4$. To nam omogućuje

Slika 4.25: Elektronski doprinos toplinskoj vodljivosti tvrdog ugljika je prikazan linijom; isprekidana linija je dobivena ekstrapolacijom podataka električne otpornosti na temperature niže od 2 K. Doprinos titranja rešetke toplinskoj vodljivosti je prikazan sivim kružićima. Umetak prikazuje toplinsku vodljivost na temperaturama nižim od 1 K te prilagodbu na izraz 4.30.

procjenu srednjeg slobodnog puta fonona l iz relacije (2.41):

$$\kappa_{Cas} = AT^3 = \frac{2}{15} \frac{k_B^4 \pi^2}{\hbar^3} \frac{l}{\overline{v}^2} T^3$$

Mjerenja gušenja ultrazvuka su za longitudinalne i transvezalne brzine zvuka dale sljedeće vrijednosti [121]:

$$v_l = 5900 \text{ m/s}$$

 $v_t = 3400 \text{ m/s}$
(4.31)

što uporabom relacije (4.19) za brzinu zvuka daje 3775 m/s. Gornja relacija za srednji slobodni put fonona, l, daje vrijednosti između 25 i 40 μ m. Podsjetimo se da je analiza gušenja ultrazvuka na niskim frekvencijama (poglavlje 4.3.2) pokazala da je veličina centara raspršenja koja dovodi do pojave rezonancije na 28 MHz promjera približno 70 μ m, što je blizu vrijednosti srednjeg slobodnog puta l!

Koje je porijeklo pribrojnika s $T^{1.4}$ u jednadžbi (4.30)? U poglavlju 2.3, u kojemu je bilo riječi o fizikalnim svojstvima neuređenih struktura, definirana je granična frekvencija ω_{co} iznad koje se struktura ponaša kao fraktalna; za frekvencije niže od ω_{co} atomska titranja neuređenu strukturu 'vide' kao periodičnu. Temperatura T_{co} odgovara graničnoj vrijednosti frekvencije ω_{co} zapisana u temperaturnoj skali; prema tome, na temperaturama višim od T_{co} vrijede zakonitosti fraktalne geometrije, gdje za toplinsku vodljivost vrijedi [132,133]:

$$\kappa_{frac} \propto T^{\overline{d}+1-2\overline{d}/D} \tag{4.32}$$

gdje je \overline{d} spektralna, a D fraktalna dimenzija. Za trodimenzionalnu fraktalnu mrežu D je jednak 2.5 [130], dok \overline{d} leži u intervalu između 1.1 i 1.4 [130,134]. Iz tih se vrijednosti dobije da je $\kappa_{frac} \propto T^{1.22-1.28}$, što je u relativno dobrom suglasju s ovdje dobivenim rezultatom za tvrdi ugljik $\kappa_{frac} \propto T^{1.4}$.

Međudjelovanjem fonona s lokaliziranim titrajnim stanjima, potonji mogu početi preskakivati i na taj način voditi toplinu. Toplinska vodljivost tako stvorenog kanala vođenja topline je linearna temperaturi (jednadžba (2.70) na stranici 56). Taj model toplinske vodljivosti predviđa i povezanost relativne promjene brzine zvuka i toplinske vodljivosti na način:

$$\frac{\Delta v}{v} = -0.1 \frac{\xi^2}{2\pi^2 k_B v} \kappa(T) \tag{4.33}$$

gdje je ξ ili srednji slobodni put fonona na graničnoj frekvenciji ω_{co} ili strukturna korelacijska dužina na mesoskopskoj skali [135–137]. Ovaj je model uspješno primjenjen na kvarcno staklo [135, 136], za kojega je dobivena vrijednot ξ od 1.5 do 1.7 nm. U slučaju tvrdoga ugljika ξ leži u intervalu između 0.5 i 0.6 nm. To je nekoliko puta veće od tipične međuatomne udaljenosti i može se usporediti s udaljenostima između ravnina dobivenih eksperimentom difrakcije X-zraka (slika 4.15 i tablica 4.9).

4.3.4 Zaključak

U ovome je poglavlju prikazano ispitivanje strukture te dinamike atomskih titranja (preko gušenja ultrazvuka i toplinske vodljivosti) tvrdog ugljika, dobivenog podvrgavanjem praha C₆₀ tlaku od 3 GPa i temperaturi od 973 K. Eksperimenti napravljeni difrakcijom X-zraka, tunelirajućom te skenirajućom elektronskom mikroskopijom su pokazali da je struktura neuređena i da nema ostataka početne strukture C₆₀ ili tragova o stvaranju dijamantu slične strukture. Na skali od nekoliko nm (srednjega dosega) postoje naznake o uređenosti strukture; na skalama reda između jedan i sto μ m primjećena je samosličnost (fraktalnost) strukture. Mjerenje gušenja ultrazvuka su pokazala da je na frekvencijama višim od 50 MHz gušenje Rayleigq-hovog tipa na zrnima promjera između nekoliko μ m i nekoliko desetaka μ m, što je potvrđeno i skenirajućom elektronskom mikroskopijom. U niskofrekventnom području ultrazvuci doživljavaju rezonantno raspršenje na središtima raspršenja veličine 70 $\mu {\rm m}.$

Mjerenja toplinske vodljivosti su pokazala da tvrdi ugljik, s obzirom na druge amorfne materijale, ima anomalnu toplinsku vodljivost. U niskotemperaturnom području (na temperaturama nižim od 1 K) amorfni materijali u pravilu ovise o kvadratu temperature (zbog raspršenja fonona na tunelirajućim stanjima); tvrdi ugljik pokazuje ovisnost o $T^{1.4}$, što je posljedica fraktalnosti njegove strukture. Na najnižim temperaturama (manjim od otprilike 0.3 K) mogu se definirati fononska stanja te vrijedi Debye-ov model toplinske vodljivosti. Na temelju njega je procijenjen srednji slobodni put fonona i dobivena je vrijednost slična onoj za veličinu zrna kod rezonantnog gušenja ultrazvuka. Na temperaturi od desetak Kelvina krivulja toplinske vodljivosti umjesto zaravni karakteristične za amorfne materijale ima infleksiju, da bi povišenjem temperature postala linearnom zbog preskakivanja lokaliziranih stanja atomskih titraja.
5. SAŽETAK I ZAKLJUČCI

Ovaj se doktorski rad bavio ispitivanjem toplinske vodljivosti u sistemima s različitim stupnjem strukturnog uređenja te njegovim utjecajem na procese vođenja topline. Spektar ispitivanih materijala je bio vrlo širok: od strukturno uređenih i periodičkih kvazijednodimenzionalnih sistema, preko strukturno uređenih, ali neperiodičkih ikozaedarskih kvazikristala pa do neuređenog tvrdog ugljika. Rezultati i njihova analiza su pokazali da strukture različitih razina strukturnog uređenja imaju i različita pobuđenja i dinamiku te samim time i različite načine vođenja topline.

Od kvazijednodimenzionalnih materijala prikazana su mjerenja električne otpornosti i toplinske vodljivosti (TaSe₄)₂I u smjeru lanaca TaSe₄ i okomito na njih. Električna otpornost ρ u oba smjera pokazuje poluvodičko ponašanje; u slučaju otpornosti u smjeru lanaca, ρ_c , poluvodičko ponašanje na temperaturama višim od T_P postoji zbog fluktuacija parametra uređenja vala gustoće naboja. Na temelju krivulja električnih otpornosti izračunate su temperaturne ovisnosti energetskog procjepa u smjeru lanaca i okomito na njih; po svome temperaturnom ponašanju procjep u smjeru lanaca slijedi predviđanja teorija o niskodimenzionalnim materijalima s valovima gustoće naboja; odstupanje postoji u omjeru $\Delta(T_P)/\Delta(0)$ koji je u slučaju (TaSe₄)₂I jednak 0.72, dok teorija predviđa 0.4. Toplinska vodljivost u smjeru lanaca, κ_c , je u čitavom ispitivanom temperaturnom području (8 K - 320 K) red veličine veća od one mjerene u smjeru okomitom na lance, κ_a . Na niskim temperaturama dominantni kanal vođenja topline i u smjeru i okomito na lance su fononi čiji je srednji slobodni put definiran Umklapp-procesima. Numeričkom prilagodbom eksperimentalnih podataka na teorijski model fononske toplinske vodljivosti je dobivena anizotropija parametra θ/α (θ je Debye-ova temperatura, a α bezdimenzionalan parametar), što je u suglasju s podacima iz literature s mjerenjima elastičnih konstanti i brzine zvuka na $(TaSe_4)_2I$. U okolini Peierlsovog prijelaza
i κ_c i κ_a rastu s temperaturom. U slučaju širenja topline u smjeru lanaca (κ_c) izvršena je analiza pokazala da se kvazičestična pobuđenja mogu pripisati *polaronskim stanjima* čije je postojanje potvrđeno nedavnim mjerenjima spektara kutno razlučive fotoemisije [22, 23, 40] te da u samoj okolini Peierlsovog prijelaza postoji nezanemariv doprinos toplinskoj vodljivosti usljed pobuđenja faze vala gustoće naboja [91]. U smjeru okomitom na lance toplinska vodljivost raste s temperaturom i pokazuje izraženu promjenu nagiba u blizini Peierlsovog prijelaza. Taj porast nije moguće objasniti pobuđenjima elektrona i/ili kvazičestica, nego je vjerojatno posljedica pobuđenja sistema usljed prisustva Peierlsovog uređenja.

Ispitivane su i električna otpornost i toplinska vodljivost tri ikozaedarska kvazikristala, pripadnika obitelji *i*-AlPdMn različitih koncentracija i dobivenih različitim metodama rasta. Električne otpornosti pokazuju temperaturno ponašanje karakteristično za kvazikristale *i*-AlPdMn. Za njihovo je objašnjenje predložen model koji u obzir uzima raspršenja elektrona na magnetskim atomima mangana koji nisu tipa Kondo (model Korringe i Gerritsena). Taj je model razvijen za periodične rešetke s rijetkim magnetskim primjesama i kvalitativno opisuju električne otpornosti ispitivanih kvazikristala. Toplinska vodljivost je istraživana u temperaturnom području od 0.4 K do 300 K. Primjenom Wiedemann-Franzovog zakona procijenjen je elektronski doprinos toplinskoj vodljivosti, koji u čitavom ispitivanom temperaturnom području red veličine do dva manji od ukupne toplinske vodljivosti. Toplinska vodljivost kvazirešetke, dobivena odbijanjem elektronskog doprinosa od ukupne toplinske vodljivosti, je na temperaturama nižim od 40 K analizirana Debye-ovim modelom. Izračunati srednji slobodni putovi fonona u Casimirovoj granici su reda veličine jednog milimetra, što je upravo red veličine dimenzija uzoraka. Ono što je posebno zanimljivo je to da analizom podataka toplinske vodljivosti nije primjećeno raspršenje fonona na tunelirajućim stanjima. Umjesto tunelirajućih stanja, fononi se raspršuju na defektima u slaganju. Iz toga se nameće zaključak da je toplinska vodljivost kvazirešetke sličnija onoj kod kristala nego amorfnih struktura. Uz to, eksperimentalno je uočen za kvazikristale relativno visok maksimum u krivuljama toplinske vodljivosti na temperaturama između 20 i 30 K; time je i eksperimentalno pokazano da je to intrisično svojstvo kvazirešetke, teorijski predviđeno u izvoru [46]. Iznad 50-ak Kelvinovih stupnjeva krivulje toplinske vodljvosti kvazirešetke odstupaju od onih predviđenih Debye-ovim modelom; dolazi do otvaranja novog kanala vođenju topline nastao preskakivanjem fraktona (lokaliziranih titrajnih stanja). Analizom krivulja toplinske vodljivosti kvazirešetke iznad 100 K, potvrđena je teorija preskoka promjenljivog dosega [44].

Prikazana su i ispitivanja strukture te dinamike atomskih titranja (preko gušenja ultrazvuka i toplinske vodljivosti) tvrdog ugljika, dobivenog podvrgavanjem praha C_{60} tlaku od 3 GPa i temperaturi od 973 K. Eksperimenti napravljeni difrakcijom X-zraka, tunelirajućom te skenirajućom elektronskom mikroskopijom su pokazali da je struktura neuređena i da nema ostataka početne strukture C₆₀ ili tragova o stvaranju dijamantu slične strukture. Na skali od nekoliko nm (srednjega dosega) postoje naznake o uređenosti strukture; na skalama reda jedan do sto μm primjećena je samosličnost (fraktalnost) strukture. Mjerenje gušenja ultrazvuka su pokazala da je na frekvencijama višim od 50 MHz gušenje Rayleighovog tipa na zrnima promjera između nekoliko μ m i nekoliko desetaka μ m, što je potvrđeno i skenirajućom elektronskom mikroskopijom. U niskofrekventnom području ultrazvuci doživljavaju rezonantno raspršenje na središtima raspršenja veličine 70 μ m. Mjerenja toplinske vodljivosti su pokazala da tvrdi ugljik, s obzirom na druge amorfne materijale, ima anomalnu toplinsku vodljivost. U niskotemperaturnom području (na temperaturama nižim od 1 K) amorfni materijali u pravilu ovise o kvadratu temperature (zbog raspršenja fonona na tunelirajućim stanjima); tvrdi ugljik pokazuje ovisnost o $T^{1.4}$, što je posljedica fraktalnosti njegove strukture. Na najnižim temperaturama (manjim od otprilike 0.3 K) mogu se definirati fononska stanja te vrijedi Debye-ov model toplinske vodljivosti. Na temelju njega je procijenjen srednji slobodni put fonona i dobivena je vrijednost slična onoj za veličinu zrna kod rezonantnog gušenja ultrazvuka. Na temperaturi od desetak Kelvina krivulja toplinske vodljivosti umjesto zaravni karakteristične za amorfne materijale ima infleksiju, da bi povišenjem temperature postala linearnom zbog preskakivanja lokaliziranih stanja atomskih titraja.

6. SUMMARY

This thesis deals with the investigation of thermal conductivity of systems with various levels of structural order and with the influence of the structure on heat transport processes. The spectrum of investigated materials was rather broad: from structurally ordered and periodic quasi-one-dimensional systems, through structurally ordered but nonperiodic icosahedral quasicrystals to unordered hard carbon. Results and their analysis have shown that structures with different level of structural order have different excitations and dynamics which results in different ways of heat transport.

Within the family of quasi-one-dimensional materials, measurements of electrical resistivity and thermal conductivity of $(\text{TaSe}_4)_2$ I in the direction of TaSe₄ chains and perpendicular to them are shown. Electrical resistivity ρ in both measured directions shows semiconducting behavior; in the case of resistivity in the chain direction, ρ_c , a semiconducting behavior at temperatures above T_P comes from the fluctuations of the order parameter of the charge density wave. From the curves of electrical resistivity, the temperature dependence of energy gaps parallel and perpendicular to the chains was calculated. In general, the temperature dependence of the parallel-to-chain gap follows the predictions of theories of low-dimensional materials with charge density waves; there is a discrepancy in the ratio $\Delta(T_P)/\Delta(0)$ which is in the case of (TaSe₄)₂I equal to 0.72, while theory predicts 0.4. The thermal conductivity parallel to the chain direction, κ_c , is in the whole investigated temperature range larger by an order of magnitude than its counterpart perpendicular to the chain, κ_a . At low temperatures, the dominant heat channel in both the parallel and perpendicular direction become the phonons with a mean free path defined by the Umklapp processes. The numerical fit of the experimental data to the model of phonon thermal conductivity gave an anisotropy of the parameter θ/α (θ is the Debye temperature and α a dimensionless parameter), which is consistent with the existing elasticity and sound velocity measurements. In the vicinity of the Peierls transition, κ_c as well as κ_a increases with increasing temperature. Analysis of the parallel-tochains thermal conductivity data showed that quasiparticle excitations could be ascribed to polaron states, the existence of which was confirmed by recent experiments of angle-resolved photoemission spectroscopy [22, 23, 40]. Also, in the vicinity of the Peierls transition there is a non-negligible contribution to the thermal conductivity coefficient due to phase excitation of the charge density wave [91]. In the direction perpendicular to the chain, the thermal conductivity rises with temperature, with a change of slope in the vicinity of the Peierls transition. This rise cannot be explained by either electron or quasiparticle excitations and could be a consequence of an excitation related to the Peierls transition.

Investigations of electrical resistivity and thermal conductivity of three members of the icosahedral family *i*-AlPdMn, prepared with different techniques, are presented. The temperature dependence of the electrical resistivity is typical for *i*-AlPdMn quasicrystals. A model with a non-Kondo type of electron scattering on magnetic moments of manganese atoms (KorringaGeritsen model) is proposed. Although this model was developed for periodic lattices with dilute magnetic impurities, it qualitatively describes the resistivity curves of the investigated quasicrystals. The thermal conductivity data were taken in the temperature range between 0.4 and 300 K. The electron contribution to the thermal conductivity is estimated via the Wiedemann-Franz law and in the whole temperature range it is at least an order of magnitude smaller than the total thermal conductivity. The quasilattice thermal conductivity, obtained by subtracting the electron contribution from the total thermal conductivity, is analyzed below 40 K within the Debye model. The calculated phonon mean free paths are of the order of a millimeter, which is of the same order of magnitude as the sample size. By the analysis of the thermal conductivity data, no evidence of phonon scattering on tunneling states was observed. Instead, phonons are scattered on stacking-faults-like scattering centers. Thus, it can be concluded that the thermal conductivity of quasilattices is more similar to that of periodic lattices than amorphous structures. Besides, a relatively high thermal conductivity maximum was observed at 20-30 K; this provided experimental evidence that it was an intrinsic property of quasilattices, theoretically predicted by Kalugin et al [46]. Above 50 K, the quasilattice thermal conductivity curves deviate from those predicted by the Debye model; a new heat channel, due to hopping of fractons (i.e., localized atomic vibrations), is formed. Above 100 K the analysis confirmed a variable range hopping model [44].

The structure and atom dynamics investigations (by means of ultrasound and thermal conductivity experiments) on hard carbon are presented. The sample of hard carbon was obtained by exposing the pure powder of C_{60} to high pressure (2.6 to 3 GPa) and high temperature (973 K). The X-ray diffraction, tunneling, and scanning electron microscopy experiments have shown that the structure is amorphous and that it does not contain any remains of C_{60} or traces of diamond-like structure formation. On the scale of several nanometers there are indications of structure regularity; in the scales between 1 and 10 μ m selfsimilarity (fractality) is observed. Ultrasound damping experiments have shown that above 50 MHz the damping is of a Rayleigh type on grains with diameters from several μm to several tens of μm , which is confirmed by scanning electron microscopy. In the lowfrequency regime the ultrasound is resonantly scattered on scattering centers of the size of the order of 70 μ m. Thermal conductivity experiments have shown that, in comparison with other amorphous materials, hard carbon has an anomalous thermal conductivity. At low temperatures (i.e., below 1 K) thermal conductivity of amorphous materials is, due to phonon scattering on tunneling states, proportional to T^2 ; in the case of hard carbon it is proportional to $T^{1.4}$, which is a consequence of the fractal structure. At lowest temperatures (below approximately 0.3 K) the phonon states can be defined despite the aperiodicity, and the Debye model of thermal conductivity is valid. Within this model a phonon mean free path is calculated with a value similar to that of the grain size obtained by ultrasound resonant damping. At approximately 10 K thermal conductivity has an inflection point instead of a plateau characteristic of the amorphous materials. With further increase of temperature, thermal conductivity increases linearly due to the activation of hopping of localized vibrations.

LITERATURA

- D. Schechtman, I. Blech, D. Gratias, and J. W. Cahn. *Phys. Rev. Lett.*, 53:1951, 1984.
- [2] International Union of Crystallography. Acta Cryst., A48:922, 1992.
- [3] T. Klein and H. Rakato. *Phys. Rev. B*, 45:2046, 1992.
- [4] C. Berger, T. Grenet, P. Lindqvist P. Lanco, J. C. Grieco, G. Fourcaudot, and F. Cyrot-Lackmann. Solid State Commun., 87:977, 1993.
- [5] A. Bilušić, A. Smontara, J. C. Lasjaunias, J. Ivkov, and Y. Calvayrac. Mat. Sci. and Engeneering, 294-296:711, 2000.
- [6] J. Dolinšek, M. Klanjšek, Z. Jagličič, A. Bilušić, and A. Smontara. Journal of Phys.: Condens. Matter, 14:6975, 2002.
- [7] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Saunders College Publishing, 1976.
- [8] M. Rodmar, D. Oberschmidt, M. Ahlgren, C. Gignoux, J. Delahaye, C. Berger, S. J. Poon, and Ö. Rapp. *Journal of Non-Crystalline Solids*, 250-252:883, 1999.
- [9] J. J. Préjean, C. Berger, A. Sulpice, and Y. Calvayrac. *Phys. Rev. B*, 65:140203(R), 2002.

- [10] M. A. Chernikov, A. Bianchi, and H. R. Ott. Phys. Rev. B, 51:153, 1995.
- [11] M. A. Chernikov, E. Felder, A. D. Bianchi, C. Wälti, M. Kenzelmann,
 H. R. Ott, K. Edagawa, M de Boissieu, C. Janot, M Feuerbacher,
 N. Tamura, and K. Urban. In S. Takeuchi and T. Fujiwara, editors, *Quasicrystals, Proceedings of the 6th International Conference, Tokyo, Japan 1998*, page 451, Singapore, 1998. World Scientific.
- [12] S. Legault, B. Ellman, J. Ström-Olsen, and L. Tailleter. In C. Janot, editor, Quasicrystals, Proceedings of the 5th International Conference, Avignon, France 1995, page 592, Singapore, 1996. World Scientific.
- [13] EunJoo Thompson, P. D. Vu, and R. O. Pohl. *Phys. Rev. B*, 62:11 437, 2000.
- [14] M. A. Chernikov, A. Bianchi, E. Felder, U. Gubler, and H. R. Ott. Europhys. Lett., 35:431, 1996.
- [15] S. Legault, B. Ellman, J. Ström-Olsen, L. Tailleter, T. Lagrasso, and D. Delaney. In S. Takeuchi and T. Fujiwara, editors, *Quasicrystals, Proceedings of the 6th International Conference, Tokyo, Japan 1998*, page 475, Singapore, 1998. World Scientific.
- [16] K. Giannó, A. V. Sologubenko, M. A. Chernikov, and H. R. Ott. Phys. Rev. B, 62:292, 2000.
- [17] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl RF, and R. E. Smalley. *Nature*, 318:162, 1985.
- [18] M. N. Regueiro, P. Monceau, and J. L. Hodeau. Nature, 355:237, 1992.

- [19] A. Smontara, K. Biljaković, D. Starešinić, D. Pajić, M. E. Kozlov,
 M. Hibayashi, M. Takamuto, and H. Ihara. *Physica B*, 219-220:160, 1996.
- [20] V. B. Efimov and L. P. Mezhov-Deglin. *Physica B*, 263-264:705, 1999.
- [21] J. R. Olson, K. A. Topp, and R. O. Pohl. Science, 259:1145, 1993.
- [22] L. Perfetti, H. Berger, A. Raginelli, H. Höchst, J. Voit, G. Margaritondo, and M. Grioni. *Phys. Rev. Lett.*, 87:216404, 2001.
- [23] M. Grioni, L. Perfetti, H. Berger, J. Voit, and H. Höchst. *Physica B*, 312-313:410, 2002.
- [24] G. A. Toombs. *Phys. Rep.*, 40:181, 1978.
- [25] P. A. Lee, T. M. Rice, and P. W. Anderson. Solid State Commun., 14:703, 1974.
- [26] S. Barišić and K. Uzelac. Journal de Physique, 36:1267, 1975.
- [27] P. A. Lee, T. M. Rice, and P. W. Anderson. Phys. Rev. Lett., 31:462, 1973.
- [28] C. Herring. Phys. Rev., 95:954, 1954.
- [29] P. G. Klemens. In F. Seitz and D. Turnbull, editors, Solid State Physics: Advances in Research and Applications, volume 7, page 1. Academic Press Inc., New York, 1958.
- [30] P. Grassier, M. Yung-Hwan Whangbo, A. Meerschaut, and J. Rouxel. *Inor. Chem.*, 23:1221, 1984.

- [31] J. E. Lorenzo, P. Monceau, R. Currat, H. Requardt, and F. Lévy. *Physica B*, 244:91, 1998.
- [32] K. Šaub, S. Barišić, and J. Friedel. *Physics Letters*, 56A:302, 1976.
- [33] V. Favre-Nicolin, S. Bos, J. E. Lorenzo, J-L. Hodeau, J-F. Berar,
 P. Monceau, R. Currat, F. Lévy, and H. Berger. *Phys. Rev. Lett.*, 87:015502, 2001.
- [34] K. B. Lee, D. Davidov, and A. J. Heeger. Solid State Commun., 54:673, 1985.
- [35] S. Ravy and R. Moret. Synthetic Metals, 120:1065, 2001.
- [36] W. Brütting, P. H. Nguyen, W. Reiss, and G. Paasch. Phys. Rev. B, 51:9533, 1995.
- [37] N. Shannon and R. Joynt. Solid State Commun., 114:411, 2000.
- [38] L. Németh, P. Amtus, G. Kriza, and B. Alavi. Synth. Metals, 120:1007, 2001.
- [39] R. Claessen, C. Wilde, F. Reinert, S. Hüfner, G.-H. Gweon, J. W. Allen, D. M. Poirier, and C. G. Olson. *Phys. Rev. B*, 56:12 643, 1997.
- [40] A. Terrasi, M. Marsi, H. Berger, G. Margaritondo, R. J. Kelley, and M. Onellion. *Phys. Rev. B*, 52:5592, 1995.
- [41] J. Fink, M. Knupfer, S. Atzkern, and M. S. Golden. J. Electron Microscopy and Related Phenomena, 117-118:287, 2001.
- [42] C. Janot. Quasicrystals: A Primer. Clarendon Press, Oxford, 1997.

- [43] J. W. Cahn, D. Gratias, and B. Mozer. *Phys. Rev. B*, 38:1643, 1988.
- [44] C. Janot. Phys. Rev. B, 53:181, 1996.
- [45] V. Šips. Uvod u fiziku čvrstog stanja. Školska knjiga, Zagreb, 1991.
- [46] P. A. Kalugin, M. A. Chernikov, A. Bianchi, and H. R. Ott. Phys. Rev. B, 53:14 145, 1996.
- [47] M. de Boissieu, M. Boudard, R. Bellisent, M. Quilichini, B. Henion,
 R. Currat, A. I. Goldman, and C. Janot. J. Phys.: Condens. Matter, 5:4945, 1993.
- [48] M. Boudard, M. de Boissieu, S. Kycia, A. I. Goldman, B. Hennion, R. Bellisent, M. Quilichini, R. Currat, and C. Janot. J. Phys.: Condens. Matter, 7:7299, 1995.
- [49] C. Janot, A. Magerl, B. Frick, and M. de Boissieu. *Phys. Rev. Lett.*, 71:871, 1993.
- [50] M. Krisch, R. A. Brand, M. Chernikov, and H. R. Ott. Phys. Rev. B, 65:134201, 2002.
- [51] J. Kollar and A. Süto. Phys. Lett. A, 117:203, 1986.
- [52] M. Kohmoto and B. Sutherland. Phys. Rev. Lett., 56:2740, 1986.
- [53] C. Janot and M. de Boissieu. Phys. Rev. Lett., 72:1674, 1994.
- [54] L. Schiff. Quantum mechanics. McGrow-Hill Kogakusha Ltd., 1968.
- [55] A. I. Larkin and D. E. Khel'nitzkii. Sov. Phys., 25:25, 1982.

- [56] G. Bergmann. Phys. Rev. B, 28:515, 1983.
- [57] T. Klein, C. Berger, D. Amyou, and F. Cyrot-Lackmann. *Phys. Rev. Lett.*, 66:2907, 1991.
- [58] M. A. Chernikov, A. Bernasconi, C. Beeli, A. Schilling, and H. R. Ott. Phys. Rev. B, 48:3058, 1993.
- [59] J. C. Lasjaunias, A. Sulpice, N. Keller, J. J. Preéjan, and M. de Boissieu. Phys. Rev. B, 52:886, 1995.
- [60] V. Simonet, F. Hippert, M. Audier, and G. Trambly de Laissardière. *Phys. Rev. B*, 58:R8865, 1998.
- [61] D. Mayou C. Berger F. Cyrot-Lackmann, T. Klein, and P. Lanco. Phys. Rev. Lett., 70:3915, 1993.
- [62] G. Trambly de Laissardière and D. Mayou. *Phys. Rev. Lett.*, 85:3273, 2000.
- [63] A. Bilušić. Ispitivanje transportnih svojstava kvazikristala Al-Cu-Fe.
 Magistarski rad, Sveučilište u Zagrebu, 1999.
- [64] C. V. Landauro and H. Solbrig. *Physica B*, 301(3-4):267, 2001.
- [65] F. Bert, G. Bellessa, A. Quivy, and Y. Calvayrac. *Phys. Rev. B*, 61:32, 2000.
- [66] N. Vernier, G. Bellessa, B. Perrin, A Zarembowitch, and M. de Boissieu. Europhys. Lett., 22:187, 1993.
- [67] P. Lindquist, C. Berger, T. Klein, P. Lanco, F. Cyrot-Lackmann, and Y. Calvayrac. *Phys. Rev. B*, 48:630, 1993.

- [68] S. Alexander and R. Orbach. J. Physique Lett, 43:L–625, 1982.
- [69] S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg. *Phys. Rev. B*, 28:4615, 1983.
- [70] R. C. Zeller and R. O. Pohl. Phys. Rev. B, 4:2029, 1971.
- [71] W. A. Philips. J. Low Temp. Phys., 7:351, 1972.
- [72] P. W. Anderson, B. I. Halperin, and C. M. Varma. *Philos. Mag.*, 25:1, 1972.
- [73] W. A. Philips. Rep. Prog. Phys., 50:1657, 1987.
- [74] S. Alexander, Ora Entin-Wohlman, and R. Orbach. Phys. Rev. B, 34:2726, 1986.
- [75] W. Krätschamer, L. D. Lamb, K. Fostiropoulos, and D. R. Hauffman. Nature, 347:354, 1990.
- [76] A. F. Hebard, M. J. Rosseinskky, R. C. Haddon, D. W. Murphy, S. T. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan. *Nature*, 350:600, 1992.
- [77] P. W. Stephens, D. Cox, J. W. Lauher, L. Mihaly, J. B. Wiley, P.M. Allemand, A. Hirsch, K. Holczer, Q. Li, J. D. Thompson, and F. Wudl. *Nature*, 355:351, 1992.
- [78] http://www.chemistry.wustl.edu/edudev/fullerene/applications.html; http://www.chem.wisc.edu/ newtrad/curref/bdgtopic/bdgtext/bmmbas.html.
- [79] R. S. Ruoff and A. L. Ruoff. Nature, 350:663, 1991.

- [80] R. S. Ruoff and A. L. Ruoff. Appl. Phys. Lett., 59:1553, 1991.
- [81] Y. Wang, D. Tománek, and G. F. Bertsch. Phys. Rev. B, 44:6562, 1991.
- [82] S. J. Duclos, K. Brister, R. C. Haddon, A. R. Kortan, and F. A. Thiel. *Nature*, 351:380, 1991.
- [83] V. D. Blank, S. G. Buga, G. A. Dubitsky, N. R. Serebryanaya, M. Yu. Popov, and B. Sundquist. *Carbon*, 36:319, 1998.
- [84] A. M. Rao, P. Zhou, K. Wang, G. T. Hager, J. M. Holden, Y. Wang, W. T. Lee, X. Bi, P.C. Eklund, D. S. Cornet, M. A. Duncan, and I. J. Amster. *Science*, 259:955, 1993.
- [85] http://www.efunda.com/materials/.
- [86] H. Bougrine and M. Ausloos. Rev. Sci. Instrum., 66:199, 1995.
- [87] http://www.newportus.com/Products/Techncal/MetlEmty.htm.
- [88] A. Schwartz, M. Dressel, M. Alavi, A. Blank, S. Dubois, G. Grüner, B. P. Gorshunov, A. A. Volkov, G. V. Kozlov, S. Thieme, L. Degiorgi, and F. Lévy. *Phys. Rev. B*, 52:5643, 1995.
- [89] P. A. Lee and T. V. Ramakrishnan. Rev. Mod. Phys., 57:287, 1985.
- [90] D. Starešinić, A. Kiš, K. Biljaković, B. emerling, J. W. Brill, J. Souletie,
 H. Berger, and F. Lévy. *Eur. Phys. J. B*, 29:71, 2002.
- [91] A. Smontara, K. Biljaković, and S. N. Artemenko. *Phys. Rev. B*, 48:4329, 1993.
- [92] A. Smontara. neobjavljeni rezultati.

- [93] P. Monceau. Electronic Properties of inorganic Quasi One-Dimensional Compounds. Riedel, 1985.
- [94] R. Berman. Thermal Conduction in Solids. Oxford University Press, 1978.
- [95] H. B. Huntington. In F. Seitz and D. Turnbull, editors, Solid State Physics: Advances in Research and Applications, page 213. Academic Press Inc., New York, 1958.
- [96] H. Siethoff. Internatallics, 5:625, 1997.
- [97] M. Saint-Paul, S. Holtmeier, R. Britel, P. Monceau, R. Currat, and F Lévy. J. Phys.: Condens. Matter, 8:2021, 1996.
- [98] K. K. Lee, A. S. Alexandrov, and W. Y. Liang. cond.mat/0122665.
- [99] K. K. Lee, A. S. Alexandrov, and W. Y. Liang. cond-mat/0301559.
- [100] C. L. Kane and Matthew P. A. Fisher. Phys. Rev. Lett., 76:3192, 1996.
- [101] R. A. Smith. Semiconductors. Cambridge University Press, Cambridge, 1975.
- [102] A. Bilušić, I. Tkalčec, H. Berger, L. Forró, and A. Smontara. Fizika A, 9:169, 2000.
- [103] I. R. Fisher, M. J. Kramers, T. A. Wiener, Z. Islam, A. R. Ross, T. A. Lograsso, A.Kracher, A. I. Goldman, and P. C. Canfeld. *Phil. Magazine B*, 79:1673, 1999.
- [104] A. A. Chernov. Modern Crystalography III: Crystal Growth. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

- [105] M. A. Chernikov, A. Bernasconi, C. Beeli, and H. R. Ott. Europhys. Lett, 21:767, 1993.
- [106] P. Lindquist, P. Lanco, C. Berger, A. G. M. Jansen, and F. Cyrot-Lackmann. Phys. Rev. B, 51:4796, 1995.
- [107] H. Fukuyama and K. Hoshino. J. Phys. Soc. Japan, 51, 2131.
- [108] M. Rodmar, B. Grushko, N. Tamura, K. Urban, and Ö. Rapp. Phys. Rev. B, 60:7208, 1999.
- [109] J. Korringa and A. N. Gerritsen. Physica, 19:457, 1953.
- [110] J. Friedel. Can. J. Phys., 34:1190, 1956.
- [111] A. Blandin and J. Friedel. J. Phys. Radium, 20:160, 1959.
- [112] Y. Amazit, M. de Boissieu, and A. Zarembowitch. Europhys. Lett., 20:703, 1992.
- [113] C. Li and Y. Liu. Phys. Rev. B, 63:064203, 2001.
- [114] Ch. Wälti, E. Felder, M. S. Chernikov, H. R. Ott, M. de Boissieu, and C. Janot. Phys. Rev. B, 57:10 504, 1998.
- [115] K. A. Gschneider. In F. Seitz and D. Turnbull, editors, Solid State Physics: Advances in Research and Applocations, volume 16, page 275. Academic Press, New York, 1964.
- [116] V. Elser. Philosophical Magazine B, 73:641, 1996.
- [117] S. M. Bennington, N. Kitamura, M. G. Cain, M. H. Lewis, and M. Arai. *Physica B*, 263-264:632, 1999.

- [118] R. A. Wood, M. H. Lewis, G. West, S. M. Bennington, M. G. Cain, and N. Kitamura. J. Phys.: Condens. Matter, 12:10411, 2000.
- [119] M. E. Kozlov, M. Hirabayshi, N. Kozaki, M. Takumoto, and H. Ihara. Appl. Phys. Lett., 66:1199, 1995.
- [120] J. Robertson. Adv. Phys., 35:317, 1986.
- [121] J. C. Lasjaunias, M. Saint-Paul, A. Bilušić, A. Smontara, S. Gradečak,
 A. M. Tonejc, and A. Tonejc. *Phys. Rev. B*, 66:014302, 2002.
- [122] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg. *Graphite Fibbers and Filaments*. Springer-Verlag, Berlin, 1988.
- [123] L. Marques, J. L. Hodeau, M. Nuñez-Rugeiro, and M. Perroux. *Phys. Rev. B*, 54:12633, 1996.
- [124] P. C. Waterman and R. Truell. J. Math. Phys., 2:512, 1962.
- [125] E. P. Papadakis. J. Acoust. Soc. Am., 37:703, 1965.
- [126] C. A. Condat. J. Acoust. Soc. Am., 83:441, 1988.
- [127] B. E. White and R. O. Pohl. Z. Phys. B: Condens. Matter, 100:401, 1996.
- [128] K. A. Topp and D. G. Cahill. Z. Phys. B: Condens. Matter, 101:235, 1996.
- [129] D. G. Cahill and R. O. Pohl. Phys. Rev. B, 1987, 4067.

- [130] A. Jagannathan, R. Orbach, and O. Entin-Wohlman. *Phys. Rev. B*, 39:13465, 1989.
- [131] R. Orbach. Philos. Mag. B, 65:189, 1992.
- [132] A. M. de Goer, R. Calemczuk, B. Salce, J. Bon, E. Bonjour, and R. Maynard. *Phys. Rev. B*, 40:8327, 1989.
- [133] R. Maynard. *Physica A*, 168:469, 1990.
- [134] E. Courtens, R. Vachre, and E. Stoll. *Physica D*, 38:41, 1989.
- [135] A. Jagannathan and R. Orbach. Phys. Rev. B, 41:3153, 1990.
- [136] S. R. Elliot. Europhys. Lett., 19:201, 1992.
- [137] T. Nakayama and R. Orbach. Physica B, 1999, 261.

7. ŽIVOTOPIS

Rođen sam 9. lipnja 1972. godine u Splitu od majke Dragice (rođene Leko) i oca Ivana. Osnovnu (1979. do 1987. godine) i srednju školu (Matematičkoinformatički obrazovni centar, od 1987. do 1991. godine) sam pohađao u Splitu.

Akademske godine 1991/92 sam upisao studij fizike, smjer diplomirani inženjer fizike, na Fizičkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu. Tijekom studija (1994. godine) sam postao stipendistom Instituta za fiziku. Stipendija je trajala do dana diplomiranja (25. ožujka 1997. godine) kada sam obranio diplomski rad pod naslovom "*Toplinska* vodljivost kvazi-jednodimenzionalnog sistema $(TaSe_4)_2I$ dopiranog različitim koncentracijama metalnog iona Nb u okolini Peierlsovog prijelaza". Diplomski rad je načinjen na Institutu za fiziku pod mentorstvom dr. sc Ane Smontare.

Od 2. lipnja 1997. godine sam znanstveni novak Ministarstva znanosti i tehnologije Republike Hrvatske, zaposlen na Institutu za fiziku u Zagrebu. Tijekom 1999. godine (točnije, od 10. veljače do 9. prosinca) moj je status znanstvenog novaka bio u mirovanju zbog odsluženja vojnog roka. Dana 28. prosinca 1999. sam obranio magistarski rad pod naslovom "*Transportna svojstva kvazikristala Al-Cu-Fe*". 9. veljače 2000. godine Znanstveno vijeće Instituta za fiziku me je izabralo u stručno zvanje asistent. Surađujem (odnosno, surađivao sam) na sljedećim nacionalnim i međunarodnim projektima:

• 2002-:

Toplinska vodljivost specifično uređenih sistema projekt Ministarstva znanosti i tehnologije RH pod vodstvom dr. sc A. Smontare (Institut za fiziku)

• 1997-01:

Kompleksni modulirani sistemi: osnovna stanja i pobuđenja projekt Ministarstva znanosti i tehnologije RH pod vodstvom dr. sc K. Biljaković (Institut za fiziku)

• 2002-:

Proizvodnja i istraživanje novih kvazikristala

zajednički projekt Ministarstva znanosti i tehnologije RH i Ministarstva znanosti R. Slovenije pod zajedničkim vodstvom dr. sc. A. Smontare (Institut za fiziku) i prof. J. Dolinšeka (Institut J. Stefana, Ljubljana i Fakultet za matematiku i fiziku Sveučilišta u Ljubljani)

• 2000-02:

Fizikalna svojstva kvazikristala

zajednički projekt Ministarstva znanosti i tehnologije RH i Ministarstva znanosti R. Slovenije pod zajedničkim vodstvom dr. sc. A. Smontare (Institut za fiziku) i prof. J. Dolinšeka (Institut J. Stefana, Ljubljana i Fakultet za matematiku i fiziku Sveučilišta u Ljubljani)

• 2001-02:

Understanding the role of phonons in novel electronic and magnetic

materials

projekt Nacionalnog fonda za znanost (NSF) Sjedinjenih Američkih Država, program Suradnja u temeljnim znanostima i tehnici (COBASE) pod zajedničkim vodstvom prof. J. Musfeldt (Sveučilište Tennessee-ja, Knoxville, Tennessee) i dr. sc. A. Smontare (Institut za fiziku)

Tijekom 2000. godine sam, u sklopu zajedničkog hrvatsko-slovenskog projekta, proveo tjedan dana u Ljubljani na Institut J. Stefana u Laboratoriju za istraživanje NMR-spektara kvazikristala prof. J. Dolinšeka. 2001. godine sam kao stipendista Vlade Francuske Republike proveo mjesec dana u Francuskoj, u Grenobleu, u Središtu za istraživanja na jako niskom temperaturama (CRTBT) pri CNRS-u u laboratoriju dr J.-C. Lasjauniasa. Akademsku godinu 2001/02 sam proveo u Zürichu u Laboratoriju za fiziku čvrstog stanja pri ETH u grupi prof. H. R. Otta kao stipendista Vlade Švicarske Konfederacije.

Sudjelovao sam na pet međunarodnih i jednoj domaćoj konferenciji na kojima sam imao tri usmena izlaganja te četiri rada izložio u vidu postera. Tijekom akademskih godina 1999/2000, 2000/01 i 2002/03 sam sudjelovao u dodiplomskoj nastavi Fizičkog odsjeka Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu kao asistent iz kolegija *Fizički praktikum V, Fizički praktikum za kemičare* te *Odabrana poglavlja iz fizike čvrstog stanja*. Član sam uredništva Matematičko-fizičkog lista od 1999. godine. (Ko)autor sam sljedećih radova:

- radovi na ocjeni:
- A. Bilušić, H. Berger, A. Smontara
 In- and out-of-chain thermal conductivity of (TaSe₄)₂I
- [2] A. Bilušić, A. Smontara, H. R. Ott, I. R. Fisher, P. C. Canfield Non glass-like behavior of thermal conductivity of i-AlPdMn quaiscrystals
- objavljeni radovi:
- J. C. Lasjaunias, M. Saint-Paul M. A. Bilušić, A. Smontara, S. Gradečak,
 A. M. Tonejc, A. Tonejc, N. Kitamura
 Acoustic and thermal transport properties of hard carbon formed from
 C₆₀ fullerene
 Physical Review B. 6601:4302, 2002
- [2] A. Bilušić, Ż. Budrović, A. Smontara, J. Dolinšek, P. C. Canfield, I. R. Fisher
 Transport properties of icosahedral quasicrystal Al₇₂Pd_{19.5}Mn_{8.5}
 Journal of Alloys Compounds. 342(1-2):413-415, 2002
- [3] J. Dolinšek, M. Klanjšek, Z. Jagličič, A. Bilušić, A. Smontara Origin of the maximum in the temperature-dependent electrical restivity of quasicrystals
 J. Phys.: Cond. Matter 14:6975, 2002

- [4] A. Smontara, M. Saint Paul, J. C. Lasjaunias, A. Bilušić, N. Kitamura Thermal and acoustic transport properties of hard carbon formed from C₆₀ fullerene Physica B. 316:250, 2002
- [5] A. Smontara, I. Tkalčec, A. Bilušić, M. Budimir, H. Berger Anisotropy of the thermal conductivity in (TaSe₄)₂I
 Physica B. 316:279, 2002
- [6] A. Smontara, A. M. Tonejc, S. Gradečak, A. Tonejc, A. Bilušić, J. C. Lasjaunias
 Structural (XRD and HRTEM) investigations of fullerite C₆₀ and C70 samples
 Materials Science & Engineering C: 19:21, 2002
- [7] A. Smontara, A. Bilušić, J. C. Lasjaunias, M. Saint-Paul, S. Gradečak,
 A. M. Tonejc, A. Tonejc, N. Kitamura, S. Bennington
 Thermal and elastic properties of hard carbon
 Strojarstvo 44:1, 2002
- [8] I. Tkalčec, A. Bilušić, H. Berger, L. Forró, A. Smontara Anisotropy of the transport properties of (TaSe₄)₂I
 Synthetic Metals. 120:883, 2001
- [9] A. Bilušić, D. Pavuna, A. Smontara
 Figure of merit of quasicrystals: the case of Al-Cu-Fe
 Vacuum. 61:345, 2001
- [10] A. Bilušić, S. Gradečak, A. Tonejc, A. M. Tonejc, J. C. Lasjaunias,

A. Smontara Transport properties of fullerite samples Synthetic Metals. 121:1121, 2001

- [11] A. Bilušić, Ż. Budrović, A. Smontara
 Thermal conductivity of icosahedral i-Al₇₂Pd_{19.5}Mn_{8.5} quasicrystal
 Fizika A 10:121, 2001
- [12] A. Smontara, J. C. Lasjaunias, C. Paulsen, A. Bilušić, Y. Calvayrac Low-temperature thermal conductivity of icosahedral Al₆₃Cu₂₅Fe₁₂ and Al₆₂Cu_{25.5}Fe_{12.5} quasicrystals Materials Science & Engineering A 294:706, 2000
- [13] A. Bilušić, A. Smontara, J. C. Lasjaunias, J. Ivkov, Y. Calvayrac Thermal and thermoelectric properties of icosahedral Al₆₂Cu_{25.5}Fe_{12.5} quasicrystal Materials Science & Engineering A 294:711, 2000
- [14] A. Bilušić, I. Tkalčec, H. Berger, L. Forró, A. Smontara Anisotropic thermoelectric properties of (TaSe₄)₂I
 Fizika A 9:169, 2000
- [15] A. Bilušić, A. Smontara, H. Berger
 Transport properties of the quasi-one-dimensional crystal Nb₄Te₁₇I₄
 Synthetic Metals. 103(1-3):2646, 1999
- [16] A. Smontara, A. Bilušić, E. Tutiš, H. Berger, F. Lévy Effects of doping on the transport properties of the quasi-one-dimensional

system $(TaSe_4)_2I$ Synthetic Metals. 103:2663, 1999

- [17] A. Bilušić, A. Smontara, H. Berger *Thermal conductivity minimum of Nb*₄*Te*₁₇*I*₄ Physica B. 263:752, 1999
- [18] A. Smontara, A. Bilušić, E. Tutiš, H. Berger, F. Lévy Role of the Nb impurities on the thermal conductivity of (Ta_{1-x}Nb_xSe₄)₂I alloys in the vicinity of the Peierls transition Physica B. 263:779, 1999
- [19] A. Bilušić, I. Bešlić, J. Ivkov, J. C. Lasjaunias, A. Smontara Electrical conductivity, Hall coefficient and thermopower of icosahedral i-Al₆₂Cu_{25.5}Fe_{12.5} and i-Al₆₃Cu₂₅Fe₁₂ quasicrystals Fizika A 8:183, 1999
- [20] A. Smontara, A. Bilušić, H. Berger Thermal Conductivity of the quasi-one-dimensional crystal Nb₄Te₁₇I₄ Thermal Conductivity 24, Thermal expansion 12 (ed. P. Gall) Tech-nomic:182, 1999
- [21] A. Smontara, J. C. Lasajunias, A. Bilušić, R. Maynard *Thermal Conductivity of (Ta_{1-x}Nb_xSe₄)₂I alloys* Thermal Conductivity 24, Thermal expansion 12 (ed. P. Gall) Tech-nomic:173, 1999
- [22] A. Smontara, K. Biljaković, A. Bilušić, J. Mazuer, P. Monceau, H. Berger, F. Lévy

Phonon themal conductivity of the quasi-one-domensional conductors Physica B. 220:77, 1996

[23] A. Smontara, K. Biljaković, A. Bilušić, D. Pajić, J. Mazuer, P. Monceau, F. Lévy, H. Berger
 Thermal Conductivity of Linear Chain Semiconductors (NbSe₄)₃I
 Thermal Conductivity 23 (ed. T.W.Tong) Technomic:266 1996

KAZALO

ampliton, 16	Hausdorffova dimenzional nost, 50
ARPES, 9, 27	ikozaedarski kvazikristali
Blochov teorem, 41	metoda projekcije, 33
Boltzmannova jedandžba, 22	pseudo-Mackayev ikozaedar, 33
Casimirova granica, 25, 105, 127	Kohnova anomalija, 14 kritična stanja, 41
Debye-ov model, 23, 103	kvantna interferencija, 42, 90
dijamant, 57	kvazikristali, 2
EELS, 27	Lindhardova funkcija odziva, 11
fazon, 16, 36 Fibonaccijev lanac 27	Lorenzov broj, 21 za ikozaedarske kvazikristale, 45
model projiciranja, 33	Matthiessenovo pravilo, 23, 105
fonon, 36, 38	inverzno za ikozaedarske kvazikristale,
fraktalni objekti, 50	44
fraktoni, 47, 50	Mottova vodljivost, 42
fraktonska dimenzija, 51	okomiti i fizikalni prostor, 16
Friedelove oscilacije, 93 fuleren C_{60} , 6, 58	Peierlsov prijelaz, 15 Penroseovo popločavanje, 31
gniježđenje Fermijeva plohe, 11	približenje vremena relaksacije, 19,
grafit, 57	22, 55

quasiumklapp raspršenje, 46, 106 raspršenje elektrona tipa Kondo, 44 samosličnost Fibonaccijev lanac, 30 ikozaedarski kvazikristali, 33 tetramerizacija, 25 toplinska vodljivost apsolutna metoda mjerenja, 63 poredbena metoda mjerenja, 62transportne jednadžbe, 19 tunelirajuća stanja, 52 Umklapp procesi, 24 val gustoće naboja, 15 efektivna masa, 17 Wiedemann-Franzov zakon, 21, 82, 99, 125 zlatni rez, 28, 31