
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Josip Babić

MODEL-BASED APPROACH TO
REAL-TIME EMBEDDED CONTROL

SYSTEMS DEVELOPMENT WITH
LEGACY COMPONENTS INTEGRATION

DOCTORAL THESIS

Zagreb, 2014

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Josip Babić

MODEL-BASED APPROACH TO
REAL-TIME EMBEDDED CONTROL

SYSTEMS DEVELOPMENT WITH
LEGACY COMPONENTS INTEGRATION

DOCTORAL THESIS

Supervisors:

Professor Ivan Petrović, PhD
Siniša Marijan, PhD

Zagreb, 2014

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Josip Babić

MODELSKI PRISTUP RAZVOJU
UGRADBENIH RAČUNALNIH SUSTAVA
UPRAVLJANJA ZA RAD U STVARNOM

VREMENU UZ INTEGRACIJU
NASLIJEÐENIH KOMPONENATA

DOKTORSKA DISERTACIJA

Mentori:

Prof. dr. sc. Ivan Petrović
Dr. sc. Siniša Marijan

Zagreb, 2014.

This doctoral thesis has been completed at the Department of Control and Computer
Engineering, Faculty of Electrical Engineering and Computing, University of Zagreb,
and at KONČAR Electrical Engineering Institute, Zagreb

Supervisor: Professor Ivan Petrović, PhD, and Siniša Marijan, PhD

The thesis has 175 pages.

Dissertation No.

To my family.

ACKNOWLEDGEMENTS iv

Acknowledgements

First of all, I would like to thank my two mentors. Professor Ivan Petrović has been with

me since fourth year of my graduate study and has motivated and guided me in my scientific

endeavours since. Siniša Marijan has mentored me during the first year of my employment

at KONČAR – Electrical Engineering Institute and has continued to guide my professional de-

velopment as head of Embedded Systems Department. His appointment as Member, and

currently President, of the Managing Board of KONČAR – Electrical Engineering Institute was

a great loss to the whole department, but I was lucky to still have him as my second mentor

during doctoral studies.

I would like to thank all my colleagues at KONČAR – Electrical Engineering Institute for

sharing their knowledge and experience and for making everyday professional challenges a

pleasure. Special thanks goes to Mario Bilić who was my unofficial professional mentor, along-

side Siniša Marijan. Besides teaching me a great deal, some of Mario’s ideas have been directly

implemented in this dissertation.

Most of all, I would like to thank my dear parents for all they have done for me. They

taught me the value of hard work and discipline without which this dissertation would never be

completed.

FIRST MENTOR v

First Mentor

Ivan Petrović was born in Klobuk, Bosnia and Herzegovina in 1961. He received B.Sc.,

M.Sc. and Ph.D. degrees in electrical engineering from the University of Zagreb, Faculty of

Electrical Engineering and Computing (FER), Zagreb, Croatia, in 1983, 1989 and 1998, re-

spectively.

For the first ten years after graduation he was with the Institute of Electrical Engineering

of Končar Corporation in Zagreb, where he had been working as a research and development

engineer for control and automation systems of electrical drives and industrial plants. From

1994 he has been working at the Department of Control and Computer Engineering at FER. In

November 2009 he was promoted to Full Professor. He has actively participated as a collabo-

rator or principal investigator on 30 national and 15 international scientific projects. Currently,

he coordinates EU FP7 project "Centre of Research Excellence for Advanced Cooperative Sys-

tems" (ACROSS). He published 40 papers in scientific journals and more than 150 papers in

proceedings of international conferences in the area of control engineering and automation ap-

plied to control mobile robots and vehicles, power systems, electromechanical systems and

other technical systems.

Prof. Petrović is a member of IEEE, Croatian Academy of Engineering (HATZ), presi-

dent of the Croatian Robotics Society, vice-president of the Technical committee on Robotics

of the International Federation of Automatic Control (IFAC), executive committee member of

the Federation of International Robot-soccer Association (FIRA), and a founding member of

the iSpace Laboratory Network. He is also a member of the Croatian Society for Communica-

tions, Computing, Electronics, Measurements and Control (KoREMA) and Editor-in-Chief of the

Automatika journal. He received the award "Professor Vratislav Bedjanič" in Ljubljana for out-

standing M.Sc. thesis in 1990 and silver medal "Josip Lončar" from FER for outstanding Ph.D.

thesis in 1998. For scientific achievements he received the award "Rikard Podhorsky" from the

Croatian Academy of Engineering, "National Science Award of the Republic of Croatia" and the

gold plaque "Josip Lončar" from FER in 2008, 2011 and 2013, respectively.

Ivan Petrović rod̄en je u Klobuku, Bosna i Hercegovina, 1961. godine. Diplomirao je,

magistrirao i doktorirao u polju elektrotehnike na Sveučilištu u Zagrebu Fakultetu elektrotehnike

i računarstva (FER), 1983., 1989. odnosno 1998. godine.

Prvih deset godina po završetku studija radio je na poslovima istraživanja i razvoja sustava

upravljanja i automatizacije elektromotornih pogona i industrijskih postrojenja u Končar - Insti-

tutu za elektrotehniku. Od svibnja 1994. radi u Zavodu za automatiku i računalno inženjerstvo

FER-a. U studenom 2009. godine izabran je u zvanje redovitog profesora. Sudjelovao je kao

suradnik ili voditelj na 30 nacionalnih i 15 med̄unarodnih znanstvenih projekata. Trenutačno je

koordinator EU FP7 projekta "Centre of Research Excellence for Advanced Cooperative Sys-

tems" (ACROSS). Objavio je 40 znanstvenih radova u časopisima i više od 150 znanstvenih

radova u zbornicima skupova u području automatskog upravljanja i estimacije s primjenom u

upravljanju mobilnim robotima i vozilima te energetskim, elektromehaničkim i drugim tehničkim

sustavima.

Prof. Petrović član je stručne udruge IEEE, Akademije tehničkih znanosti Hrvatske (HATZ),

predsjednik Hrvatskog društva za robotiku, dopredsjednik tehničkog odbora za robotiku med̄u-

narodne udruge IFAC, član izvršnog odbora med̄unarodne udruge FIRA te suutemeljitelj med̄u-

narodne udruge "The iSpace Laboratory Network". Član je i upravnog odbora Hrvatskog

društva za komunikacije, računarstvo, elektroniku, mjerenja i automatiku (KoREMA) i glavni

i odgovorni urednik časopisa Automatika. Godine 1990. primio je u Ljubljani nagradu "Prof.

dr. Vratislav Bedjanič" za posebno istaknuti magistarski rad, 1998. srebrnu plaketu "Josip

Lončar" FER-a za posebno istaknutu doktorsku disertaciju, a za znanstvena je postignuća do-

bio 2008. godine nagradu "Rikard Podhorsky" Akademije tehničkih znanosti Hrvatske, 2011.

godine "Državnu nagradu za znanost" i 2013. godine zlatnu plaketu "Josip Lončar" FER-a.

vi

SECOND MENTOR vii

Second Mentor

Siniša Marijan was born in Kutina, Croatia in 1960. He received B.Sc. and Ph.D. degrees

in electrical engineering from the University of Zagreb, Faculty of Electrical Engineering and

Computing (FER), Zagreb, Croatia in 1985 and 2011, respectively.

Since 1984 he has been working at KONČAR – Electrical Engineering Institute, firstly on

R&D activities of microprocessor based control systems for electrical drives and development

of software for real-time embedded control systems, than as a project leader and Head of the

Section for Embedded Systems responsible for complex projects. For more than 20 years he

has been responsible for the development of SW and HW components of power converters and

control systems applied in power generation units and rail vehicles. Developed solutions have

been successfully applied in hydro and thermal power plants, locomotives, coaches, trams,

trains and wind turbines. In 2011 he became a Member of the Managing Board, while nowadays

he is the President of the Managing Board of KONČAR – Electrical Engineering Institute. In

2012 he was assigned research associate. He actively participated in the implementation of

four research projects funded by state funds and is the author or coauthor of forty scientific

papers and articles, and hundreds of internal surveys, studies, and reports.

Dr. Marijan has received several national and international awards for developed products,

e.g. ARCA, INOVA, INVENTIKA, EUREKA and award of the Croatian chamber of economy for

the best innovation.

Siniša Marijan rod̄en je u Kutini 1960. godine. Diplomirao je i doktorirao u polju elek-

trotehnike na Fakultetu elektrotehnike i računarstva (FER) Sveučilišta u Zagrebu, 1985. odnosno

2011. godine.

Od 1984. godine radi u KONČAR – Institutu za elektrotehniku d.d., najprije kao istraživač-

suradnik na sustavima mikroprocesorskog upravljanja elektromotornim pogonima te razvoju

softvera za rad u stvarnom vremenu, a potom kao voditelj složenih projekata i rukovoditelj

Odjela za ugradbene računalne sustave. Dvadesetak godina bio je odgovoran za razvoj pro-

gramskih i sklopovskih komponenata ugradbenih računalnih sustava koje se koriste u ener-

getskim pretvaračima i sustavima upravljanja u elektroenergetici i tračničkim vozilima. Razvi-

jena rješenja uspješno su primijenjena u hidroelektranama, termoelektranama, lokomotivama,

vagonima, tramvajima, vlakovima i vjetroagregatima. U 2011. postao je član Uprave, a 2014.

predsjednik Uprave KONČAR – Instituta za elektrotehniku. Godine 2012. izabran je u zvanje

znanstvenog suradnika. Aktivno je sudjelovao u realizaciji četiri znanstvena projekta finan-

ciranih iz državnih fondova. Autor je ili koautor četrdesetak znanstvenih i stručnih radova te

stotinjak internih elaborata, studija i izvještaja.

Dr. Marijan dobitnik je više priznanja za inovacije na izložbama "INOVA", "EUREKA",

"ARCA", "INVENTIKA" te nagrade "Zlatna Kuna" koju dodjeljuje Hrvatska gospodarska komora.

ABSTRACT viii

Abstract

Embedded control systems software is continually gaining importance, it is becoming more

complex and it often must comply with very rigid requirements. At the same time, legacy soft-

ware components proven in practice are preferred in safety critical embedded control systems.

Model-based development has emerged as an approach that can tackle the complexities of em-

bedded control systems, but its’ application can be hindered by established development pro-

cedures based on legacy components. Real-time properties validation in the context of model-

based development is not well researched so this can also protract introduction of model-based

techniques. This thesis proposes methods to facilitate transition from legacy development prac-

tices into modern model-based embedded control systems development. This goal is achieved

by transferring knowledge and confidence condensed in legacy software components across

the gap and by validating real-time properties of the embedded software.

Legacy software components are integrated into model-based development toolchain in

a systematical and structured way. It has been shown that this approach provides flexibility

in managing components and facilitates their reuse, that it provides highly customizable auto-

mated code generation, and that it enables linking of newly generated code with legacy object

files.

Novel methods for real-time properties validation have been proposed that supplement ex-

isting functional model-based testing approaches. Software component real-time testing based

on configuration space partitioning and on real-time testing pattern has been elaborated. The

method itself has been thoroughly validated to establish confidence in the testing results which

have shown to be consistent and reliable. All steps in the process can be (i) fully automated, (ii)

partially automated with fine tuning of particular aspects, or (iii) performed completely manually.

This enables full control of the tests on the one side and effortless regression testing of large

number of components on the other side.

Real-time properties of complex control software structures can be validated by novel real-

time integration testing method derived from the proposed component testing approach. Here,

the model of the system under test is incorporated in the real-time testing pattern adapted

for control algorithm testing. The executable code, generated from such model and executed

on the target, provides validation of real-time properties either in an open-loop or in a closed

control loop with model of the environment executed in real-time alongside the tested algorithm.

It has been shown that this method represents a natural extension of the conventional functional

processor-in-the-loop testing.

All the proposed methods have been validated in three case studies which describe two

real-life embedded control system development projects.

Key words: legacy software components, real-time embedded control systems, model-

based development, model-based testing.

SAŽETAK ix

Sažetak

Modelski pristup razvoju ugradbenih računalnih sustava upravljanja za rad u stvarnom

vremenu uz integraciju naslijed̄enih komponenata

Programska podrška ugradbenih računalnih sustava upravljanja postaje njihov sve važniji

dio, sve je složenija i nameću joj se sve teži zahtjevi. Istovremeno, kod sigurnosno kritičnih

ugradbenih sustava upravljanja prednost se daje korištenju naslijed̄enih programskih kompo-

nenata čija je kvaliteta i pouzdanost potvrd̄ena dugotrajnom eksploatacijom. Modelski razvoj

programske podrške prikladan je za kompleksne ugradbene sustave, ali njegova primjena može

biti otežana u okruženjima s uhodanim razvojnim postupcima zasnovanim na naslijed̄enim kom-

ponentama. Vrednovanje vremenskih ograničenja u okviru modelskog razvoja nije dovoljno is-

traženo pa i to može biti kočnica njegove implementacije. U radu su predložene metode koje

olakšavaju prijelaz s naslijed̄enih razvojnih postupaka na moderan razvoj ugradbenih sustava

upravljanja zasnovan na modelu.

Naslijed̄ene programske komponente sistematski i strukturirano su integrirane u MATLAB/

Simulink skup programskih alata za modelski razvoj. U okviru istraživanja, izrad̄eno je GRAPlab

proširenje ovog modelskog okruženje koje se sastoji od skupa Simulink komponenata i od pro-

gramskih alata za automatsko generiranje programskog koda. GRAPlab komponente sastoje

se od Simulink maskiranog atomskog podsustava, datoteke koja definira med̄uovisnosti param-

etara i inicijalizacijske funkcije. Maskirani atomski podsustavi su Simulink modeli izrad̄eni od

izvornih Simulink komponenata te skriveni iza grafičkog simbola i dijaloga za parametriranje.

Kod promjene parametara GRAPlab bloka, njegova inicijalizacijska funkcija na temelju defini-

ranih med̄uovisnosti parametara modificira sadržaj modela te prilagod̄uje izgled grafičkog sim-

bola i dijaloga za parametriranje. Svakoj GRAPlab komponenti pridružena je datoteka koja

definira njezino mapiranje prilikom generiranja programskog koda za ciljni ugradbeni računalni

sustav. Na ovaj način, omogućeno je generiranje ciljnog programskog koda iz GRAPlab modela

korištenjem naslijed̄enih programskih komponenata. U radu je pokazano kako GRAPlab pristup

omogućuje fleksibilno upravljanje komponentama, olakšava njihovo ponovno korištenje, pruža

prilagodljivo automatizirano generiranje programskog koda i omogućuje povezivanje novogener-

iranog koda s naslijed̄enim objektnim datotekama.

Nove metode vrednovanja vremenskih svojstava predložene su kao nadopuna postojećim

pristupima funkcionalnom modelskom vrednovanju. Vrednovanje vremenskih svojstava pro-

gramskih komponenata zasnovano je na particioniranju njihova konfiguracijskog prostora i na

predlošku za vremensko vrednovanje. Particioniranje konfiguracijskog prostora komponenata

provodi se pomoću metode klasifikacijskih stabala. Komponente na razini modelskog okruženja

razlažu se na inačice, koje predstavljaju komponente na razini ciljnog sustava, a inačice se ra-

zlažu na konfiguracije, odnosno različite načine parametriranja inačice. Za svaku konfiguraciju

inačice komponente, automatski se generira model korištenjem predloška za vrednovanje vre-

menskih svojstava. Predložak postavlja vrednovanu konfiguraciju na programsku zadaću nižeg

prioriteta zajedno s generatorom promjenjivog procesorskog opterećenja, dok se sve moguće

konfiguracije dane inačice smještaju na programsku zadaću višeg prioriteta zajedno s nad-

zorom brzine odziva na prekide. Generiranjem programskog koda iz modela za vrednovanje

i njegovim izvod̄enjem na ciljnom sustavu, mjere se vremena izvod̄enja i kašnjenje odziva na

prekide te se nadzire funkcionalno ponašanje konfiguracije. Predloškom je osigurano preki-

danje vrednovane konfiguracije u svakoj mogućoj točki njena izvod̄enja pa se tako tijekom

vrednovanja provjerava „otpornost na prekide“. Sama metoda iscrpno je provjerena kako bi

se steklo pouzdanje u njezine rezultate koji su se pokazali dosljednim i pouzdanim. Proces

vrednovanja može biti (i) potpuno automatiziran, (ii) djelomično automatiziran uz podešavanje

pojedinih aspekata ili (iii) proveden u potpunosti ručno. Time su istovremeno omogućeni pot-

puna kontrola nad procesom i jednostavno regresijsko vrednovanje velikog broja komponenata.

Cijeli postupak vrednovanja iscrpno je dokumentiran automatskim postupkom generiranja izv-

ještaja zasnovanim na LATEXpredlošcima.

U radu je predloženo ublažavanje kompleksnosti vrednovanja složenih programskih struk-

tura upravljanja razlaganjem vrednovanja u tri koraka. U prvom koraku provodi se vrednovanje

u otvorenoj petlji. Ovaj korak može se dalje razložiti u dvije faze: u prvoj fazi vrednuje se

funkcionalno ponašanje algoritma dok se u drugoj fazi vrednovani algoritam ugrad̄uje u pred-

ložak za vrednovanje vremenskih svojstava. Radi se o predlošku za vrednovanje vremenskih

svojstava sličnom predlošku za vrednovanje programskih komponenata, ali prilagod̄enom vred-

novanju upravljačkih algoritama. Drugi korak sastoji se od funkcionalnog vrednovanja kod ko-

jega se programski kod vrednovanog sustava generiran iz modela izvodi na ciljnom sustavu

u zatvorenoj upravljačkoj petlji s modelom okoline, odnosno procesa, izvod̄enom unutar sim-

ulacijskog okruženja na osobnom računalu. Vrednovanje vremenskih svojstava upravljačkog

algoritma u zatvorenoj upravljačkoj petlji podržano je trećim korakom metode. Ovdje se model

procesa prilagod̄uje za generiranje ciljnog programskog koda koji se potom izvodi na ciljnom

sustavu. Na ovaj način omogućeno je zatvaranje upravljačke petlje na ciljnom sustavu i njezino

izvod̄enje u stvarnom vremenu. Glavna ograničenja posljednje faze odnose se na kompro-

mise koje je potrebno napraviti kako bi se model procesa prilagodio za generiranje ciljnog

programskog koda te na ograničenja resursa ciljnog sustava koji mora moći paralelno izvoditi

programski kod modela okoline i programski kod vrednovanog upravljačkog algoritma.

Sve predložene metode vrednovane su kroz tri studije slučaja koje opisuju dva projekta

razvoja stvarnih ugradbenih sustava upravljanja. Metoda vrednovanja programskih kompone-

nata provjerena je nizom eksperimenata nad naslijed̄enim programskim komponentama nami-

jenjenim kontroleru za digitalnu obradu signala TMS320F28335 tvrtke Texas Instruments. Ova

je metoda primijenjena tijekom razvoja sigurnosne platforme za upravljanje pružnim prijelaz-

ima na vrednovanje programskih komponenata za C8051F580 mikrokontroler tvrtke Silicon

Laboratories. Sigurnosna platforma mora zadovoljiti vrlo stroge SIL (engl. Safety Integrity

Level)zahtjeve razine 4, a primjenom predložene metode vrednovanja komponenata značajno

je pojednostavljen postupak certifikacije. Metoda vrednovanja upravljačkih algoritama primi-

jenjena je na vrednovanje algoritma za praćenje točke maksimalne snage tijekom razvoja cen-

tralnog pretvarača za fotonaponske elektrane.

Ključne riječi: naslijed̄ene programske komponente, ugradbeni računalni upravljački sus-

tavi za rad u stvarnom vremenu, modelski razvoj, modelsko vrednovanje.

x

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Application Domain . 2
1.1.2 Integrated development environment . 3
1.1.3 GRAP code generation . 4
1.1.4 Legacy Component Reuse . 5
1.1.5 Application Development Process . 6

1.2 Motivation and Research Gaps . 7
1.2.1 Motivation: Advantages and Drawbacks of the Existing Process 7
1.2.2 Gap 1: Legacy Components and Model-Based Development 9
1.2.3 Gap 2: Model-Based Real-Time Testing 10

1.3 Contributions and Outline . 10
1.3.1 Contributions . 10
1.3.2 Outline of the Thesis . 12

2 Fundamentals 14
2.1 Embedded Systems . 14

2.1.1 Market . 15
2.1.2 Non-functional Requirements . 16
2.1.3 Processing Resources . 19

2.2 Legacy Software Components . 20
2.2.1 Component-Based Software Engineering 21
2.2.2 Proprietary Legacy Components . 22

2.3 Model-Based Development . 24
2.3.1 Requirements . 25
2.3.2 Modeling . 26
2.3.3 Model Transformations . 27
2.3.4 Automated Code Generation . 27
2.3.5 Testing . 28

2.4 Test Patterns . 29

3 Model-Based Testing 30
3.1 Model-Based Embedded Systems Testing Taxonomy 30

3.1.1 Model . 30
3.1.2 Test generation . 32
3.1.3 Test execution . 35
3.1.4 Test evaluation . 36

3.2 Investigated model based testing Approaches 37
3.2.1 EmbeddedValidator . 37
3.2.2 Classification Tree Method-based approaches 37

xi

3.2.3 Reactis Validation Tool . 38
3.2.4 Simulink Verification and Validation . 38
3.2.5 Simulink Design Verifier . 38
3.2.6 SystemTest . 39
3.2.7 Time Partitioning Test . 39
3.2.8 MEval . 39
3.2.9 Model-in-the-Loop for Embedded System Test 39
3.2.10 Code Generation Tools Testing . 40
3.2.11 Virtual Test Bed – Real Time extension 40
3.2.12 Sequence-based specification . 40
3.2.13 VETESS approach . 40
3.2.14 MOS . 41
3.2.15 Hybrid systems Test Generation . 41
3.2.16 ETAS RT2 . 41
3.2.17 Safety Critical Application Development Environment Suite 42

3.3 Filling the gap . 42
3.3.1 The Gap . 42
3.3.2 The Filling . 51

4 Model Based Development with Legacy Components Integration 52
4.1 The blockset . 53
4.2 The model . 58
4.3 The code . 60

4.3.1 Simulink to GRAP conversion . 60
4.3.2 Block to component mapping . 61
4.3.3 Code generation customization . 62
4.3.4 Mixing Simulink and GRaphical Application Programming tool (GRAP) . 63

5 Component Real-Time Testing 65
5.1 Classification Tree Method . 66
5.2 Variants and Configurations . 68

5.2.1 Automatic Partitioning of the Configuration Space 69
5.3 Test Vectors . 71
5.4 Test Model . 74

5.4.1 The Pattern . 74
5.4.2 Instantiation . 76

5.5 Test Code . 79
5.5.1 Execution time measurement . 79
5.5.2 The Test Run . 81

5.6 Verdict and Documentation . 84
5.6.1 Test Verdict . 84
5.6.2 Test Report . 85

5.7 Infrastructure . 86
5.7.1 Classification Tree Editor and Automation 86
5.7.2 Serial Communication . 87

6 Algorithm Real-Time Testing 88
6.1 Open-Loop Integration Testing . 91
6.2 Closed-Loop Step-by-Step Integration Testing 92
6.3 Closed-Loop Real-Time Testing . 93

xii

7 Case Study: Digital Signal Controller Component Testing 96
7.1 Digital Signal Controller . 96

7.1.1 The Controller . 96
7.1.2 Applications . 97
7.1.3 Experimental Target . 99

7.2 Real-Time Test Pattern Validation . 100
7.2.1 Execution Time Measurement . 100
7.2.2 Variable Load . 102
7.2.3 Interrupt Coverage . 103
7.2.4 Interrupt Delay Detection . 105
7.2.5 Interrupt Vulnerability . 107

7.3 LogicalOperator Component . 108
7.3.1 Variants and Configurations . 109
7.3.2 Vectors . 110
7.3.3 Models . 112
7.3.4 Executable code and test results . 113

8 Case Study: Safety Platform Component Testing 116
8.1 Safety Platform . 117

8.1.1 Safety Platform Hardware . 117
8.1.2 Safety Platform System Software . 118
8.1.3 Safety Integrity Level . 118

8.2 Component Testing for Safety Platform . 119
8.2.1 Real-Time Properties . 119
8.2.2 Variants and Configurations . 120
8.2.3 Vectors . 122
8.2.4 Models . 128
8.2.5 Multiple Runs . 129
8.2.6 Testing Results . 132

9 Case Study: Photovoltaic Maximum Power Point Tracking Algorithm Testing 136
9.1 Photovoltaic panels and maximum power point tracking model 136
9.2 Open-loop test . 139
9.3 Closed-loop test with simulated environment . 144
9.4 Real-time closed-loop test . 145

10 Summary, Conclusion, and Outlook 149
10.1 Summary . 149
10.2 Conclusion . 151
10.3 Outlook . 153

Acronyms 155

List of Figures 159

List of Tables 160

Bibliography 161

Curriculum Vitae 173

Životopis 174

xiii

Publications 175

xiv

Chapter 1

Introduction

Embedded systems are being used in an ever growing number of applications, from simplest

toys to highly complex industrial, military and space systems. In [1], it is estimated that embed-

ded processors account for more than 98% of all produced processors. Along with faster and

more complex hardware, embedded software is gaining importance and makes up to 85% of

the value of the entire embedded system, [2]. For example, the development of electronics in

high end vehicles accounts for 40% of the total development cost and these systems contain

more than 70 electronic control units (ECUs) and 2500 signals, [3]. Under market pressure

the software must be produced quickly and as bug-free as possible. Driven by these two op-

posing requests, Model Based Development (MBD), or Model Driven Development (MDD), has

emerged as the design approach of choice. As stated in [4], MBD is not just application of

graphical domain-specific languages, i.e. "programming by drawing". A good definition of MBD

is given in [5], and a part of it is reproduced in the following:

"In model-based development, the model is the central artifact and is used and system-

atically refined through the entire development process which is literally based on or centered

around it."

Projects involving embedded systems are usually multidisciplinary, involving software, hard-

ware and mechanical components, so model can act as a means of communication between

different stakeholders. Also, model can be an instrument for separating responsibilities be-

tween domain experts. Model abstraction levels can isolate basic algorithms from implementa-

tion details such as fixed-point scaling or low-level drivers. It has been reported that usage of a

graphical modeling language increases productivity by four to ten times, [2].

At the same time, a strong affinity for legacy software components exists in industry, ac-

companied by mistrust for new development processes. This is especially true in traditionally

conservative industries that deal with safety critical applications. Legacy software components

are attractive because of the effort already invested in their development and testing and be-

cause they have acquired a high level of confidence through prolonged exploitation, [6]. It is

generally accepted that value and reliability of a software component are increased with number

of its’ applications, [7]. Legacy components can prove to be more efficient and more adequate

for real-time applications than code automatically generated by modern MBD tools, [8].

When considering MBD of embedded applications it is necessary to take into account var-

ious specific characteristics of these systems. They are usually reactive, meaning that they

1. INTRODUCTION 2

interact either with their environment or some larger system, and can contain continuous and/

or discrete subsystems, [5]. Embedded systems control and/or monitor a specific device or

function, they are self-starting and self-contained. If, besides functional requirements, the cor-

rectness of embedded system operation depends on its timeliness, they are said to have (soft

or hard) real-time constraints, [9]. Many industrial embedded systems, to which results of this

work are intended to be applied, fall into the hard real-time category with severe timing con-

straints.

This thesis tackles the development of real-time embedded software on two fronts. Firstly,

an approach is presented that systematically integrates legacy software components into MBD

workflow providing thus benefits of both approaches, a synergy between high reliability and

modern development practices. Secondly, a set of model-based testing methods are employed

to validate real-time properties of embedded software. Complex applications are usually built

by combining simpler components so testing is performed on two levels. On the unit testing

level, individual components are tested by applying test patterns and by using watchdogs and

data partitioning techniques. On the integration testing level, control algorithms are validated in

open- and in closed-loop tests with the environment simulated on the PC or on the embedded

target.

1.1 Background

The research presented in this theses has been conducted during author’s employment at

KONČAR - Electrical Engineering Institute Inc. (KEEI) and in a real-life industrial environment

that dictated its’ direction and scope.

1.1.1 Application Domain

This thesis represents a follow up to [7], so its’ results are intended to be applied to the same

category of embedded control systems. These are low-volume safety critical hard real-time

embedded control systems that should have long lifetime. A short explanation of these terms

is given in the remainder of this subsection, while more details are presented in section 2.1.

Although embedded systems market is dominated by mass produced consumer products,

there also exist market niches with specific low-volume embedded systems. For example,

such systems can be found in military, avionic, medical, railway and other specific applica-

tions. Embedded systems considered in this thesis, specifically embedded systems found in

railway and power systems, fall under this category. These systems usually support various

control, protection, sequential, communication and diagnostic functions, but also must fulfil cer-

tain non-functional requirements such as extended temperature range, immunity to shocks and

vibrations or certain level of electromagnetic compatibility. Applications tailored to the specific

customer’s needs impose platform approach because developing each product from scratch

would be prohibitively expensive. Users of customized products are never completely satisfied

and often introduce new requirements on the system. In case of embedded control systems,

this in most cases leads to application program changes. For example, application program for

1. INTRODUCTION 3

proprietary vehicle control unit in tram had 39 revisions and application program for proprietary

traction control unit, also in tram, evolved to 22nd revision.

Temporal constraints represent non-functional requirements that impact software devel-

opment the most. Safety critical hard real-time embedded systems are those that must meet

their deadlines with no exceptions or otherwise system failure with possibly catastrophic con-

sequences can occur.

Embedded control systems considered in this work should have long life cycle, up to sev-

eral decades. Such systems are often called sustainment-dominated, in terms of technological

(as opposed to environmental and business) sustainment that refers to activities necessary to:

• keep the system operational;

• continue to manufacture and field versions of the system that satisfy the original require-

ments;

• manufacture and field revised versions of the system that satisfy evolving requirements.

In [7], it has been shown that risk of embedded systems obsolescence can be minimized by

developing them using modular hardware and software components that belong to proprietary

product platform. In the same work, product platform is defined as:

"Product platform represents the collection of different assets (components) with well-

defined interfaces what makes a solid basis for the development and production of similar

products called product variants or members of the product family. Therefore, product family is

based on common platform, but product variant has specific features according to the market

or customer demands."

1.1.2 Integrated development environment

Legacy software development process considered in this thesis is based on a proprietary de-

velopment environment consisting of: GRaphical Application Programming tool (GRAP), micro-

controller specific project structure and proprietary Real-Time Operating System (RTOS), and

PC-based service and debugging application. The graphical environment is used for the devel-

opment of application programs (APs) that are to be executed on hard real-time systems and

it supports several different architectures of microprocessors, microcontrollers and signal pro-

cessors, [10, 11, 12]. Since recently, GRAP and proprietary service tool have been merged into

a single application so they represent a truly integrated development environment (IDE). The

in-house policy is to have full control over system software and application IDE so all elements

of the development environment are proprietary solutions. Software architecture is depicted in

Fig. 1.1. It consists of system software, development environment and control program. IDE

comprises software component databases, graphical tools and development framework. The

control program represents union of application program and system software, [7].

1. INTRODUCTION 4

Figure 1.1: Software architecture

GRAP is used for constructing and editing APs and also for invoking compilation and linking

tools. AP developed in GRAP consists of graphical program modules, so there is no need

for textual coding. Modules are built by interconnecting programming elements represented

by graphical symbols, similar to block diagrams. On a code level, each element is a macro

program, hand-written in assembly language, carefully optimized and thoroughly tested. Macro

library, as well as compilation and linking tools for the given hardware module (HWM), are

included in a project structure. This is a folder structure that, besides library directory, contains

folders with modules and application files. Successfully built AP is loaded onto the target, on

which RTOS is running, via proprietary service and diagnostics software tool.

RTOSes used in proprietary embedded control systems consist of scheduler and diagnos-

tic tools. Rate monotonic fixed priority scheduling is used, which means that task dispatcher

schedules tasks during run-time according to priorities that have been defined in advance in

such a way that tasks with shorter periods have higher priorities. Furthermore, task periods are

in most cases harmonic, i.e. each task period is an exact integer multiple of the next shorter

period. This ensures schedulability of up to 100% of processor load. However, the usage of

all available processing resources is discouraged as this prevents changes that are regularly

necessary during testing, commissioning, and during product life cycle, [7].

1.1.3 GRAP code generation

Figure 1.2: GRAP code generation

1. INTRODUCTION 5

Generation of executable code from graphical application program using GRAP is illustrated

in Fig. 1.2. Firstly, the graphical application program is built using programming element sym-

bols from a graphical library. Application can be divided into an arbitrary number of program

modules, which can then be reused. Each module has its own .mdl file, accidentally the same

extension as for Simulink model files, but these two file types are not compatible.

Next, GRAP creates .src source files from graphical program modules. For every pro-

gramming element in a module, a macro call with all the necessary arguments is placed in the

source file. In the compilation step, these macro calls are expanded using macro library which

results in a complete assembly listing of each module. By executing assembler on these files,

Common Object File Format (COFF) files are generated that can be linked into executable .hex

files.

This is an example of executable code generation for C2000 family of digital signal con-

trollers (DSCs) from Texas Instruments (TI), but the code generation process is same or very

similar for all the supported microprocessors, microcontrollers and signal processors.

1.1.4 Legacy Component Reuse

Figure 1.3: Legacy component inheritance

1. INTRODUCTION 6

When developing new HWMs, based on already used or newly introduced microcontroller

(MCU), existing atomic software components are inherited form previous projects whenever

possible. In Fig. 1.3 a string of HWMs based on Texas Instruments’ C2000 family of DSCs

is shown together with short note about their application. A large number of atomic legacy

components is inherited among these projects, e.g. a component for scaled summation of four

signals and a component for filtration of logical signal shown in Fig. 1.4.

Figure 1.4: Inherited atomic components

1.1.5 Application Development Process

Application, as considered in this work, consists of one or more APs, each executed on a

separate MCU/DSC based HWM, that together perform some functionality. The development

of an application can be observed in several phases. Firstly, the project leader (PL) divides the

functionality of the application between HWMs, defines interfaces between them and assigns

the development of each application program to one application engineer (AE). AE divides his

AP into functional modules (FMs), defines their interfaces and distributes their development to

module developer (MD). Individual FM can’t usually be thoroughly tested on their own so, after

more or less partial testing by test engineers (TEs), they are handed to the responsible AE for

integration into AP. When AP is successfully integrated, i.e. all FM are compiled and linked,

limited amount of testing by TEs is performed on laboratory equipment. In order to fully test

APs, they need to be integrated into final application by PL and run on the target hardware.

Depending on the complexity of the project, PL can play the role of AE, i.e. be responsible

for one or more APs, and AE can play the role of MD, i.e. he can develop some or all modules

of the AP he is responsible for. All through the development, PL, AEs and MDs are supported

by system engineers (SEs). Their responsibility is to maintain development environments of

individual HWMs and to develop new programming elements, if requested by AEs or MDs. The

described application development process is illustrated by Fig. 1.5, development roles are

depicted by light grey circles and software artifacts are represented by dark grey squares.

1. INTRODUCTION 7

Figure 1.5: Existing software development process

Parallel to the application development, hardware development process is conducted. Pro-

prietary hardware platform is a modular one, so existing modules are used where possible and

new modules are developed if necessary, [7]. Hardware development is not in the scope of this

thesis and will not be discussed further.

1.2 Motivation and Research Gaps

The motivation for the research stems from advantages and drawbacks of the existing control

systems development process applied at KEEI. There existed a need to alleviate its’ drawbacks

by modernizing it while maintaining the advantages at the same time. Investigation of the

available development methods and tools failed to provide suitable approach to achieve these

goals.

1.2.1 Motivation: Advantages and Drawbacks of the Existing Process

Two main advantages of the described existing AP development process are graphical pro-

gramming language and usage of legacy assembly macros as program building blocks. The

first trait brings higher level of abstraction, in comparison with textual programming languages,

which enables non-software engineers to implement their ideas in a target independent man-

ner. Modularity is accomplished through the division of AP into FMs. As applications are built

completely in graphical environment, without a single line of handwritten code, the very pro-

1. INTRODUCTION 8

gram can serve as the documentation. Every functionality and parameter is visible in the block

diagram scheme so that, when the AP is completed, it can simply be printed (in paper or PDF)

and supplemented with minimal additional documentation.

Usage of assembly macros for code generation brings low-level control of all processes

on the target, enables creation of highly optimized and thoroughly tested code chunks, [8] and

introduces another level of modularity. By creating own code generation scheme, substantial

knowledge is accumulated and kept in-house. System engineers with such knowledge have

shown to be invaluable when it comes to supporting application engineers during application

program development. Most of the macros have been inherited from previous projects where

they have been in exploitation for years or decades and have acquired large amounts of working

hours. This means that these components, besides knowledge and effort invested in them

during their development, also bring great confidence obtained through real-world usage into

each new project that inherits them.

The described existing application development process is flawed by two major drawbacks:

by the absence of strong link between requirements management and proprietary IDE and by

inability to perform complete functional tests of FMs before their integration into APs, and APs

before their deployment into final system. The requirements on software artifacts, starting from

individual programming elements up to full APs, are often informal or semi-formal, always in

prose and in a separate document that has no automatic link to the respective artifact. This

approach leads to misunderstandings that result in more development iterations than are nec-

essary. As requirements evolve during development, the requirements document is often not

updated and final design can significantly deviate from it. This can complicate product mainte-

nance.

Algorithmic parts of FMs can be independently tested by replaying prerecorded signals at

their inputs and recording and analyzing the results. The drawbacks of this kind of testing are:

• FM must be altered (input/output parts removed and signal playback added),

• closed control loops are broken,

• the tests must be performed on the target processor,

• testing process is unstructured so its’ quality depends on skill and motivation of the test

engineer,

• manual testing is time consuming and error prone.

Final system hardware configuration often isn’t completely available during the development so

testing is performed on available evaluation boards and laboratory hardware setups. These

resources are scarce and can replicate the final system only to a limited extent. All this sums to

the fact that complete and thorough software tests can be performed when most of the hardware

and software is available, late in the development process when bugs are most expensive to

correct.

If the development process was based on a model, than the model could serve as an

executable specification. It would naturally evolve during development and there would be no

1. INTRODUCTION 9

detachment of the design from the specification. Legacy software components would than

have to be used for automatic code generation from the model in order to preserve knowledge

invested in their development and confidence they have acquired during exploitation. Also,

model based testing (MBT) could be conducted in order to find and fix mistakes sooner in the

development. Real-time properties should be validated in the testing process.

1.2.2 Gap 1: Legacy Components and Model-Based Development

In the past, embedded systems were simpler and could often be replaced as a whole. This

is often no longer possible so current trend is to "refurbish" embedded systems in place with

updated software. This asks for in-depth knowledge of the embedded software maintenance, a

field that is in [13] identified as lacking research. Studies show that the maintenance of existing

software can often take up more than 60% of all the development efforts, [14]. In most cases,

the maintenance of legacy software systems implies reuse of at least some of its’ components.

It is also interesting to use well understood and proven legacy software in new projects, [6, 15].

Integration of legacy software component with code automatically generated by modern

MBD tools can be especially challenging. The integration asks for architectural compatibility of

newly generated and legacy code. Unfortunately, most of the current code generators assume

that the generated code is stand-alone so they don’t make explicit the architectural choices

made during code production and provide very limited support for affecting those choices. As

a result, generated and legacy code must often be refactored during integration or special

"glue" code must be developed, [16]. Requirements on automatically generated code from the

perspective of its’ integration with legacy hand code are given in [17]. The generated code

must:

• not mangle variable or function names,

• allow for user defined function partitioning and function prototypes,

• call legacy functions,

• use the same variable declarations as the hand code,

• use the same C base types as the hand code.

Although importance of integrating legacy software components in model-based develop-

ment of embedded control systems seems to be universally accepted, research on this topic,

as well as its’ support in commercial tools, is surprisingly scarce. If it is present, it exclusively

refers to integration of legacy C and C++ code as in examples of literature cited above or in

MATLAB’s Legacy Code Tool. The few works that consider legacy assembly code are focused

on its’ automatic translation into some higher language, [18], or on extraction of original system

requirements from the legacy assembly code in case of missing or faulty documentation, [14].

One solution to the "legacy assembly problem" could be to combine the two approaches:

firstly to translate the assembly into a higher language, such as C, and than to use some of

existing methods of integrating that code into MBD workflow. The loophole in this approach

is that initial confidence in tried-and-proven legacy code is very likely lost during the process,

defeating thus the purpose of the whole procedure.

1. INTRODUCTION 10

1.2.3 Gap 2: Model-Based Real-Time Testing

When considering applying MBT on embedded real-time industrial systems, as presented in

section 3, a number of shortcomings of present MBT methodologies arise:

• If state space explosion is to be avoided, formal methods must be applied only on high

levels of abstraction [19, 20] where real-time properties of the system under test (SUT)

are not modeled and cannot be verified.

• Some of the methods rely on automatically generated code in some high-level program-

ming language, e.g. C code, [9, 21] which limits their application.

• Most of the MBT methods applied in the automotive industry are only applicable to Model-

in-the-Loop (MiL) testing, [2, 22, 23, 24].

• Hardware-in-the-Loop (HiL) test approaches require expensive environment including real-

time simulation tools and complex input/output hardware, [25].

• MBT approaches that do tackle real-time properties are mostly designed for telecommu-

nications domain [26], and are not applicable to hybrid control systems.

• There exist real-time MBT procedures for automotive domain, but they are either based

on discrete use-case models, and again not applicable to hybrid control systems [27, 28]

or require two models, one for use case modeling and the other for modeling continuous

behaviour [29].

In short, real-time constraints validation of embedded control systems that contain both

continuous and discrete behaviours is not, to the authors knowledge, possible with current

MBD methodologies proposed by the academia nor with available commercial MBD tools.

1.3 Contributions and Outline

1.3.1 Contributions

The three major contributions of this thesis are:

• Model-based approach to embedded control systems development that enables system-

atic integration of legacy software components.

• Method for testing software components in real-time embedded control systems that

along with functional testing enables real-time constraints validation.

• Method for testing real-time constraints of complex software control structures in real-time

embedded control systems.

Automatic code generation scheme presented in this thesis, and the GRAP Laboratory

(GRAPlab) tool that implements it, systematically integrate legacy software components into

MBD workflow inside MATLAB/Simulink environment. The approach makes no assumptions as

1. INTRODUCTION 11

to programming language in which legacy software components are written so it could be some

higher language, as C and C++, or even assembly, as shown in case studies presented in the

thesis. Legacy software components are integrated into MBD toolchain without modifications

so that no new software errors are introduced and high level of confidence in produced real-time

code is preserved.

Proposed Model-Based Real-time Embedded System Testing (MoBREST) method’s sub-

set for testing software components MoBREST Component Testing (MoBREST-CT) is based

on component configuration space partitioning and on real-time testing pattern (RTTP). Config-

uration space of the tested component is partitioned so that each parametrized implementation

of the component presents one test case. Such component is than placed inside the RTTP to

produce test model. This model is used twofold: firstly, it is analyzed and simulated to produce

test vectors and test oracles and, secondly, executable test code is generated from it. Execution

traces obtained by executing the test application on the embedded target are compared with the

test oracle in order to validate component’s functional correctness. At the same time, real-time

constraints are checked: component’s execution time is measured and its’ behaviour with re-

spect to interrupts is monitored. The tool that implements this method allows for full automation

of the testing process. This can be very helpful when porting legacy development environment

to new member of microcontroller family, e.g. when migrating form Texas Instruments’ F2407 to

F28335 or when switching form Motorola’s 68000 to Freescale’s Coldfire. Automatic regression

testing of large number of components significantly reduces cost of such migrations.

Control algorithms can be considered as high-level software components and could as

such be tested according to the proposed component real-time testing method. However, com-

plete validation of complex software control structures often means that they need to be tested

in a closed feedback loop which includes controlled plant or its’ model. Considering real-time

constraints introduces another level of complexity into such testing. Real-time algorithm test-

ing method MoBREST Integration Testing (MoBREST-IT) presented in this thesis alleviates the

complexity by braking down the testing process into three steps: real-time testing in an open-

loop, non-real-time testing in a closed-loop, and closed loop real-time testing. Not all three

steps must be conducted, e.g. for some applications it could suffice to conduct thorough func-

tional testing on the model and validate timing constraints with open-loop real-time testing step

of the proposed method.

The three contributions are placed in traditional V-model of software development in Fig. 1.6.

GRAPlab automated code generation using legacy software components facilitates implemen-

tation of reliable embedded control systems while MoBREST-CT and MoBREST-IT methods

enable real-time testing of these systems on component and integration level, respectively.

1. INTRODUCTION 12

Figure 1.6: Contribution of the thesis in V-model

1.3.2 Outline of the Thesis

This chapter provides an introduction to the thesis. It outlines context in which the research

was conducted by describing its’ application domain and by introducing legacy tools and pro-

cesses upon which it builds. Next, motivation for the research and research gaps that it fills are

identified. The chapter ends by enumerating contributions of the thesis.

Chapter 2 lays foundations for the remainder of the thesis. First section deals with em-

bedded control system: it explains what they are, explores current market trends, and stresses

importance of processing resource management and of non-functional requirements they must

fulfil. Second section introduces concepts of Component-Based Software Engineering (CBSE)

and places proprietary legacy components in that context. Third section presents an overview

of works on model-based software development from requirements through modeling, model

transformations, and automated code generation to testing. The chapter ends with a short

section that defines patterns in general and software test patterns in particular.

Chapter 3 elaborates the topic on MBT, opened in chapter 2. Firstly, it introduces taxon-

omy of software testing from the literature and expands it with regard to real-time testing of

embedded control systems. Secondly, an overview of selected MBT approaches is presented

with placement of each approach inside the expanded taxonomy. Thirdly, a gap in inspected

MBT approaches is identified, the MoBREST method that fills it is shortly introduced and is also

placed inside the taxonomy.

Chapter 4 deals with first major contribution of the thesis: the systematic and structured in-

clusion of legacy software components into MBD toolchain. Legacy components are assembly

macros introduced in chapter 2 and MBD toolchain is selected to be based on MATLAB and Si-

mulink. This commercial off-the-shelve (COTS) MBD environment is expanded with a blockset

and a toolbox that enable automated code generation (ACG) with legacy software components

integration.

1. INTRODUCTION 13

Model-based real-time software component testing is the focus of chapter 5. It introduces

main concepts behind the MoBREST method such as Classification Tree Method, component

configuration space partitioning and real-time testing pattern. Automated test generation, exe-

cution, and documentation supported by the method are elaborated in this chapter.

Chapter 6 extends and adapts the MoBREST method for real-time integration testing of

control algorithms. Complexity of such testing is alleviated by breaking it down into three steps:

open-loop testing, closed-loop step-by-step testing and closed-loop real-time testing.

The first case study, described in chapter 7, deals with real-time testing of components for

a Texas Instruments’ digital signal microcontroller. The chapter starts by introducing the target

controller, describing its’ applications in proprietary control systems and experimental setup on

which the study was conducted. Next, the RTTP thorough validation is conducted to ensure

that all the real-time properties are indeed tested as intended. Finally, the testing process and

the produced artifacts are presented on example of software component that performs Boolean

operations.

Second case study presented in chapter 8 also deals with component testing, but here

components for a Silicon Laboratories’ microcontroller from 8051 series are tested. This micro-

controller is the backbone of Safety Platform, developed as a central part of railway crossings

(level crossing) control system. All its’ components must satisfy strict safety criteria, including

software components tested in scope of this case study. First part of the chapter introduces the

Safety Platform while the second part presents specific aspects of component testing for this

particular target system through illustrative examples. The chapter ends with an overview of

test results for all the Safety Platform’s tested software components.

Control algorithm real-time integration testing is showcased on the example of photovoltaic

maximum power point tracking (MPPT) algorithm in last case study of the thesis presented in

chapter 9. The chapter is structured in same way as the proposed testing method. Firstly,

real-time testing of the MPPT algorithm implementation is conducted in an open-loop on the

TI’ signal controller. Secondly, the MPPT algorithm running on the target system is included

in closed control loop with photovoltaic panels model simulated on a personal computer and

non-real-time functional testing is performed in a step-by-step manner. Thirdly, target code is

generated from the photovoltaic panels model and it is executed on the target system alongside

tested MPPT algorithm, allowing thus real-time properties validation in a closed control loop.

The thesis ends with a summary, conclusions and outlook for future work presented in

chapter 10.

Chapter 2

Fundamentals

In this chapter fundamentals of embedded systems, legacy software components, model-based

development, and test patterns are laid out. Firstly, definitions regarding embedded systems,

an overview of the embedded systems market, issues regarding processing resources and non-

functional requirements are provided. Section 2.2 introduces concept of CBSE and describes

legacy software components that are in the focus of research. In section 2.3 an overview of

MBD is given with regard to requirements management (REQM), modeling, model transforma-

tions, ACG, and testing. Section 2.4 provides introduction to test patterns.

2.1 Embedded Systems

Embedded systems are electronic programmable sub-systems that are generally an integral

part of a larger heterogeneous system. They differ from general purpose computers in that they

are required to run without maintenance, can be intended to work in a spontaneous ad-hoc net-

works with emphasis on machine-to-machine communication, have a higher emphasis on fault

tolerance and may have to compensate for failures, have stronger restrictions regarding the user

interface, can have strict timing constraints, are reactive and continuously respond to incoming

events and state changes, have restricted resources, and are often based on control theory.

Most embedded systems are used for surveying and controlling physical processes, [13].

Real-time embedded computer systems can be defined as the ones that have a deadline,

i.e. there is a time instant at which results of the computation should be available. According

to the way deadline issues are handled, real-time embedded systems can be divided into soft,

hard and firm real-time systems. Soft real-time systems can benefit from computation results

even if deadline is missed because their timeliness requirements are based on average re-

sponse time. For example, video conferencing system remains operational in case of timing

constraints violation, although with reduced quality. In hard real-time systems deadline viola-

tions are not acceptable as they might cause significant functionality degradation or system

failure. If timing constraints violations can cause catastrophic consequences with material and

human losses, hard real-time systems are said to be safety-critical. Examples of safety critical

hard real-time systems are control systems in car engines, railway crossings, process industry

and medical equipment such as heart pacemakers. Firm real-time systems represent a mixture

2. FUNDAMENTALS 15

of soft and hard real-time requirements. They allow for relaxation of timing constraints up to a

certain level or within a particular time-frame. There also exist control systems where non-real

time features are combined with real-time requirements of different levels of rigidity, [7].

Dynamical system which contains both discrete and continuous components is a hybrid

system, [30], and its behaviour can be described by differential and difference equations. At

the core of every embedded system usually there is a digital microcontroller, that represents

discrete component of the system, but most embedded systems also contain continuous com-

ponents. For example, analog units such as analog-to-digital and/or digital-to-analog converters

can be present in the same chip as the central processing unit (CPU). Outside the microcon-

troller, analog electronic circuitry represents embedded system’s interface to the physical envi-

ronment. This mix of digital and analog world in embedded systems is the reason why they are

often described and modelled as hybrid systems.

2.1.1 Market

According to [31], embedded systems account for about 98% of all computing devices, they

are experiencing annual growth of more than 10% and over 40 billion embedded systems are

expected to be in function worldwide by 2020. The same report states that the value added

to the final product by the embedded system is often a few orders of magnitude higher than

the cost of the embedded system alone. The results of this thesis could be applied to safety

critical embedded control systems in the industrial, medical, automotive, aerospace/defence

domains that accounted for 35% of world electronic production and 63% of European electronic

production in 2012, as shown in Fig. 2.1.

Figure 2.1: World and European electronic production per application domain in 2012, [32]

UBM’s embedded market study [33] shows that embedded software consumes significantly

larger amount of development effort than the embedded hardware, Fig. 2.2. Embedded soft-

2. FUNDAMENTALS 16

ware is gaining on size and complexity. This can be seen in Fig. 2.3 that relates software size to

annual volume and also shows the growth of the embedded software. Electronic control units in

a new car are estimated to contain more than 100 million lines of code. Rising complexity and

pervasiveness of embedded systems make software errors more common and potentially more

dangerous. For example, between 1990 and 2000 about 40% of the half a million of recalled

pacemakers were recalled due to firmware errors, [1].

Figure 2.2: Ratio of development resources spent on embedded software and hardware, [33]

Figure 2.3: Embedded software size vs deployment (left) ant the rise of embedded software

complexity (right), [1]

2.1.2 Non-functional Requirements

Requirements on a technical system can generally be divided into those that specify function-

ality of the system, the functional requirements, and all other requirements, the non-functional

requirements. The literature more or less agrees on definition of functional requirements and

in [34] two such definitions are cited:

2. FUNDAMENTALS 17

• "A statement of a piece of required functionality or a behavior that a system will exhibit

under specific conditions."

• "A requirement that specifies an action that a system must be able to perform, without

considering physical constraints; a requirement that specifies input/output behavior of a

system."

Timing requirements are not functional, but they can be viewed as behavioral. However,

they are in literature mostly considered as performance related and thus classified under non-

functional requirements.

Definitions of non-functional requirements show more discrepancies. For example, [34] cites

definitions:

• "Describe the nonbehavioral aspects of a system, capturing the properties and constraints

under which a system must operate."

• "The required overall attributes of the system, including portability, reliability, efficiency,

human engineering, testability, understandability, and modifiability."

• "A requirement that specifies system properties, such as environmental and implemen-

tation constraints, performance, platform dependencies, maintainability, extensibility, and

reliability. A requirement that specifies physical constraints on a functional requirement."

• "Requirements which are not specifically concerned with the functionality of a system.

They place restrictions on the product being developed and the development process,

and they specify external constraints that the product must meet."

• "A requirement on a service that does not have a bearing on its functionality, but de-

scribes attributes, constraints, performance considerations, design, quality of service,

environmental considerations, failure and recovery."

• "A description of a property or characteristic that a software system must exhibit or a

constraint that it must respect, other than an observable system behavior."

Non-functional requirements on embedded control systems considered in this thesis, sec-

tion 1.1, can be grouped into:

• dependability – encompasses attributes of reliability, availability, safety, confidentiality,

integrity and maintainability;

• environmental requests – such as storage and operational temperature and humidity

ranges;

• immunity to shock and vibrations – especially important e.g. in railway applications;

• electromagnetic compatibility – refers to unintentional generation, propagation and recep-

tion of electromagnetic energy;

• resource-wise properties – like memory and power consumption;

2. FUNDAMENTALS 18

• real-time properties.

According to embedded market study [33], a significant percentage of embedded projects

include real-time and environment resistant capabilities as shown in Fig. 2.4. Non-functional

requirements can significantly impact not only hardware but also software components develop-

ment. Testing time can be especially extended due to type tests dictated by the non-functional

requirements. Fig. 2.5 shows examples of such tests.

Figure 2.4: Capabilities included in embedded projects, [33]

Figure 2.5: Environmental, shock and vibration immunity and electromagnetic compatibility

tests of proprietary embedded control systems, [7]

Real-time properties encompass timing constraints and scheduling properties, [35]. Typical

examples of timing constraints are, [2]:

• part of the code must be executed every T period of time,

2. FUNDAMENTALS 19

• worst-case execution time of a part of the code is less than T,

• when event A finishes, event B must appear after T period of time.

Validation of timing constraints boils down to measurement of time periods, e.g. execution

times of parts of the code.

Assessment of different scheduling strategies is outside the scope of this thesis and real-

time embedded systems on which the research was conducted, section 1.1, utilize exclusively

rate monotonic fixed priority scheduling. Thus, real-time scheduling properties considered in

research include tested software behaviour with respect to interrupts: whether function of the

code can be corrupted by interrupting its execution and if the code stalls interrupt servicing

beyond given bound.

2.1.3 Processing Resources

Managing processing resources is key feature of every real-time system, and knowledge about

task execution times is crucial in this process. Execution time analysis encompasses all meth-

ods and tools used in determining execution time of a program or its’ parts. This analysis is

complicated by the fact that execution times are not constant but vary with different proba-

bilities of occurrence across some range of values. The changes are due to different input

data, features of software architecture and implementation, type of processor and system ar-

chitecture. Usually three types of execution time are taken into account: worst-case execution

time (WCET), average-case execution time (ACET), and best-case execution time (BCET). For

real-time control systems WCET is the most interesting in which case timing analysis is called

WCET analysis, [7].

Timing analysis can be conducted by measurement, by static analysis or by hybrid meth-

ods. Measurements can be performed using emulators, logic analyzers, oscilloscopes, soft-

ware profilers, operating system tools and other. Because it is very hard to identify the set of

input data that causes WCET to occur, for hard real-time systems static timing analyses are

preferred over measurement-based techniques. Static timing analysis is conducted in three

steps:

1. program flow analysis – identification of all possible execution paths;

2. low-level analysis – gathering of execution times of program instructions;

3. calculation phase – estimating WCET by combining results from previous steps.

Static analysis is in most cases not appropriate for entire control software, so it is performed for

parts of code and the results are used in schedulability analysis. Drawbacks of static analysis

techniques are that they require significant effort of a skilled programmer, mapping between

source and compiled code and hardware timing model. No matter which timing analysis tech-

niques are used, WCET can in best case only be estimated so the WCET safe bound is usually

set to a value higher than the one measured or calculated, [7].

2. FUNDAMENTALS 20

Software architecture of embedded control systems considered in this work is component-

based and application programs are composed by application engineers that are domain ex-

perts and not skilled programmers. This fact, along with the lack of timing models for used pro-

cessors, is the reason for using measurement techniques in managing processing resources.

The applied procedure can be broken down into steps, [7]:

1. The execution time of each atomic software component is measured and/or calculated

during its development.

2. Application program is composed and downloaded to the target system where software

tools are used for timing analysis. Real-time kernel based tools measure overall proces-

sor load while software components in the application program can be used to measure

execution times of individual tasks or their parts.

3. If the measurements in the previous step come close to the processor utilization bound,

than detailed hardware measurement are performed. These measurements are per-

formed by logic analyzer using test points on the processor module housed in the com-

plete system either in field or in the laboratory.

2.2 Legacy Software Components

Focus of this thesis is on reuse of proprietary legacy software components in new projects. This

is a reoccurring problem in about 80% of all embedded projects according to UBM’s embedded

market study, Fig. 2.6.

Figure 2.6: Reuse of code in embedded projects, [33]

2. FUNDAMENTALS 21

2.2.1 Component-Based Software Engineering

This subsection places software components as defined and used in this thesis into broader

context of CBSE paradigm. As already discussed in section 1.1, this work considers the same

category of embedded control systems with the same type of software components as in [7],

so in the following an updated discussion regarding CBSE from that thesis is reproduced.

Software Engineering Institute (SEI) provides very general definition of software compo-

nent in [36]:

"A software component is an implementation, in software, of some functionality. It is reused

as-is in different applications, and accessed via an application-programming interface. It may,

but need not, be sold as a commercial product. A software component is generally implemented

by and for a particular component technology."

Software components considered in this work are adequate for and have been extensively

reused in different applications. They are accessed according to a set of rules, i.e. accord-

ing to the specification of how components should interact with each other, which is gener-

ally accepted definition of application programming interface. Individual components could be

sold as a commercial products, although until now only libraries of components have been

sold. Component technology or framework includes run-time environment for components and

other tools for designing, building, combining and deploying component and applications built

from them, [36]. A run-time environment for considered components is provided by proprietary

RTOSes while GRAP and proprietary service application represent tools for designing, building,

combining and deploying components and application programs. As this short analysis shows,

software component as considered in this work conform fully to the general definition from [36].

There exist more precise definitions of software components, one of which is given also by

SEI in [37]:

"A component is an opaque implementation of functionality, subject to third party compo-

sition, and conformant with a component model."

The term opaque implementation of functionality refers to abstraction and information hid-

ing and means that a component should for its consumer represent a black box. This implies

that components should not be distributed in source code and should be executable on un-

known target system. These conditions are not met by software components observed in this

work because they are distributed as encrypted source code, should be compiled before exe-

cution and are target or domain dependant. Components in this thesis are composed by ap-

plication engineers (system integrators) that are not members of the system engineering team

that creates them so they are indeed "subject to third party composition". On the other hand,

these components are proprietary solutions so there are no independent sources of alternative

components, [7]. The last criterion in the above cited definition is what differentiates software

components from conventional COTS software. Component model prescribes architectural de-

sign constraints by defining how components interact with each other so that component-based

systems result in uniform, standard coordination schemes. COTS-based systems, in contrast,

result in mash of product-specific interaction schemes, [37]. Software components considered

in this research comply to a set of rules for their interconnection and data exchange so they

fulfill the criterion.

2. FUNDAMENTALS 22

Software components represent reusable software artifacts and reuse always brings ben-

efits, no matter which definition of CBSE is employed. Main benefits are:

• reuse shortens development time and thus enables savings,

• extensions (components) of the existing system can be independently developed and

deployed,

• component models can be designed to support properties important for specific applica-

tion areas thus improving predictability of the deployed system, [37],

• the reliability and value of a component increase with the number of its applications, [7,

38].

Software component models based on uniform execution platform, like Microsoft’s COM

and Sun’s Java Beans, enable composition of components according to their functional inter-

faces only. Non-functional properties of components are not considered so it is assumed that

there exists unlimited virtual memory, that there are no timing constraints and that there is no

interaction between components besides functional interaction, [39]. All these assumptions do

not hold in case of real-time embedded systems. Computing resources in these systems are

scarce, results must be produced on time and a component can influence execution of other

components by consuming available processing time or by locking a peripheral unit. In [38],

the importance of including non-functional properties in component model for real-time safety

critical embedded systems is stressed and overview of available component models for em-

bedded systems is given. Integration of non-functional, or extra-functional, properties into com-

ponent model is an active area of research, [40, 41, 42], as well as testing of such properties in

component-based systems, [38, 43].

Composition of components from independent sources is scarcely discussed in the litera-

ture on real-time embedded systems, [7]. AUTomotive Open System ARchitecture (AUTOSAR)

framework, [44], is one of the rare attempts in that direction: applications are built from software

components that deal with functional logic only, while the infrastructural services are provided

by AUTOSAR component middleware. However, the component middleware is a layered soft-

ware architecture only coarsely customizable by excluding unused layers with compile-time

switches. This approach is impractical, error prone and suboptimal with respect to resource

consumption. In [45], applying CBSE to AUTOSAR component middleware is proposed to

alleviate its’ shortcomings.

Components for real-time systems are mostly designed to be composable and executable

only on proprietary product platforms so their portability is often limited. Usage of platform

independent component model, such as function blocks defined in IEC 61131-3 standard, [46],

or AUTOSAR’s functional components, [44], can improve component portability.

2.2.2 Proprietary Legacy Components

Proprietary legacy software components exist on two hierarchical level. On the lower level

there are basic atomic components, or program elements, each of which performs some spe-

cific function such as summation or logical AND function. On the higher hierarchical level there

2. FUNDAMENTALS 23

are composed components, or program modules. Modules are created by composing atomic

components in a graphical environment, as described in chapter 1, and they implement ad-

vanced functions like control structures or communication and I/O interfaces. An extensively

commented example of graphical composed component is shown in Fig. 2.7.

Figure 2.7: An example of graphical composed component

Legacy software components are organized in databases in graphical and code environ-

ments. Libraries in graphical environment contain atomic components’ graphical symbols and

graphical composed components. In code environment there are atomic components’ source

code library, composed components’ source code library and composed components’ relocat-

able object code library. Graphical processor as a part of the IDE provides interface between

these two environments, [7]. The connection between component graphics and source code is

illustrated in Fig. 2.8 on the example of composed component from Fig. 2.7.

Significant advantage of legacy software components is that their execution time is often

known in advance. This is possible because software components are small and optimized

and because rather simple processor architectures (with no caches, branch prediction or out-

of-order execution) are used. Component execution time significantly depends on its’ configura-

tion and number of connected ports. Because components are configured and interconnected

during application program development, without changes during run-time, the difference be-

tween WCET and BCET of a configured atomic software component is often less than few

percent, [7].

2. FUNDAMENTALS 24

Figure 2.8: Graphical processor provides interface between graphical and code environments

2.3 Model-Based Development

MBD process is illustrated in Fig. 2.9. It starts with requirements elicitation and formalization,

proceeds with modeling and code generation. Two way traceability between various develop-

ment artifacts should be ensured – from requirements through model to code and test cases.

Testing is performed throughout the development: model is checked against requirements and

the code, executed on PC or on the target, is tested by comparing its’ execution traces with

simulation traces of the model.

2. FUNDAMENTALS 25

Figure 2.9: Model Based Development workflow

MBD encompasses thus a significant portion of development process. If development

stages of embedded project from UBM’s embedded market study [33] are adopted for software

development, than MBD can cover, fully or partially, all stages shown in Fig. 2.10 except the

sending to production stage.

Figure 2.10: Percentage of time spent on design stages, [33]

2.3.1 Requirements

Requirements on software systems are often incomplete, ambiguous and even contradictory.

Embedded systems are specific because, besides functional requisites, often a number of non-

functional requirements and constraints must be satisfied. One of the goals of MBD is to make

intended behavior explicit in the form of behavioral model. It has been reported in [47] that 2

to 6 times more requirement errors are discovered if system model is used during development

and testing.

In [48], requirements traceability is achieved by defining four links among requirements and

between requirements and other modeling artifacts: derive represents derivation of requirement

2. FUNDAMENTALS 26

from another, refine indicates that an element is a refinement of a textual requirement, satisfy

shows the satisfaction of requirement by design and verify links requirement with test case that

verifies it.

Stronger link between requirements and testing is proposed in [49], where requirements

are formalized by constructing Timed Usage Models, out of which tests are automatically gen-

erated. Motivation of this approach is to alleviate greatest drawbacks of current REQM method-

ologies: lack of systematical analysis and informal and ambiguous requirement description.

Requirements traceability is the focus of DARWIN4Req approach presented in [50]. This

is a metamodel that establishes two-way links between three independent and heterogeneous

models: requirement model, solution model and verification and validation model.

Tighter integration of REQM and design is achieved by AutoRAID extension to AutoFO-

CUS MBD development environment, [51]. Here, requirements are classified as use cases and

architectural, modal or data type constraints and their stepwise refinement leads to consistent

and complete Requirements Engineering Product Model. Elements of the design are produced

from requirement model using motivate and associate functions. This approach ensures seam-

less transition from REQM to design and enables requirement analysis; a number of automatic

consistency checks are described in the paper.

Direct generation of test cases from requirements written in natural language is proposed

in [52]. SOLIMVA methodology automatically translates natural language requirements into

Statechart models out of which test cases are generated. The method identifies test scenarios

using combinatorial design techniques and input dictionary defined by the user. This approach

is applicable to system and acceptance testing phases.

Non-functional requirements on embedded systems can be modeled and analysed in Uni-

fied Modeling Language (UML) profile Model and Analysis of Real-Time Embedded System

(MARTE), [53]. It introduces time and resource models into UML, enables definition of hard-

ware/software execution platform, provides allocation mechanism which associates application

with platform, and supports quantitative analysis, e.g. of schedulability and performance, [54].

2.3.2 Modeling

In context of MBD, system design is performed by modeling. Various approaches to modeling

methodology are available. In already mentioned AutoFOCUS environment, [55], separation of

concerns is achieved by graphical modeling based on views: Data Definition View defines data

types and basic functions as basis for further development, System Structure View describes

system structure including components, interfaces and communication channels and Behavior

View captures the behavior of each atomic component.

In order to generate implementation from the model, it must either be enriched with platform

specific information or linked to separate platform model. First approach reduces potential for

reuse so in [56, 57] separate modeling of functionality and HW/SW architecture is proposed.

This way, independent and reusable functional and platform models are constructed and a set

of rules, called model compiler, performs mapping between them. Similar approach called

Architecture Driven Development presented in [58] consists of steps: 1) system architecture

definition, 2) functional model construction, 3) HW/SW architecture definition, 4) mapping of

2. FUNDAMENTALS 27

functional architecture to HW/SW architecture, and 5) code generation. If integrated model is

used for code generation than modeling language becomes programming language [59].

Desired shift toward higher level of abstraction in MBD may be missing because many

modeling languages are based on textual programming language concepts. With this moti-

vation, [60] introduces Model Integrated Computing methodology where system development

starts with domain specific modeling language definition, after which necessary tools are con-

structed and finally system design is conducted. This approach ensures that model artifacts

represent domain elements, and not the code. Model interpreters that translate domain specific

models to simulation, analysis and implementation models are crucial here.

The problem of modeling interactions of embedded systems with each other and their

physical environment is tackled in [61]. The approach is based on Embedded Systems Mod-

eling Language (ESMoL), a design environment that aligns control design, software modeling,

code generation, and deployment. Cyberphysical systems are modelled on three levels: on

physical layer, on platform layer and on computation/communication layer. A number of models

are constructed or generated during proposed integration process: logical software architec-

ture model defines functional block connections and data dependencies, hardware platform

model defines computing nodes and communication networks, deployment model maps soft-

ware components to computing nodes and data messages to communication ports, and timing

model defines scheduling and timing constraints.

2.3.3 Model Transformations

Sometimes complexities of a system can be better managed through multiple models where

each captures a different aspect of the system. In other cases, models can be refined or de-

composed into other models. Automatic model transformations can help ensure consistency

between multiple models in such situations. Transformations can be conducted by direct model

manipulations, through intermediate representation or by using transformation languages. Di-

rect manipulation of internal model representation is performed using standard procedural lan-

guages, but they lack abstraction so transformations are difficult to write and maintain [62].

Intermediate representation for model transformation can be some standard format, as XML,

or a specific formalism, as Synchronous Reactive Model of Computation that enables definition

of inherently correct transformations, [63]. Intermediate representation can also provide means

for integration of components from different development stages, e.g. ESMoL in [61]. Accord-

ing to [62], domain specific languages for model transformations, e.g. Atlas Transformation

Language and Graph Rewriting and Transformation (GReAT), represent the best alternative.

GReAT treats models as graphs and performs transformations by linking input and output meta-

model into unified metamodel and by defining transformations on the new metamodel, [60].

2.3.4 Automated Code Generation

A seamless transition from models to executable code is accomplished by ACG techniques.

Code must be generated from the model consistently with limited use of a subset of the pro-

gramming language that is considered to be safe and with limited use of well specified control

2. FUNDAMENTALS 28

and data structures. It should comply with specified complexity measures and it must be main-

tainable, testable, stable, changeable and analyzable, [57].

As stated in [9], model-based code generators differ from conventional compilers in that for

them both source and target languages are executable, i.e. it is possible to compare simulation

results with code execution traces. Another difference is that modeling language semantics

is often not explicitly defined but is instead embodied in the interpretation algorithms of the

the simulator. Finally, direct transformation of hierarchical model structure to syntax tree of

the target language is not possible; automatically generated code is based on a sequence of

computation derived by analyzing data dependencies of the model. In the same work, the

issue of confidence in code obtained through ACG is raised, similar as was for compilers when

transition from assemblers to higher languages was taking place. Due to short development

cycles and limited user base, validation of automated code generators by exploitation is not

applicable. By certifying generators, fitness for purpose can be guarantied but only under

strictly defined conditions of use. Third option is code generator testing that must be automated

to be feasible because of great number of model variants and frequent new versions.

2.3.5 Testing

It has been reported in [2] that the cost of finding and fixing defects grows exponentially in the

development cycle so it is important to start testing as soon as possible, Fig. 2.11. According

to [64], up to 50% of the development effort of the critical systems is taken up by the testing

process that can be reduced up to 50% by using MBT techniques. The term model based

testing is used to describe all testing activities in the context of MBD projects. According to [65],

MBT is cheaper, faster and almost as effective in terms of code coverage in comparison with

traditional manual testing. As can be seen in Fig. 2.9, testing is deeply integrated in all phases

of MBD. This means that MBT cannot be considered separate from the development process

and every MBT methodology is in fact more or less MBD methodology.

Figure 2.11: Cost of finding and fixing defects grows exponentially in the development cy-

cle, [66]

A generic MBT process can be described in five steps: SUT model creation, definition

2. FUNDAMENTALS 29

of test selection criteria, test case specifications creation, test suite generation and test case

execution, [67]. Requirements on the MBT process are enumerated in [23]. Testing should be

automated due to interdisciplinary and iterative nature of MBD. To facilitate reuse, tests should

be transferable between integration levels and means to compare test results from various lev-

els should be provided. Systematical test design is crucial to achieve satisfactory coverage

without redundancy and to keep track of hundreds, or possibly thousands, of test cases. Tests

must be readable to allow stakeholders from different domains to participate in testing pro-

cess. Closed-loop or reactive testing, where test cases are dependent on system behavior, is

preferable. To enable tests on target integration levels, timing constraints should be satisfied.

2.4 Test Patterns

Terms "pattern" and "pattern language" were firstly introduces in context of architecture as, [68]:

"The elements of this language are entities called patterns. Each pattern describes a

problem which occurs over and over again in our environment, and then describes the core of

the solution to that problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice."

In software engineering, patterns are regarded as elements of reusability with pattern lan-

guages that defines how these elements can be combined, [26]. In contrast to software li-

braries, that provide predefined reusable elements, software patterns represent abstract solu-

tions for generic problems. The abstraction keeps them customizable, but it means that they

need to be instantiated before usage. Patterns also simplify system maintenance because it is

easier to identify a known pattern than to investigate unfamiliar system structure.

When test suites for embedded systems are built from scratch, often inadequate methods

are used and quality issues arise. This can be avoided by designing tests using test patterns.

They capture test design knowledge in a canonical form for use in future similar contexts, [69].

Patterns enable test engineers to concentrate less on test design and more on the properties

that need to be tested, they facilitate automation and make test cases readable. Because tests

are performed with regard to specification it is opportune to use patterns from beginning of the

project, starting with requirements elicitation, [26].

Chapter 3

Model-Based Testing

In this chapter a taxonomy of model-based embedded systems testing is presented and an

overview of selected testing methods and tools from academia and from industry, together

with their placement inside the taxonomy, is given. Analysis of the investigated MBT tools and

methods reveals a gap, so a new testing method is proposed to fill it.

3.1 Model-Based Embedded Systems Testing Taxonomy

A comprehensive taxonomy for MBT is given in [67]. Three general classes: Model, Test Gen-

eration, and Test Execution are identified. These classes are divided into categories: the Model

class categories are Subject, Independence,Characteristics, and Paradigm; Test Generation is

split into Selection Criteria and Technology; while Test Execution is partitioned based on Execu-

tion Options. In [2], Test Evaluation class divided into Specification and Technology categories

is added to the taxonomy.

The taxonomy has been further extended in this work. New classes and options have been

emphasized in bold on the diagram in Fig. 3.1. Options used in the new MBT approach, intro-

duced in section 3.3, are shown in frames on the same figure. Options designated by an arrow

(l) represent continuous ranges with border values provided. Mutually exclusive options are

designated by "A/B/C" notation and straight lines connect discrete options that do not exclude

each other.

3.1.1 Model

Model Subject category determines to which degree the model describes behaviour of the SUT

and/or its environment, [67]. Model of the SUT encodes desired behaviour so it can be used

as an oracle and its’ structure can be utilized during test generation. Model of the environment

restricts the set of all possible inputs to the SUT and in this way acts as a test selection criteria.

One extreme is the model that fully describes the SUT but knows nothing about its environment

so inputs to the SUT are not bounded by such model. Opposite is the model of the environment

without information about the SUT. This model specifies all allowed inputs to the SUT but gives

no information about expected outputs.

3. MODEL-BASED TESTING 31

Figure 3.1: Diagram of the MBT taxonomy

3. MODEL-BASED TESTING 32

During MBD, model can be used for testing and/or implementation so various levels of

redundancy are possible. In an integrated model scenario, the same model is used for gen-

erating implementation and for testing so there is no redundancy. On the other extreme there

exist two separate models: one for implementation and one for testing.

Model Characteristics refer to incorporation of timing issues and to the continuous or

discrete nature of the model. Timing issues heavily complicate testing of real time systems

because time represents additional degree of freedom. Much of the work in MBT is con-

cerned with event-discrete systems, but most embedded systems exhibit continuous or hybrid

behaviour. Hybrid systems behaviour consists of time continuous parts, where variable eval-

uations change with time, and time discrete parts, where events happen and variables are

assigned values, [70].

Different modeling notations can be grouped into Paradigms:

• In pre/post (state-based) notations systems are modeled as a collections of variables that

represent a snapshot of system’s internal states. Operations described by preconditions

and postconditions modify these variables.

• Transition-based notations are usually graphical arc-and-node notations that describe

transitions between different states of the system, e.g. finite state machines and state-

charts.

• History-based notations model the system by describing allowable traces of its behaviour

over time.

• Functional notations describe a system as a collection of mathematical functions.

• Operational notations describe a system as a collection of parallel executable processes

and are used for distributed systems and communication protocols.

• Stochastic notations describe a system by a probabilistic model. They are mostly used

for modeling environment, e.g. Markov chains for usage modeling.

• Data-flow notations emphasize data flow, rather than control flow.

3.1.2 Test generation

Starting points for test case generation are system requirements, test objectives and test speci-

fication. Test generation approaches can be grouped according to selection criteria, generation

technology and scope, [67]. Different methods can be combined to complement each other to

achieve better coverage, [2].

Test selection criteria

Structural model coverage criteria exploit the structure of the model to generate test cases.

Many of these criteria are adapted code coverage criteria and are based on control flow through

model, same way as code coverage criteria are based on control flow through code. Modeling

3. MODEL-BASED TESTING 33

notation determines which coverage criteria can be used, e.g. for transition based models

some of possible coverage criteria are: all nodes, all transitions and all transition pairs. In [2,

67], only structural model coverage criteria are considered but here taxonomy is extended to

include structural code coverage criteria. As shown in [71, 72, 73], code coverage criteria

can be elegantly applied to MBT. Correlation between model and code coverage has been

reported in [74]. Structural criteria are mostly used for generation of additional tests to achieve

desired structural coverage after testing according to some other criteria has already been

conducted, [75, 76].

Data coverage criteria help to choose test stimuli from large data space by partitioning it

into equivalence classes. They are based on the uniformity hypothesis which states that it is

enough to test the system with one value from each equivalence class because all elements

of the class are "equivalent" in terms of their ability to detect failures. This method is often

complemented with boundary analysis, where critical limits of data ranges are determined, [9].

Requirements coverage criteria can be applied if elements of the model can be explicitly

associated with informal requirement on the SUT or if there exist formal requirements that

can be automatically analysed, as in [54]. Testing should ensure and requirements coverage

analysis should prove that requirements are sufficiently covered by test cases, e.g. that every

requirement is checked at least once, [9].

Test case specification represents criteria for selecting test cases out of all possible

model traces. Specification is written in some formal notation that can be the same as the

one used for the SUT model. For example, in [47] tests can be specified by environment model

or by a set of constraints. Popular test specification method for discrete systems is sequence-

based specification (SBS), [77].

Random and stochastic criteria are usually applied to the environment models so that the

generated tests follow an expected usage profile. Statistical usage model is usually combined

with deterministic behavioral model so that the statistical model serves as selection criterion

that chooses paths and the behavioral model generates oracles for the selected paths, [78, 79].

Search-based criteria also utilize environment model to generate test cases, but here they

are traversed based on some search algorithm and not randomly. For example, in [80] Genetic

Algorithms and (1+1) Evolutionary Algorithm are used together with four different heuristics

and their combinations. Another example is presented in [20], where test cases are generated

using Rapidly-exploring Random Tree probabilistic robotic motion planing algorithm guided by

equidistribution-based coverage criteria.

Fault-based criteria rely on knowledge of typically occurring faults mostly described by a

fault model.

Test generation technology

SUT model can be used for manual test case generation or it can partake in automatic test

generation, if test specification is available. For example, environment model plus some addi-

tional constraints can be used as a test case specification and tests can be generated stochas-

tically, by using graph search algorithms, by model checking, by symbolic execution or by the-

orem proving.

3. MODEL-BASED TESTING 34

• Random generation can be applied to reactive systems for selecting input traces by

randomly sampling the input space. Expected outputs are then obtained by applying

input traces to SUT model. A random walk may be applied to model of the SUT or to the

usage model. These methods are easy to implement but they take a lot of tests to reach

satisfiable coverage.

• Graph search algorithms include node and arc coverage such as Chinese Postman

algorithm.

• Model checking verifies or falsifies properties of a system. Test case specifications

are formulated as reachability properties and model checker generates traces that reach

desired states or fire certain transitions.

• Symbolic execution means executing a model with sets of input values, represented as

constraints, instead with single values. This way symbolic traces are generated that must

be instantiated before they can be applied to the SUT. Symbolic execution is guided by

test case specification, similar as model checking.

• Theorem proving can be used for test case generation similar as in model checking

where model checker is replaced with theorem prover. However, theorem provers are

mostly used to check satisfiability of formulas that guard transitions in state-based models.

• Application sequences can be obtained by on-line monitoring of embedded systems and

imported back into MBD environment for testing, [81].

Test cases can be generated online or offline. Online test generation is related to reactive

test execution (see next subsection) useful for testing non-deterministic systems. Test generator

can detect which path the SUT has taken and follow the same path in the model. Offline test

case generation for non-deterministic systems is difficult and results in test cases that are not

sequences but trees or graphs. There are many pragmatic advantages to offline test case

generation for deterministic systems: existing test management tools can be used, regression

testing is possible, test generation and execution are independent, test set minimization is

possible, and tests are generated only once.

Test scope

Test scope category is not specific to MBT but to testing in general. In [2], scope is considered

as one of the test dimensions. All other test dimensions are covered in the taxonomy: Test Goal

dimension is covered by Selection Criteria category, Test Abstraction dimension is spread onto

categories of the Model class, Test Execution Platform corresponds to Integration Level cate-

gory and Test Reactiveness is covered by categories Technology of Test Generation, Execution

and Evaluation classes. To avoid this sort of repetition, test dimensions are not considered here

and test scope is introduced into the taxonomy.

At the scope of component or unit testing, the smallest testable part of an application is

tested in isolation [82]. For example, a single function can be considered as a component in

procedural programming, an entire class can be a component in object-oriented programming,

3. MODEL-BASED TESTING 35

and in a modeling language based on block diagram notation, individual blocks are compo-

nents. During integration testing, components are combined and tested as a subsystem, not

yet as a whole system. Component integration testing exposes defects in interfaces and inter-

action between integrated components. System testing is the process of testing an integrated

system to verify that it meets specified requirements, [82]. Integrated system consists of all

hardware and software components that constitute final product.

3.1.3 Test execution

In [67], Test Execution, class has only On/Offline category with an option with the same name.

This class is in [2] renamed into Execution options and has MiL/SiL/PiL/HiL and Reactive/Non-

reactive options. Placing MiL, Software-in-the-Loop (SiL), Processor-in-the-Loop (PiL) and HiL

under same option assumes that a test can be executed on only one level of integration and

also omits final level of integration, here named product. Both taxonomies ignore possibility to

execute test in non-real-time or in real-time environment. For these reasons the Test Execution

class has been extended to include two categories as shown in Fig. 3.1.

Integration Level

The same tests can be repeated on various integration levels [23], or execution platforms [2],

throughout development process. At the Model-in-the-Loop level, model of the SUT is tested in

an open-loop or in a closed-loop with model of the environment. Various types of models can be

tested this way, typically functional and implementational models. Functional models are quite

abstract and don’t consider aspects such as robustness or performance. During development,

functional models are concretized into implementation models that include enough details (e.g.

function encapsulation, fixed-point scaling, reuse) for manual or automatic code generation.

MiL testing is functional testing, it takes place at early stages of development, and is performed

inside a simulation environment.

Program code, typically C code, is on Software-in-the-Loop level tested in a simulated

environment, [83]. Both simulated environment and SUT code are usually executed on the

same machine, e.g. Windows or Linux based desktop computer. This is also functional testing

whose goal is finding errors introduced by code generation.

Processor-in-the-Loop testing is similar to SiL testing with the difference that here code

is executed on the target processor/controller. These tests reveal faults caused by the target

compiler and target processor architecture. Testing on PiL level is important because this is the

last integration level which allows for cheap and manageable debugging.

On Hardware-in-the-Loop level, software runs on final embedded device and its enviro-

nment is emulated. Communication is performed through analog and digital interfaces of the

device so these tests reveal faults in the device’s low-level I/O services. HiL testing requires

real-time behaviour of the environment so that the communication with the device is the same

as in final application. Some advantages of HiL testing over testing on product level are: HiL

tests are repeatable and can be automated and HiL emulators are usually much cheaper than

test environments that encompasses entire final product, [84].

3. MODEL-BASED TESTING 36

Some of the tests designed during previous integration levels can be performed on the

final product (car in [23]). Drawbacks of testing on this level are: tests are performed late in

development cycle and are expensive, arbitrary parameter variations are not possible, hardware

faults are difficult to trigger and SUT reactions are difficult to observe because internal signals

are often inaccessible.

Technology

Reactive/non-reactive test execution is related with online/offline test case generation, see

section 3.1.2. During reactive testing signals from SUT or from the testing environment itself are

used in online test case generation. This kind of testing is also called closed-loop testing, [85].

In non-reactive tests, the SUT responses have no influence on the test. Reactive testing can

be more efficient because errors are handled when they happen, while a non-reactive test set

can run for an extended period of time only to discover during post-processing that an error

occurred soon after test started and that all subsequent data is worthless.

Tests can be executed in a real-time or non-real-time environment. In a non-real-time

environment, system is tested against requirements that are not time related. Same or differ-

ent tests can be executed in a real-time environment where real-time properties are checked.

Real-time tests can be executed only on PiL, HiL or product integration levels because timing

behaviour depends strongly on target architecture.

3.1.4 Test evaluation

Test evaluation is a process of analyzing SUT’s output using test oracle and of deciding about

the test result. An oracle may be some existing system, test specification or domain expert’s

knowledge [2].

Specification

Reference signal-based test assessment is performed by comparing the SUT responses with

previously defined expected outcomes, or references. These signals may be constructed man-

ually using a signal editor, [86], or they can be results of a simulation, [2].

Requirements coverage evaluation specification criteria aim at covering all informal SUT

requirements with appropriate test evaluation scenarios, [21, 86, 87].

Test evaluation specification criterion uses the specification of expected SUT responses.

Typically, test engineer defines test case specification for test generation together with evalua-

tion specification, using same formal notation, [71, 87, 88].

Test evaluation based on reference signal features assesses the SUT behavior compar-

ing its’ responses partitioned into features with the previously specified reference values for

those features. A signal feature, or property, is a formal description of certain defined attributes

of a signal. It can be used to describe particular shapes of individual signals by providing means

to address its’ abstract characteristics, for example increase, step response characteristics and

maximum are signal features [2]. Such an approach to test evaluation is supported by the Time

3. MODEL-BASED TESTING 37

Partitioning Test (TPT) [22, 24] and in Model-in-the-Loop for Embedded System Test (MiLEST)

[2] methods.

Technology

Automatic/manual test evaluation option relates to evaluation specification, while evaluation

execution is presumed to be automatic. For example, in Simulink Verification and Validation,

[86], manual specification is supported by defining assertion blocks that automatically evaluate

tests during execution.

Online test evaluation happens during test execution and enables execution of reactive

tests, [85]. Offline evaluation is performed after test execution using recorded SUT inputs and

outputs.

3.2 Investigated model based testing Approaches

This section gives an overview of investigated MBT approaches present in industry and academia.

3.2.1 EmbeddedValidator

EmbeddedValidator is used to formally verify TargetLink, [89], design produced from MATLAB/

Simulink/Steteflow model by application of model checking techniques, [21, 90]. It enables

robustness analysis, i.e. checks for range violations, automatic debugging, where traces are

generated that lead system to user-defined state, and model certification, by application of

patterns for formalizing temporal aspects of requirements. Model checking is performed at a

high abstraction level, on a model without implementation details. If successful, it results in

a so called Reference-Model that is used in subsequent MBD phases. Also, model checking

requires consistent and unique requirements so any errors in requirements are detected early

on.

3.2.2 Classification Tree Method-based approaches

Classification Tree Method (CTM), [91], is used extensively for structured test generation in au-

tomotive industry, [92, 93, 94, 95]. Typical application is construction of test vectors where SUT

input domain is decomposed into classifications which are further partitioned into equivalence

classes based on uniformity hypothesis. The classifications form columns of the combination

table while rows of the table represent test steps. Abstract test sequences are specified by

selecting classification combinations for each test step, the so called synchronization points.

Extension of the method for the embedded systems, called Classification Tree Method for Em-

bedded Systems (CTM/ES), [96], enables automatic instantiation of test sequences by intro-

ducing time tags and different interpolation functions for signal values between synchronization

points.

MB3T [93] (Model-Based Black Box Testing) approach establishes stronger link to require-

ments by formalizing them in the form of tests specified using requirements-based classification

3. MODEL-BASED TESTING 38

tree (R-CT). Test sequences are generated from the SUT interface using model-based classi-

fication tree (M-CT). Requirements coverage is ensured by consistency check in two steps:

structure of R-CT and M-CT is compared and requirements-based tests coverage by model-

based tests is analyzed.

Gap between requirements and test design is also tackled in [95], where CTM/ES is ex-

tended for combined hardware and software functional testing. Constraint-based stimulus pat-

terns applied to CTM enable definition of test sequences directly from requirements. Accep-

tance criteria, in the form of signal tolerance bands, and functional coverage criteria are also

specified using CTM.

Test approach Model Test (MTest), [92], and commercial tool MTest Classic, [97], that im-

plements it, are both based on CTM/ES method. They enable semi-automatic structured func-

tional testing in earlier phases of MBD, namely on MiL and SiL phases. Various classification-

tree coverage criteria enable automatic test sequence generation.

To a lesser extent, variants of the CTM are also used in other MBT approaches, e.g.

[2, 9, 23].

3.2.3 Reactis Validation Tool

Reactis Validation Tool, [71, 88], is a commercially available tool for testing Simulink/Stateflow

models of control systems. It comprises of three main components: Tester, Simulator and Val-

idator. Reactis Tester enables automatic test case generation based on various model and code

coverage criteria. It employs guided simulation approach that monitors signal values at each

branching point in the model during simulation and than performs backward data-flow analysis

to choose next input data set to reach untested model branches. Reactis Validator analyses the

model with respect to requirements formalized in the form of assertions. It searches through

the model using the same guided simulation approach and, if any of the assertions is violated,

it produces execution trace that leads to the problem.

3.2.4 Simulink Verification and Validation

Simulink Verification and Validation (SL VV), [86], enables checks of compliance with model-

ing standards, requirements management, automatic test harness generation and component

testing. Test harness generation automates interface configuration when isolating atomic sub-

system or model referenced by larger system for separate testing and analysis. Test data is

imported or created manually. Assertions can be assigned to individual test cases so verifica-

tion of functional requirements can be performed during model simulation.

3.2.5 Simulink Design Verifier

Simulink Design Verifier (SL DV), [87], provides formal analysis of the model in order to gen-

erate test cases or prove properties of the model. Test cases are generated to satisfy chosen

structural coverage criteria and can be additionally fine tuned by defining values that signals

must assume at least once during test and/or by defining constraints on test signals. Model

3. MODEL-BASED TESTING 39

properties are defined as logical expressions over signals and if they are violated, counter ex-

amples are generated. These are simulation traces that show the violation.

3.2.6 SystemTest

SystemTest, [98], is a MATLAB toolbox that contains templates of standard routines for test-

ing MATLAB algorithms and Simulink models. It can use features of other MATLAB/Simulink

extensions, e.g. structural model analysis by SL VV or test distribution by Parallel Computing

Toolbox, [99]. Test vectors are generated by executing MATLAB expressions or stochastically.

Results can be automatically evaluated if reference signals are available.

3.2.7 Time Partitioning Test

TPT is a method, [22, 23], and a commercial tool, [24, 100], for functional model-based test-

ing of embedded control systems. It enables systematic and graphical modeling of test cases

by hierarchical and parallel state machines with conditional branching. By representing simi-

lar test cases within the same model, redundancies are avoided and clear overview of large

number of tests is provided. TPT tests are platform independent so they are easily transferred

between development stages and facilitate regression testing. Real-time and reactive testing

is supported. Evaluation of test results can be performed on-line by watchdogs modeled using

same techniques as for test case modeling. A more powerful off-line test evaluation based

on comparison with reference data can be implemented by Phyton scripts supplemented with

specialized evaluation library.

TPT allows functional testing of MATLAB/Simulink and ASCET, [101], models and of C-

code in a SiL environment. Tests can be executed via TPT’s co-simulation environment FU-

SION in "Windows real-time" where TPT communicates with the target via controller area net-

work (CAN) or local interconnect network (LIN) bus or via INCA, [101], or via CANape, [102],

ECU measurement, calibration and diagnostics tools. If tests are translated to byte code, they

can be executed on real-time hardware via TPT Virtual Machine (TPT-VM). The TPT-VM is

implemented in ANSII-C and has response times in range of microseconds, [24].

3.2.8 MEval

In order to evaluate time-dependent signals in Back-to-Back (B2B) testing of embedded sys-

tems a concept for signal comparison and accompanying tool MEval are presented in [103,

104]. B2B is a testing approach where simulation model outputs are compared to measure-

ments taken during system runs. Difference-matrix preprocessing algorithm implemented in

this work allows independent evaluation of amplitude deviations and time shifts.

3.2.9 Model-in-the-Loop for Embedded System Test

MiLEST, [2, 105], is a test design methodology applicable during initial phases of design when

no referent system responses are available, so no B2B testing is possible. Functional require-

ments are broken down to signal features and test harness, consisting of test data generator,

3. MODEL-BASED TESTING 40

SUT, test specification and test control units, is automatically generated. Test evaluation can be

automatically specified based on requirements specification and it boils down to signal feature

detection. Evaluation is performed online so reactive testing is possible. Testing is in MiLEST

supported by a rich and categorized library of test patterns.

3.2.10 Code Generation Tools Testing

An approach to testing of model-based code generator’s optimization rules is presented in

[9, 72]. It starts with formalization of optimization rules in the form of graph transformation

rules. Input domain of the graph transformation rule is partitioned by CTM resulting in test

model abstract descriptions. Specialized tool automatically instantiates test models from these

descriptions. Code is generated from test models by applying tested code generator and test

vectors are created based on structural model and code coverage criteria. Models and the

generated code are than fed with the same test vectors and B2B validation of their outputs is

performed.

3.2.11 Virtual Test Bed – Real Time extension

Virtual Test Bed – Real Time extension (VTB-RT) is an approach to HiL testing of power elec-

tronic systems based on open software and off-the shelf hardware, [25]. Virtual Test Bed (VTB)

encompasses simulation of system dynamics and solid modeling of the system. It supports

multiformalism, i.e. integration of different simulation environments by cosimulation or trans-

lation, and can perform distributed simulation on different platforms with different solvers and

step lengths. VTB-RT is VTB’s real time extension composed of (i) a Linux distribution that pro-

vides user interface and development tools, (ii) Real-Time Application Interface that modifies

the kernel and enables task execution in real-time, and (iii) VTB solvers and simulation models.

Real-time task has higher priority than the kernel and it handles real-time counter. Solvers are

implemented as Linux processes that communicate with environment through data acquisition

cards and with real-time task through real-time FIFO. Main limitation of VTB-RT is step length

which is limited by processing power of the platform used for real-time simulation.

3.2.12 Sequence-based specification

SBS is a set of methods for rigorous software specification where system behaviour is described

in terms of next externally observable response to to each sequence of external inputs, [77].

In [28, 78, 79], it has been shown that SBS can be combined with statistical methods to provide

MBT approach. In these papers, Markov chain-based usage model is constructed from informal

requirements and used for automatic test case generation, execution and evaluation. The

approaches tackle discrete system behaviours and are therefore not applicable to hybrid control

systems.

3. MODEL-BASED TESTING 41

3.2.13 VETESS approach

Testing approach developed during Verification of Embedded systems for vehicles using au-

tomatic TESt generation from Specification (VETESS) project, [106, 107], utilizes a toolchain

comprised of a mix of open-source and proprietary tools for generating functional tests out of

Systems Modeling Language (SysML) model of the SUT. SysML is a UML profile for system

engineering and in VETESS approach only its SysML4MBT subset is used. The proposed

testing process is conducted in three steps: (i) SUT behavior is modeled in SysML4MBT, (ii)

abstract test cases are automatically generated out of the functional model, and (iii) abstract

test cases are concretized for execution on a specific platform. In [108], drawbacks of this

approach are summarized: the tester needs to construct both SysML and MATLAB models,

SysML4MBT model is based on discretization of the system and continuous aspects are taken

into account late in the process during concretization, and adaptation layer must be updated for

each model modification which complicates maintenance. The same work proposes to improve

the approach by capturing real-time aspects in SysML4MBT model and by automatically using

this information in the toolchain.

3.2.14 MOS

MOS is a tool for integrated model- and search-based testing of software for safety critical

systems implemented in programmable logic controllers (PLCs) language Function Block Di-

agram (FBD), [109, 110]. Inputs to the test generators are the tested FBD and test coverage

requirements defined by the user. The tool implements two complementing test generators.

Model-based test generator firstly transforms the FBD under test to timed automata model and

than uses UPPAAL model checker to explore the symbolic state space of that model and gener-

ate time-optimal traces based on a variation of the A*-algorithm. Search-based test generation

is performed based on execution of C code generated from the tested FBD in a desktop com-

puter environment that simulates PLC peripherals. Test data that satisfies modified condition/

decision coverage is generated using slightly modified hill climbing algorithm.

3.2.15 Hybrid systems Test Generation

Hybrid systems Test Generation (HTG) is a tool that implements formal model-based hybrid

system testing method, [20]. Tested hybrid systems are here modeled by hybrid automata

and tests are generated using Rapidly-exploring Random Tree algorithm, a probabilistic motion

planning technique from robotics domain, which is guided by a novel test coverage criteria

based on equidistribution degree of a set of states over the state space. The approach has been

validated on a number of case studies from control systems domain, some with few hundreds

of continuous variables, and on case studies concerning mixed signal electronic circuits.

3.2.16 ETAS RT2

RT2 is a commercial MiL (for ASCET and Simulink models) and SiL testing tool by ETAS

Group, [111]. Tests are modeled by hierarchical automatons which support variations of states

3. MODEL-BASED TESTING 42

and transitions reducing thus redundancies in test design. The tool supports both continuous

and discrete signals and various ways of their definition and evaluation. Reactive testing and

parallel execution of multiple automaton are also supported.

3.2.17 Safety Critical Application Development Environment Suite

Safety Critical Application Development Environment (SCADE) Suite is a model-based develop-

ment environment for safety critical applications produced by Esterel Technologies, [112, 113].

It is based on Lustre, a formally defined, deterministic, and data-flow-based language for pro-

gramming reactive systems. SCADE Suite also supports integration of state machines into data

flow designs, automatic generation of certifiable C code, and graphical simulation based on the

generated code. The suite incorporates several MBT tools:

• SCADE Suite Model Test Coverage enables analysis of thoroughness of high-level requirements-

based test cases and assessment of the role of each test case in covering operator in-

stances of the model, [114];

• Design Verifier verifies safety properties expressed in SCADE Suite and automatically

generates counter examples in case of failure, [115, 116];

• LabVIEW Gateway integrates SCADE Suite with National Instruments LabView via its’

software environment for configuring real-time testing applications VeriStand and enables

thus HiL testing;

• Timing and Stack Verifier provides WCET and stack size analysis for a specific hardware

platform.

3.3 Filling the gap

3.3.1 The Gap

Investigated approaches and novel MoBREST methodology have been placed in the proposed

MBT taxonomy in tables 3.1, 3.2, and 3.3. Table 3.1 is concerned with Model class of the

taxonomy, table 3.2 with Test Generation class, and table 3.3 with Test Execution and Test

Evaluation classes.

3. MODEL-BASED TESTING 43

Ta
bl

e
3.

1:
P

os
iti

on
in

g
of

in
ve

st
ig

at
ed

M
B

T
ap

pr
oa

ch
es

w
ith

re
sp

ec
tt

o
M

od
el

cl
as

s
of

th
e

pr
op

os
ed

ta
xo

no
m

y

N
o

.
A

p
p

ro
ac

h
M

o
d

el

S
u

b
je

ct
R

ed
u

n
d

an
cy

C
h

ar
ac

te
ri

st
ic

s
P

ar
ad

ig
m

1
E

m
be

dd
ed

V
al

id
at

or
,

[2
1,

90
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

-

tic
,

da
ta

flo
w

an
d

tr
an

si
tio

n-
ba

se
d

2
M

Te
se

t
(C

T
M

/E
S

),
[9

2,

97
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

3
R

ea
ct

is
V

al
id

at
or

,
[7

1,

88
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

4
R

ea
ct

is
Te

st
er

,[
71

,8
8]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

-

tic
,

da
ta

flo
w

an
d

tr
an

si
tio

n-
ba

se
d

5
S

L
V

V
,[

86
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

6
S

L
D

V
,[

87
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

3. MODEL-BASED TESTING 44

Ta
bl

e
3.

1:
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

...

N
o

.
A

p
p

ro
ac

h
M

o
d

el

S
u

b
je

ct
R

ed
u

n
d

an
cy

C
h

ar
ac

te
ri

st
ic

s
P

ar
ad

ig
m

7
S

ys
te

m
Te

st
,[

98
]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

8
T

P
T

,[
22

,2
3]

en
vi

ro
nm

en
t

se
pa

ra
te

tim
ed

,h
yb

rid
tr

an
si

tio
n-

ba
se

d

9
M

E
va

l,
[1

03
,1

04
]

no
ta

pp
lic

ab
le

(N
/A

)
N

/A
N

/A
N

/A

10
M

iL
E

S
T

,[
2,

10
5]

en
vi

ro
nm

en
ta

nd
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

hi
st

or
y

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

-

tic
,

da
ta

flo
w

an
d

tr
an

si
tio

n-
ba

se
d

11
C

od
e

G
en

er
at

io
n

To
ol

s

Te
st

in
g,

[9
,7

2]

N
/A

N
/A

N
/A

N
/A

12
V

T
B

-R
T

,[
25

]
S

U
T

in
te

gr
at

ed
tim

ed
,h

yb
rid

N
/A

13
S

B
S

,[
77

,2
8,

78
,7

9]
N

/A
N

/A
N

/A
N

/A

14
V

E
T

E
S

S
,

[1
06

,
10

7,

10
8]

S
U

T
,e

nv
iro

nm
en

t
in

te
gr

at
ed

un
-t

im
ed

,d
is

cr
et

e
tr

an
si

tio
n-

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic

15
M

O
S

,[
10

9,
11

0]
S

U
T

se
pa

ra
te

un
-t

im
ed

,d
is

cr
et

e
tr

an
si

tio
n-

ba
se

d,
de

te
r-

m
in

is
tic

16
H

TG
,[

20
]

S
U

T
in

te
gr

at
ed

un
-t

im
ed

,h
yb

rid
tr

an
si

tio
n-

ba
se

d

3. MODEL-BASED TESTING 45

Ta
bl

e
3.

1:
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

...

N
o

.
A

p
p

ro
ac

h
M

o
d

el

S
u

b
je

ct
R

ed
u

n
d

an
cy

C
h

ar
ac

te
ri

st
ic

s
P

ar
ad

ig
m

17
E

TA
S

R
T

2,
[1

11
]

en
vi

ro
nm

en
ta

nd
S

U
T

se
pa

ra
te

tim
ed

,h
yb

rid
tr

an
si

tio
n-

ba
se

d,

hi
st

or
y-

ba
se

d,
fu

nc
-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

18
S

C
A

D
E

S
ui

te
,

[1
12

,1
13

]

S
U

T
in

te
gr

at
ed

tim
ed

,h
yb

rid
de

te
rm

in
is

tic
,

da
ta

flo
w

an
d

tr
an

si
tio

n-
ba

se
d

19
M

oB
R

E
S

T
en

vi
ro

nm
en

ta
nd

S
U

T
in

te
gr

at
ed

tim
ed

,h
yb

rid
hi

st
or

y
ba

se
d,

fu
nc

-

tio
na

l,
de

te
rm

in
is

tic
,

da
ta

flo
w

3. MODEL-BASED TESTING 46

Ta
bl

e
3.

2:
P

os
iti

on
in

g
of

in
ve

st
ig

at
ed

M
B

T
ap

pr
oa

ch
es

w
ith

re
sp

ec
tt

o
Te

st
G

en
er

at
io

n
cl

as
s

of
th

e
pr

op
os

ed
ta

xo
no

m
y

N
o

.
A

p
p

ro
ac

h
Te

st
G

en
er

at
io

n

S
el

ec
ti

o
n

C
ri

te
ri

a
Te

ch
n

o
lo

g
y

S
co

p
e

1
E

m
be

dd
ed

V
al

id
at

or
,

[2
1,

90
]

te
st

ca
se

sp
ec

ifi
ca

tio
n

au
to

m
at

ic
,

of
fli

ne
,

m
od

el

ch
ec

ki
ng

in
te

gr
at

io
n

2
M

Te
se

t
(C

T
M

/E
S

),
[9

2,

97
]

te
st

ca
se

sp
ec

ifi
ca

tio
n

m
an

ua
l,

of
fli

ne
sy

st
em

3
R

ea
ct

is
V

al
id

at
or

,
[7

1,

88
]

fu
nc

tio
na

l
re

qu
ire

m
en

ts
co

v-

er
ag

e

of
fli

ne
sy

st
em

4
R

ea
ct

is
Te

st
er

,[
71

,8
8]

st
ru

ct
ur

al
co

de
an

d
m

od
el

co
ve

ra
ge

,d
at

a
co

ve
ra

ge

of
fli

ne
co

m
po

ne
nt

,s
ys

te
m

5
S

L
V

V
,[

86
]

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

m
an

ua
l

co
m

po
ne

nt

6
S

L
D

V
,[

87
]

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

,

da
ta

co
ve

ra
ge

,
te

st
ca

se

sp
ec

ifi
ca

tio
n

au
to

m
at

ic
,

of
fli

ne
,

th
eo

re
m

pr
ov

er

co
m

po
ne

nt

7
S

ys
te

m
Te

st
,[

98
]

st
oc

ha
st

ic
au

to
m

at
ic

,o
ffl

in
e

co
m

po
ne

nt
,s

ys
te

m

8
T

P
T

,[
22

,2
3]

te
st

ca
se

sp
ec

ifi
ca

tio
n,

da
ta

co
ve

ra
ge

,
re

qu
ire

m
en

ts
co

v-

er
ag

e

m
an

ua
la

nd
au

to
m

at
ic

,o
ffl

in
e

an
d

on
lin

e

co
m

po
ne

nt
,

in
te

gr
at

io
n,

sy
s-

te
m

9
M

E
va

l,
[1

03
,1

04
]

N
/A

N
/A

N
/A

10
M

iL
E

S
T

,[
2,

10
5]

da
ta

co
ve

ra
ge

,
re

qu
ire

m
en

ts

co
ve

ra
ge

,t
es

tc
as

e
sp

ec
ifi

ca
-

tio
n

of
fli

ne
co

m
po

ne
nt

,i
nt

eg
ra

tio
n

3. MODEL-BASED TESTING 47

Ta
bl

e
3.

2:
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

...

N
o

.
A

p
p

ro
ac

h
Te

st
G

en
er

at
io

n

S
el

ec
ti

o
n

C
ri

te
ri

a
Te

ch
n

o
lo

g
y

S
co

p
e

11
C

od
e

G
en

er
at

io
n

To
ol

s

Te
st

in
g,

[9
,7

2]

st
ru

ct
ur

al
co

de
co

ve
ra

ge
,

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

,

te
st

ca
se

sp
ec

ifi
ca

tio
n

au
to

m
at

ic
,o

ffl
in

e
sy

st
em

12
V

T
B

-R
T

,[
25

]
N

/A
N

/A
in

te
gr

at
io

n,
sy

st
em

13
S

B
S

,[
77

,2
8,

78
,7

9]
te

st
ca

se
sp

ec
ifi

ca
tio

n,
ra

n-

do
m

an
d

st
oc

ha
st

ic

au
to

m
at

ic
,o

ffl
in

e
in

te
gr

at
io

n

14
V

E
T

E
S

S
,

[1
06

,
10

7,

10
8]

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

au
to

m
at

ic
,o

ffl
in

e
in

te
gr

at
io

n,
sy

st
em

15
M

O
S

,[
10

9,
11

0]
te

st
ca

se
sp

ec
ifi

ca
tio

n,
st

ru
c-

tu
ra

lc
od

e
co

ve
ra

ge

au
to

m
at

ic
,m

od
el

ch
ec

ki
ng

in
te

gr
at

io
n

16
H

TG
,[

20
]

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

,

se
ar

ch
-b

as
ed

au
to

m
at

ic
,

gr
ap

h
se

ar
ch

al
-

go
rit

hm
s,

of
fli

ne

in
te

gr
at

io
n

17
E

TA
S

R
T

2,
[1

11
]

te
st

ca
se

sp
ec

ifi
ca

tio
n

m
an

ua
l/a

ut
om

at
ic

,o
ffl

in
e

in
te

gr
at

io
n

18
S

C
A

D
E

S
ui

te
,

[1
12

,1
13

]

st
ru

ct
ur

al
m

od
el

co
ve

ra
ge

,

re
qu

ire
m

en
ts

co
ve

ra
ge

,
te

st

ca
se

sp
ec

ifi
ca

tio
n

au
to

m
at

ic
an

d
m

an
ua

l,
m

od
el

ch
ec

ki
ng

,o
ffl

in
e

in
te

gr
at

io
n

19
M

oB
R

E
S

T
da

ta
co

ve
ra

ge
,

re
qu

ire
m

en
ts

co
ve

ra
ge

au
to

m
at

ic
an

d
m

an
ua

l,
of

fli
ne

co
m

po
ne

nt
,i

nt
eg

ra
tio

n

3. MODEL-BASED TESTING 48

Ta
bl

e
3.

3:
P

os
iti

on
in

g
of

in
ve

st
ig

at
ed

M
B

T
ap

pr
oa

ch
es

w
ith

re
sp

ec
tt

o
Te

st
E

xe
cu

tio
n

an
d

Te
st

E
va

lu
at

io
n

cl
as

se
s

of
th

e
pr

op
os

ed
ta

xo
no

m
y

N
o

.
A

p
p

ro
ac

h
Te

st
E

xe
cu

ti
o

n
Te

st
E

va
lu

at
io

n

In
te

g
ra

ti
o

n
L

ev
el

Te
ch

n
o

lo
g

y
S

p
ec

ifi
ca

ti
o

n
Te

ch
n

o
lo

g
y

1
E

m
be

dd
ed

V
al

id
at

or
,

[2
1,

90
]

M
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
qu

ire
m

en
ts

co
ve

ra
ge

m
an

ua
l,

of
fli

ne

2
M

Te
se

t
(C

T
M

/E
S

),
[9

2,

97
]

M
iL

,S
iL

,P
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
m

an
ua

l,
of

fli
ne

3
R

ea
ct

is
V

al
id

at
or

,
[7

1,

88
]

M
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

te
st

ev
al

ua
tio

n
sp

ec
ifi

-

ca
tio

ns

m
an

ua
l,

of
fli

ne

4
R

ea
ct

is
Te

st
er

,[
71

,8
8]

M
iL

,S
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
m

an
ua

l,
of

fli
ne

5
S

L
V

V
,[

86
]

M
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
qu

ire
m

en
ts

co
ve

ra
ge

m
an

ua
l,

on
lin

e

6
S

L
D

V
,[

87
]

M
iL

,S
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

te
st

ev
al

ua
tio

n
sp

ec
ifi

-

ca
tio

n

m
an

ua
l,

on
lin

e

7
S

ys
te

m
Te

st
,[

98
]

M
iL

,S
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
m

an
ua

l,
of

fli
ne

8
T

P
T

,[
22

,2
3]

M
iL

,S
iL

,P
iL

,H
iL

re
ac

tiv
e,

re
al

-t
im

e
re

fe
re

nc
e

si
gn

al

fe
at

ur
e-

ba
se

d

m
an

ua
l,

on
lin

e
an

d
of

-

fli
ne

9
M

E
va

l,
[1

03
,1

04
]

M
iL

,S
iL

,P
iL

,H
iL

,p
ro

d-

uc
t

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
of

fli
ne

3. MODEL-BASED TESTING 49

Ta
bl

e
3.

3:
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

...

N
o

.
A

p
p

ro
ac

h
Te

st
E

xe
cu

ti
o

n
Te

st
E

va
lu

at
io

n

In
te

g
ra

ti
o

n
L

ev
el

Te
ch

n
o

lo
g

y
S

p
ec

ifi
ca

ti
o

n
Te

ch
n

o
lo

g
y

10
M

iL
E

S
T

,[
2,

10
5]

M
iL

re
ac

tiv
e,

no
n-

re
al

-t
im

e
re

fe
re

nc
e

si
gn

al
-

fe
at

ur
e-

ba
se

d,
re

qu
ire

-

m
en

ts
co

ve
ra

ge
,

te
st

ev
al

ua
tio

n
sp

ec
ifi

ca
-

tio
ns

au
to

m
at

ic
an

d
m

an
ua

l,

on
lin

e

11
C

od
e

G
en

er
at

io
n

To
ol

s

Te
st

in
g,

[9
,7

2]

S
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
au

to
m

at
ic

,o
ffl

in
e

12
V

T
B

-R
T

,[
25

]
H

iL
re

ac
tiv

e,
re

al
-t

im
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
on

lin
e

13
S

B
S

,[
77

,2
8,

78
,7

9]
N

/A
N

/A
N

/A
N

/A

14
V

E
T

E
S

S
,

[1
06

,
10

7,

10
8]

S
iL

,P
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
m

an
ua

l,
of

fli
ne

15
M

O
S

,[
10

9,
11

0]
M

iL
,S

iL
no

n-
re

ac
tiv

e,
no

n-
re

al
-

tim
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
of

fli
ne

,a
ut

om
at

ic

16
H

TG
,[

20
]

M
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

te
st

ev
al

ua
tio

n
sp

ec
ifi

-

ca
tio

ns

au
to

m
at

ic

17
E

TA
S

R
T

2,
[1

11
]

M
iL

,S
iL

re
ac

tiv
e,

no
n-

re
al

-t
im

e
re

fe
re

nc
e

si
gn

al
-b

as
ed

,

te
st

ev
al

ua
tio

n
sp

ec
ifi

-

ca
tio

n

au
to

m
at

ic
,o

nl
in

e

18
S

C
A

D
E

S
ui

te
,

[1
12

,1
13

]

S
iL

,M
iL

,H
iL

no
n-

re
ac

tiv
e,

no
n-

re
al

-

tim
e

re
qu

ire
m

en
ts

co
ve

ra
ge

,

te
st

ev
al

ua
tio

n
sp

ec
ifi

-

ca
tio

n

m
an

ua
l,

of
fli

ne

3. MODEL-BASED TESTING 50

Ta
bl

e
3.

3:
C

on
tin

ue
d

fr
om

pr
ev

io
us

pa
ge

...

N
o

.
A

p
p

ro
ac

h
Te

st
E

xe
cu

ti
o

n
Te

st
E

va
lu

at
io

n

In
te

g
ra

ti
o

n
L

ev
el

Te
ch

n
o

lo
g

y
S

p
ec

ifi
ca

ti
o

n
Te

ch
n

o
lo

g
y

19
M

oB
R

E
S

T
P

iL
no

n-
re

ac
tiv

e,
re

al
-t

im
e

re
fe

re
nc

e
si

gn
al

-b
as

ed
au

to
m

at
ic

,o
ffl

in
e

3. MODEL-BASED TESTING 51

This analysis shows that there is very little support in investigated tools and methods for

real-time Processor-in-the-Loop unit and integration testing of hybrid embedded control sys-

tems. The TPT approach comes closest to this goal, but it has three major drawbacks: (i)

TPT-VM is written in C language and it is difficult to integrate it with custom RTOS written in

assembly language, (ii) the tool has response time in microseconds but in real-time component

testing nanosecond scale is often interesting, and (iii) the method does not support real-time

integration testing in a closed loop. This gap is filled with novel MBT method MoBREST, shortly

introduced in next subsection and elaborated in the chapters 5 through 9.

3.3.2 The Filling

The MoBREST is a novel approach to model-based development and testing of complex con-

trol algorithms for embedded systems with severe time constraints, e.g. regulation of power

converters. The method assumes that SUTs are built by integrating individual well defined

components using graphical block diagram based modeling language. MoBREST method cov-

ers two scopes of testing: component or unit testing and integration testing by its MoBREST-CT

and MoBREST-IT subsets, respectively.

The method is implemented by tool with the same name inside MATLAB/Simulink envi-

ronment. The MoBREST tool assumes existence of executable specification in the form of

MATLAB/Simulink model. The model can be verified against requirements using model check-

ing techniques, e.g. as in [21], or extensive functional testing, e.g. by applying test patterns as

in [2] or by using TPT [22, 23, 24]. Verified functional model, called Reference-Model in [21], is

then used as test oracle during PiL B2B testing.

Chapter 4

Model Based Development with
Legacy Components Integration

Model Based Development process must be backed by appropriate tool support. The enviro-

nment for MBD of real-time embedded control software should

• be flexible, modular, and extensible,

• provide graphical modeling environment,

• provide simulation capabilities, and

• enable integration of legacy software components.

The in-house development of entire model-based toolchain for the proprietary development

environment introduced in section 1.1 would be exceedingly expensive, so integration of legacy

tools and processes into an off-the-shelf environment has been evaluated. MATLAB tool family

by MathWorks has been chosen because it fulfills most of the said requirements and also

because:

• it is widely used in academia as well as in industry – according to [2], about 50% of

functional behaviour of embedded systems is modeled using this environment,

• it is easily extensible by a variety of toolboxes,

• Simulink toolbox enables creation of graphical block diagrams and their simulation,

• powerful scripting language enables user-built extensions,

• there exists prior in-house experience with this family of products,

• in [5] it is shown how MATLAB can be used to create a complete MBD environment for

industrial embedded systems.

MATLAB/Simulink falls short on the integration of legacy assembly software components

so the environment has been extended by GRAPlab toolbox, developed in the scope of this

research. The toolbox consists of Simulink blockset and an automatic code generation tool that

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 53

enables automatic generation of "GRAP code" out of Simulink models. In essence, Simulink

has been used as a replacement for GRAP in building graphical modules, their compilation and

linking into executable applications. The approach has been verified for C2000 family of Texas

Instruments’ DSCs and for 8051 family of Silicon Laboratories’ microcontrollers, but can easily

be expanded to other GRAP-supported architectures of microprocessors, microcontrollers and

signal processors.

4.1 The blockset

Each block in GRAPlab Simulink blockset consists of:

• Simulink masked atomic subsystem,

• definition of parameter dependencies in the dependencies file, and

• initialization function.

Block masks are in Simulink’s help documentation defined as: "Masks are custom inter-

faces you can apply to Simulink blocks. A mask hides the user interface of the block, and

instead displays a custom dialog control for specific parameters of the masked block". Block

masks cannot be saved separately from the block that it masks and it cannot be applied to

more than one block, [117]. This drawback of the Simulink’s block masking approach hinders

mask reuse and is alleviated in GRAPlab toolbox by the system of parameter dependencies

and initialization functions.

Figure 4.1: Integrator block from GRAPlab blockset

In GRAPlab blockset each block is a masked atomic subsystem that implements func-

tionality of one or more GRAP elements in a way to emulate the corresponding GRAP block(s)

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 54

functionality as close as possible. This ensures that the model during simulation behaves much

the same as the target code generated from it during execution on the target. Subsystem’s set-

tings are modified through dialog window whose layout is determined by the relations between

different settings, as defined in dependency file. Based on the chosen settings, initialization

function modifies the subsystem’s content if necessary.

Some of the GRAPlab blocks are native Simulink built-in blocks wrapped inside masked

atomic subsystems, for example Integrator blocks shown in Fig. 4.1. In such cases mask

parameters map directly to underlying block’s parameters and wrapping is necessary only be-

cause of structure of the code generation procedure.

Figure 4.2: SWGNL block from GRAPlab blockset

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 55

Other blocks are implemented by a more complex composition of various Simulink built-

in blocks. An example is given in Fig. 4.2. Here SWGNL block that generates saw sig-

nal is shown. User defined blocks can also be implemented by masked M-file S-function

blocks, [118]. The two approaches were validated by comparing subsystem-type blocks MEM-

PLAY and RECORDER, and their functional M-file S-function counterparts MEMPLAYS and

RECORDERS. The two blocks are used for playback of signals from memory and for recording

signal waveforms into target memory, respectively. Although writing M-file block from scratch

offers greater freedom in design, subsystem-type blocks have shown to be much faster during

simulation so this was the preferred choice.

The contents of the block’s subsystem as well as the layout of its’ dialog window depend

on the chosen settings. When a setting is changed a callback function is invoked that analyzes

block’s dependency file, adjusts dialog layout accordingly and modifies subsystem content if

necessary. The structure of the dependency definitions is illustrated with equation 4-1. For

example, if on the dialog in the figure 4.2 Dialog option is chosen from the Maximum source

parameter’s drop-down menu, than a Maximum value field is revealed on the dialog, as can be

seen on Fig. 4.3. The two precondition-postcondition pairs that govern Maximum value field

visibility based on Maximum source selection are given in equation 4-2. Here the Value field of

Maximum value postcondition is not defined because it is not modified by the Maximum source

setting.

ifPRECONDITION1 than POSTCONDITION1

ifPRECONDITION2 than POSTCONDITION2

...

ifPRECONDITIONN than POSTCONDITIONN

where

PRECONDITIONn.Name = ParameterName

PRECONDITIONn.V alue = ParameterV alue(s)

and

POSTCONDITIONn.Name = ParameterName

POSTCONDITIONn.V alue = ParameterV alue

POSTCONDITIONn.Enabled =< 1/0 >

POSTCONDITIONn.V isible =< 1/0 >

(4-1)

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 56

PRECONDITION1.Name = ”Maximum source”

PRECONDITION1.V alue = ”Dialog”

POSTCONDITION1.Name = ”Maximum value”

POSTCONDITION1.Enabled = 1

POSTCONDITION1.V isible = 1

and

PRECONDITION2.Name = ”Maximum source”

PRECONDITION2.V alue = ”NULL” or ”Port”

POSTCONDITION2.Name = ”Maximum value”

POSTCONDITION2.Enabled = 0

POSTCONDITION2.V isible = 0

(4-2)

Based on options selected from the dialog and/or set by the dependency rules, initialization

function modifies block’s subsystem content if necessary. For example, default settings and

content of the SWGNL block are shown in Fig. 4.2. When settings are changed by the user,

layout of the block’s dialog is adjusted, subsystem content is modified and block’s graphical

symbol is updated. An example of impact of settings modification on SWGNL block’s subsystem

content, dialog and symbol is shown in figure 4.3. When Maximum source parameter value is

changed from Port to Dialog, following changes to the block occur:

• Max block of the Inport type inside SWGNL block’s subsystem is replaced by the Constant

block with the same name, detail 1 on Fig. 4.3.

• Maximum value edit field on block dialog is shown, detail 2 on Fig. 4.3.

• Block’s graphical symbol is updated, detail 3 on Fig. 4.3.

The approach with parameter dependency definitions enables reuse of block subsystems

for different target systems. A block’s subsystem can be defined in one Simulink (sub)library

and than reused as a link in (sub)libraries corresponding to other target systems. To each

instance of the block, a parameter dependency definition file is assigned that customizes dialog

layout according to the target system. This way, any changes to the block’s masked subsystem

can be made on the original instance and are automatically propagated to all linked instances.

An example can be seen in Fig. 4.4. In C2000 environment, Summation block can have 2, 3,

or 4 inputs and data type can be chosen between int16, int32 or single. On the other hand,

in 8051 environment the same block can have only 2 inputs and data type is always int16 so

these parameters can’t be modified.

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 57

Figure 4.3: SWGNL block with changed settings

Figure 4.4: Dependency file enables block interface customization for different target systems

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 58

4.2 The model

Simulink models compatible with ACG procedure that integrates legacy software components

can be constructed using blocks from the GRAPlab blockset. Code generation procedure in-

troduces some additional recommendations and restrictions on the model:

• Fixed-step discrete solver should be used.

• Block and line names must not contain space characters and should be eight or less

characters long.

• One-level deep partitioning of the model into atomic subsystems is supported.

• Outport-Inport block pairs that pass signals between subsystems must be named and

have the same name.

GRAPlab blockset is designed to model GRAP legacy software components library so it

doesn’t contain continuous blocks. That is why it only makes sense to use discrete solvers in

these models. Also, if simulation traces are to be compared with automatically generated code

traces, than fixed-step solver should be used. Target application programs always execute with

fixed task execution periods so fixed-step solver removes the need for time scaling and aligning

of the two traces.

During code generation, target application signal names are constructed out of Simulink

model’s block or line names. Target application signal names in the proprietary environment

cannot contain spaces and are at most eight characters long. If signal name is constructed

from block/line name that is longer than eight characters, than the block/line name is truncated

to eight characters. This could lead to ambiguities and errors due to multiply defined signal. For

example, if two source blocks in Simulink model are named InputVoltage1 and InputVoltage2,

than both model signals will be mapped to application signal named InputVol and this will

produce error during code generation.

Organization of the model into subsystems is supported only with atomic subsystems on

root level of the model. This significantly simplifies mapping of the model structure onto tar-

get application structure during code generation: each atomic subsystem on model root level is

mapped onto one composite component (program module) of the application program. Subsys-

tems output and input signals using Outport and Inport block, respectively, but the connection

between subsystems is implemented with lines on model’s root level. On the other hand, GRAP

application connects composite components using external definition and external reference

atomic components that are associated by textual label, i.e. signal name. During code genera-

tion Outport and Inport blocks are mapped to external definition and external reference atomic

components with textual labels same as respective block name. Thus, connected Outport and

Inport blocks must have the same name.

If the code is to be generated from the whole model, than the whole model must/should

comply to the stated restrictions/recommendations. An example of such models is given in

Fig 4.5. This model imports previously measured acceleration waveform and integrates it twice

to produce acceleration velocity and displacement. Calculated signals are compared to referent

velocity and displacement waveforms, [119].

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 59

Figure 4.5: Simulink-GRAPlab model ready for automatic code generation

Figure 4.6: Simulink model with GRAPlab subsystem ready for code generation

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 60

The target code can also be generated from only a part of the Simulink model. In this case,

the subsystem that is to partake in code generation must comply to GRAPlab’s restrictions.

This is shown on an example of DC-DC boost converter with inductor current estimator given

in Fig. 4.6, [120]. The code is generated from the CurrentEstimator subsystem.

4.3 The code

Code generation is conducted in two steps: firstly Simulink model is translated into GRAP

source files and secondly listing, object and executable code files are generated. The second

step is preformed in the same manner as during code generation from GRAP (section 1.1),

i.e. the same software tools are used with the difference that they are here invoked from inside

MATLAB environment. The crucial step is thus the creation of source files out of Simulink model

to feed the code generation software tools.

4.3.1 Simulink to GRAP conversion

The conversion of GRAPlab-compatible Simulink model (or subsystem) into GRAP source files

is performed in following steps:

1. Get blocks – Simulink model is analyzed and all information necessary for subsequent

steps are extracted.

2. Group blocks – Blocks are grouped into program modules according to the model layout.

3. Purge and order blocks – Blocks that don’t partake in code generation (e.g. Scope

and Terminator blocks) are removed from the list and the remaining blocks are reordered

according to GRAP composite component layout conventions.

4. Resolve line names – Line name resolution is necessary because GRAP passes sig-

nals between assembly macros by referencing them with signal names. If a signal in an

application program is not named, GRAP assigns it a generic name. Simulink, on the

other hand, connects blocks using tree-like line structure with branches and numerical

designators. The conversion utility maps Simulink line with all its branches onto a signal

that is named based on source or destination block name, parent line name or parent line

designator.

5. Construct macro calls – A conversion function is assigned to each GRAPlab block that

generates a macro call based on: block settings, block mappings definition and target

system. In this step, such function is called for every GRAPlab block in the model.

6. Write source files – At the end of the conversion process, module source files and

application definition file are created. These files are inputs for further code generation

that results in executable files.

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 61

4.3.2 Block to component mapping

Each GRAPlab block has a mapping file that defines to which legacy component the block is

mapped during code generation. Separate block mapping definition is provided for each sup-

ported embedded target. Mapping files are structured as parameter name-value pairs. If block

parameters are the same as parameters of a mapping rule, than block is in generated code

represented by atomic component defined by that mapping rule. Fig. 4.7 shows an examples

of mapping definitions for Summation GRAPlab block. Based on the embedded target and

the block parameters, this block can be mapped onto a number of atomic components. In the

example, mapping rules for DIFF_F and SUM4_L atomic components are shown:

• Summation block is mapped onto DIFF_F atomic component if data type is "single", if it

has two inputs, and if the second input has a minus sign.

• Summation block is mapped onto SUM4_L atomic component if data type is 32-bit integer,

if it has three or four inputs, and if input signs for second, third and forth inputs are as

stated in Fig. 4.7.

Figure 4.7: Example of mappings definition for Summation GRAPlab block

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 62

Mappings definitions can have TestVals field that is used during automatic component

testing and is explained in chapter 5.

4.3.3 Code generation customization

Mapping and dependencies definition files are specified on Code generation tab of the block’s

dialog window. These fields are set by default to point to respective blockset’s definition files,

but can be changed by the advanced user that wishes to customize block layout and/or its

mapping during code generation. On the same tab, mapping can be forced to user specified

value via Force mapping field. For example, Summation block that adds two 32-bit integer

signals will by default be mapped to SUM2_L atomic component. By setting Force mapping

field value to SUM4_L, user can force code generation procedure to implement this block with

SUM4_L atomic component whose two inputs will be left unused. A callback function checks

Force mapping field and reports error if invalid value is specified, e.g. if floating-point atomic

component SUM2_F is forced for summation of integer signals.

Figure 4.8: Code generation tab of the GRAPlab block dialog window

User can also manually specify execution order of the component(s) to which block is

mapped via Order of execution field. Default value of "-1" means that execution order of the

component(s) will be automatically determined by the code generation tool based on the sorted

order of the Simulink block.

XDEF output checkbox causes all block’s output signals to be "externally defined", i.e.

to be visible to the user during generated code execution on the target system. Some of the

signals will be externally defined by default, e.g. signals that cross subsystem boundaries and

all signals connected to Outport blocks. The XDEF output option enables user to get better

insight into generated code during its’ execution on embedded target which is especially useful

during application debugging.

Switching between automatic and manual execution order setting can be performed on a

subsystem (i.e. composite component) level by placing the ModConf GRAPlab block inside the

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 63

subsystem. If manual is selected in the Order of execution drop-down menu, than during code

generation Order of execution settings of all blocks in the subsystem are taken into account and

every block displays the setting in an annotation shown beneath its’ name, Fig. 4.9. If automatic

option is selected, than Order of execution of all blocks in the subsystem is set to default value

of "-1", annotations are not displayed and previous manual setting of each block is saved so

that it could be restored by selecting manual option again.

Figure 4.9: ModConf GRAPlab block configures settings on a composite component level

4.3.4 Mixing Simulink and GRAP

Figure 4.10: GRAP code generation from Simulink

4. MODEL BASED DEVELOPMENT WITH LEGACY COMPONENTS INTEGRATION 64

Described code generation process results in a complete application program that can be

loaded onto embedded target system and executed. Also, assembled object files correspond-

ing to program modules designed in Simulink can be linked with object files generated in GRAP,

Fig. 4.10. This way, algorithmically intense parts of application program can be developed in

MATLAB/Simulink environment and linked to hardware-dependant input/output modules and

legacy modules developed in GRAP.

Chapter 5

Component Real-Time Testing

This chapter elaborates the MoBREST Component Testing (MoBREST-CT) method. The real-

time component testing is performed by combining non-real-time test cases from previous

phases of development with the RTTP. Component test cases at non-real-time level are in-

put signals, or test vectors, and expected output signals. Test vectors can be created in various

ways, e.g. by using methods from section 3.2, and expected outputs, also called simulation

traces, are obtained by component model simulation. The RTTP measures execution time of

the component under test and validates its’ behaviour in respect to interrupts. This way, the

MoBREST-CT method represents extension to the available functional MBT.

Figure 5.1: MoBREST component testing workflow

Workflow of the MoBREST-CT is shown in Fig. 5.1. Based on component interface analy-

sis, its’ mapping to component variants, or low-level atomic components, is determined. Each

variant’s configuration space is than partitioned to obtain all possible component variant con-

5. COMPONENT REAL-TIME TESTING 66

figurations. Decomposition of a component into variants and of a variant into configurations

is done using CTM. Test vectors are imported from previous stages of functional MBT or they

are automatically created by employing CTM for data partitioning. Configurations specification

is combined with RTTP in automatic generation of test models. Embedded target executable

code is, also automatically, generated from the test model, execution times of parts of code are

measured by executing the generated code on the target and test duration is calculated based

on these measurements. Test model is simulated to provide simulation traces used as test ora-

cle which is compared to code execution traces to provide test verdict. All steps of component

testing are automatically documented in a LATEX-based test report. Each of the listed steps is

explained in the remainder of this chapter.

5.1 Classification Tree Method

Classification Tree Method, already introduced in section 3.2, is used extensively by the Mo-

BREST method so this section explains it in more details. It is an approach to black-box parti-

tion testing, [91], whose starting point is functional specification of the test object out of which

test-relevant aspects are identified. Next, classification for each aspect and classes for each

classification are formed. The resulting classes may be further classified. This partitioning

of the test object’s input domain is graphically represented by a classification tree. The tree

acts as the head of a combination table inside which test cases are constructed by combining

classes of different classifications. Test case design by CTM is a structured and systematic

process which makes it easier to handle, understand and document.

An illustrative example of CTM application is taken from [91]. Test cases are generated for

a computer vision system that determines sizes of different building blocks, Fig. 5.2 a). Test

aspects are selected to be size, color and shape of blocks, Fig. 5.2 b).

Figure 5.2: CTM example – a) computer vision system, b) aspects for classification, [91]

Size classification can be partitioned into small and large classes, colour classification

can have red, green and blue classes and shape can be described by circle, triangle and

square classes. In Fig. 5.3 the triangle class is further described with shape of triangle class

partitioned into equilateral, isosceles and scalene. The classification tree obtained by described

input domain partitioning represents head of the combination table out of which test cases are

5. COMPONENT REAL-TIME TESTING 67

selected. According to selections in the Fig. 5.3, computer vision system will be tested in three

test cases with:

1. large red circle,

2. small green square and

3. small blue isosceles triangle.

Figure 5.3: CTM example – classification tree, [91]

The selection of test cases or steps from the classification tree’s combination table can be

conducted based on different classification tree coverage criteria, [96]:

• The minimum criterion prescribes that every class in the classification tree must be se-

lected in a least one test step. This criterion can be fulfilled with relatively small number

of test steps but it usually achieves low error detection rate.

• The maximum criterion requires that every possible combination of classes is selected in

at least one test step. Although this criterion leads to high error detection rate, combina-

torial explosion in case of large number of classes makes it impractical.

• The n-wise criterion requires that every combination of n classes is selected in at least

one test step. This criterion represents a compromise between minimum and maximum

criteria. For example two-wise and three-wise criteria are often used.

5. COMPONENT REAL-TIME TESTING 68

5.2 Variants and Configurations

The first step of the MoBREST-CT method is analysis of the tested component’s ACG mapping

to target specific component implementations and configuration space partitioning for each of

these low-level components. This step is performed automatically by applying CTM. In the

remainder of the thesis, the following nomenclature is used in regard to component testing:

• Component is a target independent high-level software component that can during code

generation be mapped into different low-level target dependant software components.

• Component variant or just variant is a low-level software component, a target specific

implementation of the high-level component.

• Component variant configuration, variant configuration or just configuration repre-

sents parameters and connection layout of the component variant.

In this thesis, the MoBREST-CT method is applied to GRAPlab Simulink blocks utilized in

ACG as presented in chapter 4. GRAPlab block can be mapped onto different atomic com-

ponents (component variants) during automatic code generation based on block’s and ACG

procedure’s settings. Each atomic component can be parametrized by textual labels and can

have unconnected inputs and outputs. Fig. 5.4 shows an example of such partitioning for Sum-

mation GRAPlab block. Partitioning of this component is based on number of inputs, input

signs and data type. Two variants are shown in the example: DIFF_F variant has only one

configuration and SUM4_L variant can have a number of configurations that are distinguished

by number of connected inputs and input sign labels.

Figure 5.4: Summation component partitioning into variants and configurations

5. COMPONENT REAL-TIME TESTING 69

The introduced component testing nomenclature translates in case of GRAPlab compo-

nent testing into:

• Component is a Simulink block, more specifically a block from GRAPlab blockset.

• Component variant is a legacy software component, i.e. GRAP programming element.

• Component variant configuration represents GRAP programming elements’ parame-

ters and port connectivity.

5.2.1 Automatic Partitioning of the Configuration Space

Configuration space of the tested software component is automatically partitioned to produce

parameters classification tree. It defines sets of parameter values that are to be applied to

the component during test case generation. This is a stepwise process based on component

definition presented in chapter 4:

1. Classification tree is constructed based on all possible component parameters’ values.

2. Classification tree editor (see section 5.7) dependency rules are created from compo-

nent’s dependency definition file.

3. Classification tree editor test case generation rules are created from component’s map-

pings definition file.

4. Test cases are generated in classification tree editor and exported to M-files.

5. Test cases are imported into MATLAB and configurations are instantiated.

For example, Summation component has five parameters that partake in this process:

• Number of inputs (NumIn),

• Input X sign (InXSign) where X is 2, 3, or 4, and

• Output type (OutType).

These parameters and all their possible values are extracted from component’s interface, as

depicted by step 1 in Fig. 5.5, and used in automatic creation of the parameters classification

tree.

In the second step, component’s dependency definition file is read and dependencies are

translated to classification tree editor’s dependency rules. These rules are employed by the

editor during automatic generation of test cases. For example, if two inputs are selected than

In3Sign and In4Sign parameters must be set to NULL value. This is illustrated by step 2 in

Fig. 5.5.

5. COMPONENT REAL-TIME TESTING 70

Figure 5.5: Summation component parameter space partitioning process

5. COMPONENT REAL-TIME TESTING 71

Besides dependency rules, classification tree editor needs test case generation rules for

automatic test case creation. Generation rules are automatically constructed based on informa-

tion obtained from component’s mappings definition file. For each mapping, a variant is created

and to each set of mappings’ parameters, a variant configuration is assigned. Mapping defini-

tion determines each parameter’s value or a set of values. If a mapping definition has TesVals

field (see Fig. 4.7), than configurations are generated that cover all the stated parameter values.

If the mapping definition doesn’t have this field, than configurations are generated with values

from the Value field. The difference between these two fields is that Value field is used for code

generation and TesVals field, if present, is only used for configuration space partitioning. For

example, the Value field of the Sum4_L mapping definition, Fig. 4.7, determines that Summa-

tion component is mapped onto Sum4_L variant if it has three or four inputs. The TestVals field

of the same mapping definition determines, on the other hand, that during component testing

every possible number of inputs will be checked. So a test case will be generated that will force

mapping of the Summation component onto Sum4_L variant with only two connected inputs.

Classification tree, dependency and test generation rules automatically created by the Mo-

BREST testing tool are imported into classification tree editor. Here, they can be inspected

and edited in a graphical environment. The test cases, e.g. the ones shown in combination

table on Fig. 5.5 in step 4, are automatically created by the editor on a mouse click. The editor

supports test case export to MATLAB format so that they can be imported and interpreted by

the MoBREST tool. For each component variant configuration, a separate Simulink model file

is created that contains the tested component with corresponding settings. This is illustrated on

Fig. 5.5 with step 5 where, besides configured components, atomic components to which they

map are shown.

5.3 Test Vectors

Test vector generation procedure is somewhat similar to the described configuration space

partitioning. Here also partitioning based on classification tree method is performed, but input

data ranges are partitioned in stead of configuration space. The process is conducted in the

following steps:

1. Classification tree is constructed based on variant configuration input interface, i.e. num-

ber of inputs and their data types.

2. Test steps are generated inside classification tree editor to achieve selected classification

tree coverage criterion.

3. Test vector specifications are imported into MATLAB and test signals are instantiated.

Test vector generation can be performed fully automatically or the tester can tweak individual

steps manually. It is repeated for every configuration of every variant of the tested component.

In the first step, configuration’s input interface is analyzed so that number of inputs and

their data types are determined. This is done by enumerating Inport Simulink blocks inside

GRAPlab masked subsystem block and by extracting their parameters. Besides data type,

5. COMPONENT REAL-TIME TESTING 72

specific values for each input are identified in this step, if they are defined by the Description

parameter of the respective Inport block. Classification tree is constructed so that a classifica-

tion is created for each input and classes for each classification are defined by partitioning its’

data space into equivalence classes. For example, DIFF_L variant configuration of the Sum-

mation component has two inputs, so the classification tree in Fig.5.6 has two classifications,

In01 and In02. Each input’s characteristic value represents a class, as well as value ranges

between adjacent characteristic values. For example, if an input is of 16-bit integer data type

and if 1000 is defined as its’ specific values, than equivalence classes would be:

• -32768,

• between -32768 and 0,

• 0,

• between 0 and 1000,

• 1000,

• between 1000 and 32767, and

• 32767.

Data partitioning is based on the uniformity hypothesis according to which the test of a repre-

sentative value from each equivalence class is assumed to be equivalent to any other value of

that class. In other words this means that an error revealed by one value from the equivalence

class should be detected by all other test cases of the same equivalence. For the given 16-bit in-

teger input example this would mean that if component works correctly for input values -32768,

-16384, 0, 500, 1000, 16384, and 32767, than it should work correctly for all values of that

input. Equivalence partitioning is a heuristic method and the quality of produced tests depends

on accuracy and detailedness of functional specification and of performed classification, [9].

Inside classification tree editor, test vector specification generation is conducted by em-

ploying test case generation rules generated by the MoBREST tool. Specification is exported

to M-files, imported by the MoBREST tool and test vector waveforms are automatically instan-

tiated. Selected equivalent classes of a classification, i.e. input, in the adjacent test steps are

connected by a linear signal segment with predefined number of samples.

An example of the vector classification tree for the DIFF_L variant configuration of the

Summation component is given in Fig. 5.6. Here, minimal classification tree coverage criteria

is employed for test vector specification generation. Test vectors are instantiated by connecting

selected classes in the combination table. In the example on Fig. 5.6 first input In01 is con-

structed by connecting the most negative value (dashed green arrow 1) with value from "(0,

32767)" equivalent class (dashed green arrow 2), by connecting this value with zero (dashed

green arrow 3) and so on. In02 test vector is created in the same manner, i.e. by connecting

classes of the In02 classification of the vector classification tree, as suggested by red dotted

arrows in the figure. By instantiating test vector specification defined with the classification

tree and corresponding combination table, signal waveforms shown in the same figure are pro-

duced.

5. COMPONENT REAL-TIME TESTING 73

Figure 5.6: Input data partitioning and test vectors generation for DIFF_L configuration

5. COMPONENT REAL-TIME TESTING 74

5.4 Test Model

5.4.1 The Pattern

After test vector generation, the MoBREST-CT method proceeds to construction of test model.

The model is generated fully automatically based on RTTP and on artifacts from preceding

steps. Structure of the RTTP is shown in Fig. 5.7 a). An instance of the component for each

configuration is created on the high priority cyclic task 1 (CT1). On the low priority cyclic task 2

(CT2), the tested instance of the component is placed alongside a variable CPU load generator.

Variable load ensures that execution of the code of the configuration under test is interrupted at

each possible point by CT1 when the code generated from the model is executed on the target

system, Fig. 5.7 c). This kind of pattern is repeated with each component variant configuration

on the CT2 so that one test model is generated for every configuration of the component variant.

The test pattern uses thus only two cyclic tasks with highest priority. Rest of the lower

priority cyclic tasks present in the target system are available during test execution for additional

monitoring or some other auxiliary functions. The pattern assumes that CT1 is not interrupted

and that CT2 is interrupted only by CT1. This means that asynchronous tasks must either have

lower priority than CT1 and CT2 or that they must be disabled during test execution.

Simulink implementation of the RTTP illustrated by Fig. 5.7 a) is shown on the Fig. 5.7 b).

It contains six types of subsystems:

• LoadBeg and LoadEnd subsystems are specifications for generating target code used

in execution time measurement. The code is inactive during regular test run and the

subsystems have no effect during simulation.

• IntWDog subsystem is a specification for generating target code that monitors interrupt

latency caused by the component under test during test application execution on the

embedded target system. It has no function in simulation.

• Conf_001 subsystem is reproduced for each component configuration, so that instantiated

test model contains subsystems Conf_001, Conf_002, ..., Conf_n, where n is the number

of possible variant configurations. The code generated from all these subsystems is ex-

ecuted on the high priority task so that it interrupts the execution of tested configuration’s

code.

• Conf_CUT subsystem houses component variant configuration that is being tested and

the variable CPU load generator block. This block has no function during simulation but

represents specification for corresponding code generation.

• Log subsystem records all test relevant signals in the model during simulation, same as

the code generated from it does during test application execution on the target.

5. COMPONENT REAL-TIME TESTING 75

Figure 5.7: Mapping between a) RTTP diagram, b) Simulink implementation of the RTTP, and

c) task interrupt scheme

Script with model parameters is also a part of the RTTP. This script, when instantiated,

defines cyclic task execution periods, test run duration, and it assigns test vectors to the model.

5. COMPONENT REAL-TIME TESTING 76

5.4.2 Instantiation

Test models are instantiated by copying the pattern model, populating it with component under

test and modifying it accordingly. Test models are parametrized by scripts which are instantiated

by modifying a pattern script. Multiple sets of parameters, i.e. multiple parameter scripts, can

be generated for a single test model.

Fig. 5.8 shows test model root view, the pattern is given on the left-hand side and the right-

hand side provides example instance for the SUM4_L variant of the Summation component.

The pattern is instantiated by reproducing Conf_001 subsystem for each configuration of the

respective component variant. In this example that means 14 instances of the Conf_n subsys-

tem because SUM4_L variant of the Summation component has 14 possible configurations,

see section 5.2. The remaining subsystems are populated and configured accordingly.

Figure 5.8: Test model root; pattern on the left and instantiated on the right

Tested configuration is placed inside Conf_CUT subsystem. MEMPLAY blocks reproduce

signals from MATLAB workspace during simulation or from embedded target’s memory dur-

ing code execution. One of these blocks is connected to each of the configuration’s inputs.

Rest of the blocks inside Conf_CUT subsystem are used for real-time properties testing of the

generated code and have no effect during simulation:

• CpuLoad – block generates variable CPU load which ensures that tested configuration is

interrupted at each possible point;

• set pin and clear pin – blocks are used to control state of one of the target controller

general-purpose output pins so that code execution can be monitored by oscilloscope;

• TocCT2A and Peaks – blocks, together with LoadBeg subsystem on the root model level,

measure execution time of the code on the CT2 that executes before the tested configu-

ration;

• TicCUT and TocCUT – blocks measure execution time of the tested component.

5. COMPONENT REAL-TIME TESTING 77

Figure 5.9: Conf_CUT subsystem of the test model; pattern on the left and instantiated on the

right

Figure 5.10: Conf_n subsystems of the test model; pattern on the left and instantiated on the

right

All Conf_n subsystems’ content is basically the same: MEMPLAY blocks configured to

reproduce test vectors for the respective configuration and the configuration instance, Fig. 5.10.

5. COMPONENT REAL-TIME TESTING 78

Configuration instances on the CT1 are used only to interrupt the tested configuration so their

outputs are not considered.

The Log subsystem is customized to record all outputs of the tested configuration, Fig. 5.11.

This subsystem is somewhat cluttered as a result of Simulink’s autorouting used during auto-

matic model generation.

Figure 5.11: Log subsystem of the test model; pattern on the left and instantiated on the right

IntWDog subsystem is shown in Fig. 5.12. Target code corresponding to this subsystem

is executed just after the code corresponding to LoadBeg subsystem. It starts by reading cur-

rent value of the timer that generates cyclic interrupt. The example in Fig. 5.12 is for Texas

Instruments’ TMS320F28335 digital signal controller where cyclic tasks are led by general pur-

pose CPU timer 2. This timer operates in downward counting mode, so the counter value is

subtracted from the counter period to obtain interrupt delay measure. If the calculated value

exceeds the threshold, than error flag is raised and the offending delay is remembered. By

reading the state of the general purpose input-output pin 26, which is set only during execution

of the tested component, it is ensured that only delays introduced by the component under test

are detected.

Figure 5.12: IntWDog (interrupt watchdog) subsystem of the test model

5. COMPONENT REAL-TIME TESTING 79

Content of the LoadBeg and LoadEnd subsystems for CT1 and CT2 execution time mea-

surement and monitoring is shown in Fig. 5.13.

Figure 5.13: Task execution time measurement subsystems a) LoadBeg and b) LoadEnd

5.5 Test Code

The test model is, together with test vectors, input to the automatic code generation procedure

described in section 4.3. Generated executable code is automatically loaded onto the embed-

ded target via serial connection and its’ execution is initiated. All relevant signals, as specified

by the Log subsystem of the test model, are recorded into embedded target’s memory. Code

execution traces are retrieved from the embedded target after the test run is over, again via

serial connection.

Three versions of executable code are generated and executed during component real-

time testing. The first two target applications are used to measure execution time of code on

the two cyclic tasks. These are than used to calculate test duration of the actual test. The

three target applications are generated from the same test model and they differ in the model

parameters set utilized in code generation. The two parameter sets for task execution time

measurement are generated during test model instantiation, while the third parameter set is

constructed after task execution times are available.

5.5.1 Execution time measurement

Execution time is measured by the code represented in the test model with Tic and Toc blocks.

The algorithm uses the same down counting CPU counter/timer that generates the cyclic inter-

rupt. Execution time is measured in steps:

1. T1: read value of the CPU counter/timer just before execution of the measured code.

2. Execute the measured code.

5. COMPONENT REAL-TIME TESTING 80

3. T2: read value of the CPU counter/timer just after execution of the measured code.

4. Diff1 = T1 − T2: Subtract the two counter/timer values. This difference represents

execution time of the code plus the time spent on two reads of the counter/timer.

5. Diff2 = T3 − T4: perform two subsequent counter/timer reads and subtract the values.

This difference is a measure of the time needed for two reads of the counter/timer.

6. Toc = Diff1 −Diff2: calculate the measured code execution time.

GRAP implementation of the described algorithm is presented in Fig. 5.14 where execution

time of the L_RS atomic component is measured.

Figure 5.14: Execution time measurement implemented in GRAP

The first target application generated during component real-time testing is used to mea-

sure CT1’s BCET tCT1(min) and WCET tCT1(max). This is achieved by placing Tic and Toc

blocks from the LoadBeg and LoadEnd subsystems, respectively, on the CT1. Blocks intended

to be executed on CT2 are placed on a task that is not executed during the measurement and

are grayed out on the Fig. 5.15.

The second target application is generated from the same test model, but its parts are

placed on different cyclic tasks by a separate model parameters script. In this case, parts of the

code that should execute on CT1 are excluded from execution, and the code intended for CT2

is placed on CT1. This way all execution time measurements are performed with benchmarked

code on uninterruptible CT1. Fig. 5.16 illustrates which parts of the model are executed during

measurement of:

• BCET (tCT2A(min)) and WCET (tCT2A(max)) of the code executed on the same task as the

tested configuration but before it;

• execution time of the tested component.

5. COMPONENT REAL-TIME TESTING 81

Figure 5.15: Measurement of the CT1 execution time

Figure 5.16: Measurement of the execution times of the CT2 code

5.5.2 The Test Run

Based on execution time measurements, test duration necessary to achieve 100% interrupt

coverage of the tested configuration is calculated according to equation 5-1. The 100% interrupt

5. COMPONENT REAL-TIME TESTING 82

coverage means that the high priority CT1 tries to interrupt the tested component at every CPU

cycle of its’ execution. This coverage criteria is similar to the "every interrupt at every task,

module, object, or even every line" criteria in [121], but it is applied on an even lower level.

tLD(min) = TCT1 − tCT1(max) − tCT2A(max) − tCT2(max)

tLD(max) = TCT1 − tCT1(min) − tCT2A(min)

Nexe =
tLD(max) − tLD(min)

TSY SCLK

(5-1)

Elements of the equation 5-1 are:

• TCT1 – is period of the high priority task CT1.

• tCT1(min) and tCT1(max) – are BCET and WCET of the code on CT1 task.

• tCT2A(min) and tCT2A(max) – are BCET and WCET of the code on CT2 task that precedes

the code of the configuration under test.

• tCT2(max) – is the WCET of the code on the CT2 task.

• tLD(min) and tLD(max) – are minimal and maximal execution times taken by the variable

CPU load generator.

• TSY SCLK – is the period of one CPU cycle.

• Nexe – is the duration of the test execution in number of CPU cycles.

Some elements of the equation 5-1 are illustrated in Fig. 5.17.

Figure 5.17: Task interrupt scheme

5. COMPONENT REAL-TIME TESTING 83

The basic idea behind equation 5-1 is to increase variable CPU load on the CT2 task by

one processor cycle in each CT2 execution occasion. To achieve full interrupt coverage, the test

run execution time must be long enough so that the variable CPU load increases from minimal

tLD(min), where CT2 task ends just before next CT1 task starts, to maximal tLD(max), where

CT2 task is interrupted by the next CT1 task just when variable CPU load code was executed

and the tested component’s code execution hasn’t started yet. Between these two extremes,

the CT1 task will try to interrupt the tested component’s code execution in every processor

cycle. Watchdog on the CT1 task monitors interrupt latency and detects any unallowed interrupt

stalling by the code executed on CT2 task. Parts of the code that measure execution times are

excluded from execution during actual test run, as illustrated in Fig. 5.18

Figure 5.18: During the test run blocks used to measure execution time are excluded

Variable CPU load generator represented with CpuLoad block in Fig. 5.18 is implemented

by atomic components (GRAP elements) with fixed execution time to avoid unintended jitter.

The load rises from minimal to maximal values determined by CpuLoad parameters. It incre-

ments in each execution occasion by one CPU cycle. The "artificial" load is generated by atomic

components:

• WAIT – stalls application execution for a set number of microseconds by repeating dummy

writes to a memory location,

• NOP255 – repeats one-cycle NOP (no operation) instruction for a set number of times,

up to 255.

5. COMPONENT REAL-TIME TESTING 84

5.6 Verdict and Documentation

5.6.1 Test Verdict

Test verdict is produced by combining functional and real-time criteria. Functional component of

the verdict is obtained by comparing test code execution traces to test model simulation traces,

i.e. to the test oracle. If they are identical, than the component has passed the functional test.

If discrepancies are present, the tester must inspect test results to decide whether the disparity

can be tolerated or the test will be labeled as failed. An example of graphical representation

of test results for low pass filter component from the safety platform environment, chapter 8, is

given in Fig. 5.19. Test vectors are filter constant KF and input signal In, filter output is SIG001,

and difference between code execution and simulation trace is SIG001err. It can be seen that

error signal assumes -1 value in two instances. This is a result of signal type conversions inside

the referent GRAPlab block so the functional portion of the verdict test is manually set to pass.

Figure 5.19: Test vectors, simulation and code execution traces, and error for safety platform’s

low pass filter atomic component FILTLPS

5. COMPONENT REAL-TIME TESTING 85

The described functional check also validates the component’s immunity to interrupts, one

of the real-time properties that need to be tested. For example, if the component uses some

shared resources that are not properly handled by the context switching routines, it is expected

that this shared resources will be corrupted when the component is interrupted by its’ instance

on a higher priority task and that this will result in invalid outputs. Verdicts for other two tested

real-time properties, execution time and interrupt latency, are produced by comparing the mea-

sured values with the thresholds defined in requirements on the component. If measured values

exceed limits, the test is assigned fail verdict.

5.6.2 Test Report

Figure 5.20: The structure of automatically generated LATEX test report

5. COMPONENT REAL-TIME TESTING 86

A set of LATEX commands and test report patterns has been developed to facilitate automatic

test report generation. All classification trees, Simulink models, program code, and signal

graphs produced during component testing are systematically documented. LATEX files are cre-

ated and compiled into PDF fully automatically. The structure of the test report follows closely

the structure of the testing process, Fig. 5.20. The main test report file links reports for all

tested components in which reports for all their variants are referenced. Variant test report is

partitioned into separate reports for all its’ configurations.

Test report for each component variant configuration contains sections:

• Introduction – section specifies what has been tested, testing environment, test date,

name of the tester and other general information.

• Test Results – section provides test verdict, graphical signal representation and bench-

mark data.

• Test Vectors – section specifies parameters used during test vector generation and pro-

vides figures of vector classification tree and of vector waveforms.

• Test Model - diagrams of the root view of the test model and of all of its’ subsystems are

provided here as well as listing of the model parameters script.

• Test Code - section contains listings of all files produced by the automatic code generation

from the Simulink model.

5.7 Infrastructure

5.7.1 Classification Tree Editor and Automation

Classification tree editor used in this work is a free version of CTE XL, [122], that doesn’t support

batch mode, unlike it’s commercial variant CTE XL Professional. To automate tasks related to

classification trees, scripting tool AutoIt v3, [123], is used. Another difference between free and

professional versions of the CTE XL editor is that the free version doesn’t support automatic

test sequence generation. That is why sequences are automatically generated as sets of test

cases where each test case represents one step of the sequence. The conversion of a set

of test cases into a test sequence (i.e. test vector) is done when test cases are imported into

MATLAB.

Interface of MoBREST tool to the CTE XL Editor, implemented by a number of MATLAB

conversion functions and AutoIt scripts, is illustrated on Fig. 5.21. The classification tree lay-

out, dependency rules, and test generation rules are automatically generated by MoBREST

inside MATLAB in the form of MATLAB structures. These are than automatically translated into

XML-based .cte file. Next, AutoIt script is invoked that opens CTE XL editor, loads the .cte file,

performs test cases/sequence generation, and exports results to .png image file and a number

of MATLAB .m files. The image file is later used in generating test reports and .m files are im-

ported and processed by the M-functions: in case of component parameter space partitioning,

the classification tree is translated into component variants and configurations, and, in case of

5. COMPONENT REAL-TIME TESTING 87

test vector generation, the tree is interpreted in terms of input signal waveforms. This way, free

version of CTE XL is seamlessly integrated with MATLAB-based MoBREST tool.

Figure 5.21: MATLAB/MoBREST to CTE XL interface via AutoIt scripting

5.7.2 Serial Communication

All the embedded targets from the intended application domain, as described in section 1.1, are

equipped with serial RS-232 communication interface. In conventional development process

this interface is used by the proprietary service and diagnostic software tool for tasks such as

loading application programs, changing parameters, observing signals and retrieving recorded

waveforms. In order to achieve seamless MBD environment, means for MoBREST tool to

communicate with the embedded target from within MATLAB environment is necessary. With

this motivation, a set of M-functions for communicating with the embedded target via RS-232

interface has been developed. They enable the MoBREST tool to:

• establish connection to the target and change baud rate,

• load the application program onto the target,

• retrieve symbols (parameters and signals) from the target,

• change parameters, and

• control memory recorder and retrieve its’ records.

Chapter 6

Algorithm Real-Time Testing

Control systems testing is particularly demanding because of their tight coupling to the plant

(i.e. environment). Timing constraints, if they are present, introduce an additional level of

complexity into this kind of testing. MoBREST-IT method tackles the complexity of control

systems integration real-time testing by elaborating processor-in-the-loop level testing into three

steps:

• open-loop integration testing,

• closed-loop step-by-step integration testing, and

• closed-loop real-time integration testing.

Besides validation of functional algorithm properties, the proposed approach enables real-

time properties testing by applying test patterns introduced in chapter 5. A SUT integrated from

basic components can at this level be considered as a higher-level component and a variant

of RTTP, presented in chapter 5, can be applied in order to validate its’ real-time properties.

Modifications of the pattern for control algorithm testing include:

• Due to the probable complexity of integrated component and limited computational re-

sources of the embedded target, only one SUT variant is placed on CT1. In other words,

multiple Conf_n subsystems in component pattern are replaced with one SUT_CT1 sub-

system. This subsystem contains one instance of the tested control algorithm model.

The code it generates is executed on the higher priority task and it interrupts the tested

algorithm implementation executed on the lower priority task.

• A new Inputs subsystem represents input interface of the RTTP. This subsystem also

generates trigger signal that controls execution of SUT on higher priority task in order to

achieve desired interrupt coverage.

• Log subsystem is replaced with Outputs subsystem, an output interface of the integration

RTTP.

The modified RTTP model tailored for algorithm testing and root view of its’ Simulink implemen-

tation are shown on Fig. 6.1 a) and b), respectively.

6. ALGORITHM REAL-TIME TESTING 89

Figure 6.1: Mapping between a) integration RTTP diagram, b) its’ Simulink implementation, and

c) task interrupt scheme

Fig. 6.1 c) shows the distribution of parts of the code generated from the integration RTTP

across cyclic tasks. SUT is executed on the lower priority CT2 together with variable CPU load

generator which ensures that it is interrupted in each possible point by the higher priority CT1,

same as in component testing. In order to maximize the probability of error detection, the SUT

instances on CT1 and on CT2 are executed synchronously. This way when CT1 interrupts the

6. ALGORITHM REAL-TIME TESTING 90

SUT on CT2, its’ instance of the SUT is in the same state as the interrupted instance which is

being tested. The synchronicity is achieved by placing the CT1 SUT instance into conditional

subsystem that is executed on every second CT1 and by configuring CT2 period to be twice as

long as CT1 period. Content of pattern’s subsystems is shown in Fig. 6.2.

Figure 6.2: Subsystems of the Simulink implementation of the integration RTTP

6. ALGORITHM REAL-TIME TESTING 91

6.1 Open-Loop Integration Testing

First step of the MoBREST-IT method is open-loop testing which is conducted in two phases.

Firstly, only functional properties are checked to ensure that the generated code behaves same

as the model. In the second phase the SUT is integrated into the pattern for real-time testing

to validate its’ real-time properties. Because functional properties are again validated during

real-time testing, the first stage could be skipped. Purpose of the functional testing stage of

open-loop testing is to identify, localize and correct any functional errors while the model is still

relatively simple, i.e. before "cluttering" it with RTTP.

The diagram in Fig. 6.3 depicts algorithm open-loop testing and is applicable to both

phases. Test vectors are generated in simulation environment or inherited from previous testing

phases, such as functional testing on MiL integration level. Input vector generator can include

model of the plant in which case a feedback can exist inside the model. Nevertheless, once the

test vectors have been synthesized the generated code is tested in an open-loop.

Figure 6.3: Open-loop integration testing.

Functional phase of the open-loop testing is performed in following steps:

1. SUT model is padded with InputOLT and OutputOLT MoBREST blocks that are respon-

sible for off-line transfer of signals into and out of the generated code, respectively.

2. The test model is simulated to obtain referent simulation traces.

3. Code is automatically generated from the model. MEMPLAY element in Fig. 6.3 refers

to reproduction of input vector from embedded target memory during code execution.

6. ALGORITHM REAL-TIME TESTING 92

Also, all relevant SUT outputs are recorded to embedded target memory, as depicted by

RECORDER element in the same figure.

4. Generated code is downloaded to the target through RS232 serial communication inter-

face.

5. The code is executed, and execution traces are retrieved from the target memory.

6. Simulation and execution traces are compared inside the simulation environment and test

verdict is produced.

Real-time phase of the open-loop testing follows similar procedure:

1. SUT model is integrated into RTTP. Interface blocks in Inputs and Outputs subsystems

of the pattern are replaced with InputOLT and OutputOLT blocks, respectively.

2. The test model is simulated to obtain simulation traces.

3. The model is parametrized for CT1 execution time measurement, code is automatically

generated, downloaded and executed, and measurement results are retrieved.

4. The model is parametrized for CT2 execution time measurement, code is automatically

generated, downloaded and executed, and measurement results are retrieved. In this

step SUT execution time is measured.

5. Parameters for the actual test run are calculated as explained in section 5.5. Test run

code is automatically generated, downloaded and executed, and execution traces are

retrieved.

6. Simulation and execution traces are compared inside the simulation environment, real-

time properties measurements are checked against predefined limits, and test verdict is

produced.

6.2 Closed-Loop Step-by-Step Integration Testing

The second step in in the MoBREST integration testing can be validation of the SUT in a

closed-loop with simulated environment, as illustrated in Fig. 6.4. Here, models of the SUT

and the environment are simulated inside the simulation environment while SUT code gener-

ated from the model is executed on the target. In each simulation step, input is fed to the SUT

model and to the code, one simulation step and one target task execution are performed, and

model outputs are compared with outputs of the code. Signal exchange between simulation

environment and the target is controlled by InputPiL and OutputPiL Simulink blocks and cor-

responding atomic components RS232IN and RS232OUT. OutputPiL and InputPiL blocks are

implemented using Real-Time Windows (RTW) Target MATLAB toolbox, [124]. Feedback can

be closed with SUT model or code in the loop, depending on the OutputPiL element settings.

6. ALGORITHM REAL-TIME TESTING 93

Closed-loop step-by-step testing can not be executed in real-time because the simulation

environment is executed on plain desktop computer. The main benefit of this step is the valida-

tion of the SUT behavior inside a closed-loop after its’ real-time properties have already been

validated by open-loop integration testing.

Figure 6.4: Testing in a closed-loop with simulated environment

6.3 Closed-Loop Real-Time Testing

If real-time properties of the tested algorithm need to be tested while it is running in a closed

control loop, than there are three possibilities:

• A real-time simulation tool can be used, but this introduces the cost of the tool and of

developing interface between the simulation tool and the embedded target system.

• Control algorithm can be tested in the plant or some laboratory setup that emulates it. This

can be potentially hazardous, e.g. if power electronics or heavy machinery is controlled,

and inconvenient, e.g. if the plant or the laboratory is dislocated from the testing team.

• Closed-loop real-time testing can be performed on the embedded target system without

expensive real-time simulation tool and without access to the actual plant.

Closed-loop real-time testing is performed by placing the control system in a closed feed-

back loop with environment model running on the same target as the control algorithm. The

preparation for this kind of scenario includes:

6. ALGORITHM REAL-TIME TESTING 94

1. validation of the control algorithm code in open-loop integration testing and/or closed-loop

step-by-step integration testing,

2. refinement of the environment functional model into implementational model adequate for

ACG,

3. validation of the environment model’s code in open-loop integration testing, and

4. real-time validation of the closed-loop containing SUT and environment code, as depicted

in Fig. 6.5.

Here, the same inputs are fed to closed-loops in the simulation environment and on the target

and relevant output signals are compared. SUT model can be placed in the integration RTTP

if its’ real-rime properties need to be validated in a closed-loop. This means that closed-loop

testing on the embedded target can also be performed in two phases: functional phase, without

RTTP, and real-time phase, if SUT is embedded in RTTP.

Figure 6.5: Real-time testing in a closed-loop with environment model’s code in the loop

One application example of closed-loop real-time testing could be the case of tuning control

algorithm parameters during commissioning of the plant where simulation environment is not

6. ALGORITHM REAL-TIME TESTING 95

available. New parameters could than easily be checked by testing the control system in a loop

with environment model running on the same target as the control algorithm. This approach

assumes a target microcontroller powerful enough to simultaneously run control algorithm and

model of the environment. If this is possible, application program should be structured so

that the environment model is disabled during normal operation so it doesn’t consume target’s

processing resources. During closed-loop real-time testing, environment model and control

algorithm would execute while all other unrelated tasks would be suspended in order to free

processing resources and stop all interaction with the physical environment.

Chapter 7

Case Study: Digital Signal Controller
Component Testing

This chapter provides a case study of real-time software component testing for a digital signal

controller. It starts by describing the embedded target, proceeds with validation of the RTTP,

and ends by elaborating test process and by presenting test results for the LogicalOperator

component.

7.1 Digital Signal Controller

The term "digital signal controller" designates a hybrid of microcontrollers and digital signal

processors, [125]. DSCs thus incorporate features of microcontrollers, like fast interrupt re-

sponse and control-oriented peripherals like pulse width modulation (PWM) units and watchdog

timers, and of digital signal processors (DSPs), like single-cycle multiply–accumulate units, bar-

rel shifters, and large accumulators. They are mostly used in motor control, power conversion,

and sensor processing applications.

Proprietary digital signal controller hardware modules are based on Texas Instruments’

C2000 family of microcontrollers and are used in a variety of applications ranging from power

electronic control systems in electrical traction and power generation units to condition monitor-

ing in wind turbines, rotating machinery and power transformers. Texas Instruments sometimes

refers to these microcontrollers as "digital signal controllers" and sometimes as "real-time con-

trol microcontrollers". The former designation is used in this work.

7.1.1 The Controller

Texas Instruments’ C2000 family of DSCs encompasses several lines of products, [126]:

• C24x 16-bit Series – are 16-bit controllers with CPU frequency up to 40MHz. These

devices are either obsolete or not recommended for new design (NRND).

• C28x Fixed-point Series – are 32-bit fixed-point microcontrollers with working frequencies

up to 150 MHz and a variety of integrated peripheral units.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 97

• C28x Delfino Floating-point Series – microcontrollers from this series are equipped with

a floating-point unit (FPU) and are available in dual-core (each core up to 200 MHz) and

in single core (up to 300 MHz) versions.

• C28x Piccolo Series – are low cost 32-bit microcontrollers that have features of other

two more advanced C28x series but work on lower frequencies and have smaller chip

packages.

• C28x + ARM Cortex-M3 Series – integrates ARM Cortex-M3 core with C2000’s 28x core

on the same chip.

Members of C24x, Delfino and Piccolo DSC series are used in proprietary control systems.

Real-time component testing is in this thesis showcased on the example of TMS320F28335

DSC, a single-core member of the Delfino series with following features, [127]:

• high performance 32-bit core with IEEE-754 single-precision floating-point unit, 16x16,

32x32 and double 16x16 multiply and accumulate, and Harvard architecture,

• integrated flash, ROM, single-access RAM, and boot ROM memory,

• programmable 16-bit or 32-bit external interface,

• up to eighteen PWM outputs, six capture inputs, and two quadrature encoder interfaces,

• 12-bit analog-to-digital converter with sixteen input channels,

• up to eighty eight general purpose input-output pins,

• serial peripheral interface (SPI), three serial communication interfaces (SCIs), two CAN

interfaces, two multi-channel buffered serial port (McBSP) modules, inter-integrated cir-

cuit (I2C) interface.

7.1.2 Applications

Proprietary real-time monitoring and control systems based on C2000 DSCs come in two vari-

ants: modular systems with hardware modules mounted in a rack and integrated systems with

fixed hardware configuration. C2000-based proprietary electronic modules are shown in 7.1.

Systems containing these modules have thus far been used for:

• control of multisystem static converters for power supply of railway passenger coaches,

• control of main propulsion converters and auxiliary power converters of trams and trains,

Fig. 7.2,

• measurement of three phase voltage and current in generator excitation systems and in

wind generators,

• condition monitoring of wind generators, rotating machinery, and power transformers.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 98

Figure 7.1: Hardware modules based on Texas Instruments’ C2000 family of DSCs

Figure 7.2: Converter for main propulsion of low floor train with modular proprietary control

system equipped with two electronic modules based on F2407 DSC

Short development time and flexibility are main advantages of the modular approach, but

when smaller production costs and physical size are required, than integrated control systems

can be a better solution. In Fig. 7.3 two such integrated control systems are show, both of which

have evolved out of preexisting modular control systems.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 99

Figure 7.3: Two power converters with proprietary integral control systems based on F28335

DSC: a) auxiliary power supply converter in tram and b) photovoltaic power converter

7.1.3 Experimental Target

Tests performed in the rest of this section are conducted on the TMS320F28335 DSC on an

eZdsp28335 development board by Spectrum Digital, Inc. This board provides complete envi-

ronment for the DSC including JTAG interface, external SRAM, two CAN interfaces, one RS232

and one SCI interface, analog interface and digital expansion interface. The board is equipped

with 30 MHz oscillator and the DSC is configured to run with maximal 150 MHz system clock.

Block diagram and photo of the development board are show in Fig. 7.4.

Figure 7.4: a) Block diagram and b) photograph of the eZdsp28335 development board

The development board was chosen instead of proprietary hardware setups because of its

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 100

smaller dimensions which makes it more suitable for research.

7.2 Real-Time Test Pattern Validation

In this section the RTTP is checked to ensure that real-time properties are indeed tested as

intended. In order to have confidence in test results, firstly confidence in test tools must be

established. Mixed signal oscilloscope MSO614A from Agilent Technologies Inc. was used

during these experiments.

7.2.1 Execution Time Measurement

Execution time measurement applied in RTTP is validated using model on Fig. 7.5. Bistable

component and its’ L_RS variant were chosen as subject of the measurement because this is a

relatively simple component with fixed execution time. Validation is performed in three stages:

• Execution time measurement of the component is performed using Tic and Toc Simulink

blocks, i.e. code to which they map. Software-based execution time measurement is

described in section 5.5.

• One of general purpose input-output (GPIO) pins of the DSC is set during execution of

one instance of the measured component. The duration of the positive pulse on this pin

(T1) represents time needed to set and clear the pin (TGPIO) plus the execution time of

the component (TCUT).

• The same GPIO pin is set during execution of two instances of the measured component.

The pulse duration here (T2) corresponds to pin setting and clearing time (TGPIO) plus

execution time of two component instances (2× TCUT).

Figure 7.5: Model for validation of execution time measurement

Execution time of the component is obtained by subtracting duration of the shorter pulse

from duration of the longer one according to equation 7-1.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 101

TCUT = T2 − T1 = (2× TCUT + TGPIO)− (TCUT + TGPIO) (7-1)

Executable code is generated from model in Fig. 7.5, loaded onto the evaluation board

and GPIO pin of the DSC is monitored by oscilloscope. As expected, two pulses are observed:

one shorter and one longer, Fig 7.6. According to the pulse duration measurements in Fig. 7.6,

execution time of the L_RS variant of the Bistable component is:

TCUT = 161ns− 94.5ns = 66.5ns = 10 CPU cycles

(one cycle is 6.67ns at 150MHz system clock).
(7-2)

Execution time is not measured by subtracting TGPIO from T1 = TCUT + TGPIO because

GPIO pin setting and clearing takes longer to perform if these two operations are adjacent than

when there is some other code between them. This is a characteristic of the target DSC’s

pipeline structure and of its’ "write followed by read protection". By inserting additional pipeline

cycles this protection ensures that if a write operation is followed by a read operation, the read

value will be the same as the value written, [127].

Figure 7.6: Execution time measurement of the L_RS variant of the Bistable component by

oscilloscope: a) one component instance and b) two instances

Execution traces of the generated code are shown in Fig. 7.7. Here it can be seen that

software execution time measurement by the RTTP (the Exe subplot) is exactly the same as

hardware based measurement via oscilloscope, i.e. 10 CPU cycles.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 102

Figure 7.7: Execution traces of the code generated from the model in Fig. 7.5

7.2.2 Variable Load

The mechanism for achieving 100% interrupt coverage presented in sections 5.4 and 5.5 is

validated in two steps. Firstly, variable CPU load generator is checked and, secondly, target

application code parts’ execution order is analyzed.

The variable CPU load block is validated using model in Fig. 7.8. The test is performed by

measuring execution time of the target code corresponding to the CpuLoad component. Execu-

tion time measurement is performed by observing GPIO pin of the DSC using an oscilloscope.

Figure 7.8: Simulink test model for variable CPU load generator

The component was configured to generate minimal load of 120 CPU cycles and maximal

load of 247 CPU cycles. The oscilloscope was configured to continuous running mode and

waveform of the signal on GPIO pin was recorded. As can be seen in Fig. 7.9, the minimal

generated load was 827.5 ns and maximal load was 1.674 µs. If measured interval durations

are divided with CPU cycle period and if 4 CPU cycles spent on GPIO pin handling (see Fig. 7.6)

are subtracted, exactly the desired minimum and maximum CPU loads are obtained.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 103

Figure 7.9: Variable CPU load generator test: a) minimal and b) maximal load measurement

A part of the waveform on the Fig. 7.9 is zoomed to check if the load increments by one

CPU cycle, Fig. 7.10. A one nanosecond measurement jitter can be seen on this waveform.

Figure 7.10: Variable CPU load increments by one CPU cycle

7.2.3 Interrupt Coverage

The second step in validation of the mechanism for achieving 100% interrupt coverage pre-

sented in sections 5.4 and 5.5 is target application code parts’ execution order analysis. The

application signals execution of its’ parts via GPIO pins of the DSC. During execution of test

application for the L_RS variant of the Bistable component, these pins have been monitored

using oscilloscope. Three recorded waveforms are shown in figures 7.11, 7.12 and 7.13. Three

signals have been recorded:

• CT1 – duration of pulses correspond to execution time of the CT1 (see Fig. 5.15);

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 104

• CUT – duration of pulses correspond to execution time of the component under test (see

Fig. 5.18);

• CT2 – duration of pulses correspond to execution time of the CT2 (see Fig. 5.16).

Figure 7.11: Task execution during real-time testing before the tested component starts being

interrupted

Figure 7.12: Task execution during real-time testing when the tested component is interrupted

Variable CPU load increases during test application execution by one CPU cycle from the

minimal value, in which case tested code is executed before CT1 interrupts CT2 as in Fig. 7.11,

to the maximal value, where tested code executes after CT1 has already interrupted CT2 as in

Fig. 7.13. In-between these two extremes the CT1 interrupts tested component’s execution in

each possible point. This situation is shown in Fig. 7.12 where pulse duration of the CUT signal

is extended for the duration of the interrupting task’s CT1 pulse duration.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 105

Figure 7.13: Task execution during real-time testing after the tested component has passed the

"interrupt zone"

7.2.4 Interrupt Delay Detection

Figure 7.14: Interrupt delay detection with fixed position and rising execution time of the injected

uninterruptible code

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 106

In order to validate interrupt delay detection implemented by the IntWDog subsystem of the

test model, Fig. 5.12, a chunk of uninterruptible code was injected into implementation of the

L_RS variant of the Bistable component. Two experiments were performed. Firstly twenty

tests were performed with the code situated in the same place inside the implementation but

with duration of the uninterruptible code execution ranging from one to twenty CPU cycles.

Measured interrupt delay, delay measurement error and delay error signal generated by the

IntWDog subsystem implementation were recorded and are plotted against injected delay in

Fig. 7.14. Here it can be seen that interrupt delay is correctly measured with -1/+3 CPU cycles

variation and that all delays greater than eight CPU cycles are reported as error.

In the second experiment, an uninterruptible code with fixed execution time of twenty CPU

cycles was injected in every possible position inside the implementation of the L_RS variant

of the Bistable component. Because its’ DSC implementation has six lines of assembly code,

seven tests were performed. Measured interrupt delay, delay measurement error and delay er-

ror signal generated by the IntWDog subsystem implementation were recorded and are plotted

against position of the delay injection in Fig. 7.15. The delay is correctly measured with -1/+1

variation and reported as error in each of the seven injection positions.

Figure 7.15: Interrupt delay detection with variable position and fixed execution time of the

injected uninterruptible code

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 107

7.2.5 Interrupt Vulnerability

A component is vulnerable to interrupts if it uses some resource that is not protected by the

context switching procedure. Execution of such component can be interrupted by a task with

higher priority that contains code which also uses the critical unprotected resource. When

execution of the interrupted component is than resumed, the shared resource can be corrupted

resulting in an incorrect operation of the component.

Figure 7.16: Interrupt vulnerability detection in L_RS variant of the Bistable component

Interrupt vulnerability detection has been validated by injecting a piece of erroneous code

into implementation of the L_RS variant of the Bistable component. The added code stores

variant’s output into an unprotected memory location, loads it from the same location, and only

then outputs it. Because 100% interrupt coverage is ensured by the test pattern, execution

sequence should at one point look as:

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 108

1. tested variant on CT2 calculates its’ output and stores it to unprotected location,

2. CT1 interrupts CT2,

3. variant instance on the CT1 modifies the unprotected location by storing its’ output value,

4. CT2 resumes,

5. tested variant on CT2 loads corrupted value from the unprotected location and outputs it.

Test results for the interrupt vulnerable implementation of the L_RS variant of the Bistable

component are shown in Fig. 7.16. Reset and set inputs to the component are shown in sub-

figures designated by R and S, respectively. Simulation and code execution traces are com-

pared in SIG001 sub-figure and their difference is displayed in SIG001err sub-figure. Discrep-

ancy between simulation and code execution traces indicates an error in the variant implemen-

tation.

If the test is repeated with code on CT1 suspended, i.e. if the tested component is not

interrupted by its’ instances on the higher priority task, than there is no difference between

simulation and code execution traces. This way, test engineer can quickly determine whether

the problem is in functional logic or in resource manipulation.

7.3 LogicalOperator Component

The LogicalOperator GRAPlab component masks native Simulink block Logical Operator in

order to limit its’ configuration space to area suitable for GRAP code generation. The mask

also provides interface for code generation settings. Fig. 7.17 shows two tabs of the compo-

nent’s dialog window. The Settings tab provides configuration of the component while the Code

generation enables parametrization of the code generation for the individual component.

Figure 7.17: LogicalOperator component’s a) Settings dialog and b) Code generation dialog

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 109

7.3.1 Variants and Configurations

Figure 7.18: LogicalOperator component variants and configurations, 1st part

Depending on the Number of input ports and Operator selections on the dialog window in

Fig. 7.17, the LogicalOperator component has fourteen variants. Variants have from one to

eight configurations, based on number of connected inputs. Configuration classification tree for

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 110

the LogicalOperator component is shown in figures 7.18 and 7.19.

Figure 7.19: LogicalOperator component variants and configurations, 2nd part

7.3.2 Vectors

For each of the fifty-four configurations of fourteen variants of the LogicalOperator component,

a set of test vectors is automatically generated. LogicalOperator ’s inputs can assume two

discrete values: true and false. Vectors are generated so that every combination of input values

is selected in one test step. Vectors classification tree and corresponding signal waveforms for

TC002 configuration of the L_AND4 variant of the LogicalOperator component are presented

in figures 7.20 and 7.21, respectively.

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 111

Figure 7.20: Test vector classification tree for the TC002 configuration of the L_AND4 variant

of the LogicalOperator component

Figure 7.21: Test vector waveforms for the TC002 configuration of the L_AND4 variant of the

LogicalOperator component

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 112

7.3.3 Models

Figure 7.22: Test model of the TC002 configuration of the L_AND4 variant of the LogicalOper-

ator component

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 113

The next step in test case creation is generation of test models. A separate test model for

each of the fifty-four configurations of fourteen variants of the LogicalOperator component is

automatically generated based on the RTTP introduced in section 5.4. An example of the test

model for the TC002 configuration of the L_AND4 variant of the LogicalOperator component

is shown in Fig. 7.22. All four configurations of the L_AND4 variant with corresponding input

vectors are placed on the high priority task CT1 inside Conf_001 to Conf_004 subsystems.

The tested configuration TC002 is situated inside Conf_CUT subsystem executed on the low

priority task CT2.

7.3.4 Executable code and test results

Two instances of executable code were generated from each of the test models in order to

measure execution times of parts of the code. Based on these measurements, parameters for

the actual test runs were determined, test models were updated and simulated, and the final

executable tests were generated. This process is detailed in section 5.5.

Graphical representation of the functional aspect of the test results for the TC002 config-

uration of the L_AND4 variant of the LogicalOperator component is shown in Fig. 7.23. Four

input signals from Fig. 7.21 are here all shown in the first sub-figure, second sub-figure shows

comparison of the simulation and code execution traces, and in the third sub-figure their differ-

ence is shown.

Figure 7.23: Test vectors, output and output error of the TC002 configuration of the L_AND4

variant of the LogicalOperator component

Similar graphical representations are automatically generated for each of the fifty-four con-

figurations of fourteen variants of the LogicalOperator component. This allows test engineer to

quickly check the test results and provides first input for analysis in case of test failure.

Real time properties of the tested component, namely execution times and introduced in-

terrupt delay, are provided in Tab. 7.1. Three execution times of the configurations are provided

in the table:

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 114

• BCET – is the minimal execution time,

• ACET – is the average execution time, and

• WCET – is the maximal execution time.

As can be seen in the table, the LogicalOperator is a highly deterministic component with al-

ways the same execution time, that is BCET, ACET and WCET are the same, and with minimal

introduced interrupt response delay.

Table 7.1: Summary of the LogicalOperator component testing

Variant Config. BCET ACET WCET Delay

L_AND2 TC001 6 6 6 1

L_AND4

TC001 6 6 6 1

TC002 10 10 10 1

TC003 8 8 8 1

TC004 4 4 4 1

L_AND8

TC001 16 16 16 1

TC002 4 4 4 1

TC003 14 14 14 1

TC004 8 8 8 1

TC005 12 12 12 1

TC006 18 18 18 1

TC007 10 10 10 1

TC008 6 6 6 1

L_NAND2 TC001 7 7 7 1

L_NAND4

TC001 11 11 11 1

TC002 9 9 9 1

TC003 5 5 5 1

TC004 7 7 7 1

L_NAND8

TC001 7 7 7 1

TC002 9 9 9 1

TC003 19 19 19 1

TC004 11 11 11 1

TC005 5 5 5 1

TC006 13 13 13 1

TC007 15 15 15 1

TC008 17 17 17 1

7. CASE STUDY: DIGITAL SIGNAL CONTROLLER COMPONENT TESTING 115

Table 7.1: Continued from previous page...

Variant Config. BCET ACET WCET Delay

L_NOR2 TC001 7 7 7 1

L_NOR4

TC001 11 11 11 1

TC002 5 5 5 1

TC003 9 9 9 1

TC004 7 7 7 1

L_NOR8

TC001 7 7 7 1

TC002 5 5 5 1

TC003 19 19 19 1

TC004 15 15 15 1

TC005 13 13 13 1

TC006 11 11 11 1

TC007 17 17 17 1

TC008 9 9 9 1

L_NOT TC001 5 5 5 1

L_OR2 TC001 6 6 6 1

L_OR4

TC001 4 4 4 1

TC002 6 6 6 1

TC003 10 10 10 1

TC004 8 8 8 1

L_OR8

TC001 10 10 10 1

TC002 6 6 6 1

TC003 18 18 18 1

TC004 4 4 4 1

TC005 12 12 12 1

TC006 14 14 14 1

TC007 16 16 16 1

TC008 8 8 8 1

L_XOR TC001 6 6 6 1

Another validated real-time property that is not shown in the Tab. 7.1 is immunity to inter-

rupts, i.e. the ability of the component to correctly fulfils its’ function disregarding interrupts by

the higher priority task. All code execution traces match simulation traces of the test models

which, together with 100% interrupt coverage proven in section 7.2, shows that this component

is immune to interrupts.

Chapter 8

Case Study: Safety Platform
Component Testing

Safety Platform is a part of the railway crossing (level crossing) control system. Its’ purpose

is to secure the crossing by entering safe state upon activation. The system can be activated

in a number of ways: when train triggers activation contacts, by command from the station

or locally. After system activation, light and sound signals are activated and half barriers are

lowered. When train leaves protected area, light and sound signals are deactivated and half

barriers are raised, Fig. 8.1.

Figure 8.1: An example of level crossing with half barrier and light signalization

The level crossing control system is comprised of:

• Safety Platform – is the central part of the control system and it consists of two redundant

channels, Safety Platform A and Safety Platform B. Here relevant data is stored and safety

relevant decisions are taken.

• Data Logging Subsystem – consists of Data Display Module and its function is to log and

display all important events in the system.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 117

• Remote Control Subsystem – enables remote control over the system.

• Wayside Equipment Subsystem – includes all equipment mounted near railway or road,

like railway station devices, absolute permissive block devices, half barriers etc.

• Train Detection Subsystem – consists of different types of equipment necessary for re-

liable detection of train presence. This could be axle counters, induction loops or other

detections subsystem.

8.1 Safety Platform

Safety Platform consists of hardware, system software and application software. This section

provides a short overview of the hardware and systems software. The application software for

the safety platform is outside the scope of this thesis.

Besides fulfilling customer requirements, the safety platform should comply to require-

ments of Safety Integrity Level (SIL) 4 according to standards:

• EN 50126 (Railway applications - The Specification and Demonstration of Reliability,

Availability, Maintainability and Safety),

• EN 50128 (Railway applications - Communication, signalling and processing systems -

Software for railway control and protection systems), and

• EN 50129 (Railway applications - Communication, signalling and processing systems -

Safety related electronic systems for signalling).

8.1.1 Safety Platform Hardware

Safety platform hardware is organized in a modular structure with electronic modules grouped

inside mounting racks. A photo of safety platform mounting rack with installed electronic mod-

ules taken during clearances and creepage distance testing is shown in Fig. 8.2.

Figure 8.2: Safety platform mounting rack with installed electronic modules

The safety hardware platform includes four electronic modules based on Silicon Laborato-

ries’ C8051F580 microcontroller, [128]:

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 118

• Central Control Module – is the central processing module of the safety platform. It exe-

cutes main application program, receives states of digital inputs and determines states of

all outputs. It is also responsible for communication with other channel, with data logger,

and with remote control.

• Input Digital Module – is a 28-channel intelligent digital input module that supports input

sequence logging, digital filtering, and other functions.

• Output Relay Module – is intended for control of different executive functions by means

of four safety relays.

• Wayside Driver Module – controls wayside light signalization (bulbs or LED arrays) and

sound signalization (bells).

The enumerated electronic modules are powered by the Power Supply Module and they

communicate with each other via Backplane.

8.1.2 Safety Platform System Software

Safety platform system software comprises of firmware, that includes the real-time kernel and

the monitor, and libraries of program elements, each of which includes a library of graphical

symbols and an assembly macro library.

Real-time kernel is responsible for handling of task execution order and priorities. In the

Safety Platform, number of concurrent periodic tasks is reduced to only one. There exist one

more task used for serial inter-channel or RS485 communication.

Monitor part of the firmware is responsible for communication with the user. It enables

basic operations like application program loading or erasing, viewing and changing system

parameters, signals, and memory locations, and similar operations.

In short, safety platform system software comprises of same type of elements organized

in same fashion as in all other proprietary embedded control systems, described in section 1.1.

8.1.3 Safety Integrity Level

The most severe requirement placed upon the Safety Platform was that it has to be certified as

a SIL 4 system. The European standard EN 50126, [129], defines safety integrity as:

"The likelihood of a system satisfactorily performing the required safety functions under all

the stated conditions within a stated period of time."

The same standard than defines SIL as:

"One of a number of defined discrete levels for specifying the safety integrity requirements

of the safety functions to be allocated to the safety related system. Safety Integrity Level with

the highest figure has the highest level of safety integrity."

In [130], the Safety Integrity Levels are determined with regard to targeted failures per

year for high demand systems (e.g. car brakes) and to probability of failure on demand for low

demand systems (e.g. car air bag), table 8.1.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 119

Table 8.1: Safety Integrity Levels

SIL High demand rate Low demand rate

(failures/year) (probability of failure on demand)

4 ≥ 10−5 to < 10−4 ≥ 10−5 to < 10−4

3 ≥ 10−4 to < 10−3 ≥ 10−4 to < 10−3

2 ≥ 10−3 to < 10−2 ≥ 10−3 to < 10−2

1 ≥ 10−2 to < 10−1 ≥ 10−2 to < 10−1

Railway crossing control system, and Safety Platform as its’ part, are considered as a high

demand rate system so SIL 4 prescribes that targeted number of failures per year should be

between 10−5 and 10−4. This means that the system is expected to operate without failure

between 10,000 and 100,000 years.

As a part of the Safety Platform, its’ software must also be certified as SIL 4. To achieve

this, all development processes have been conducted in accordance with European standard

EN 50128, [131]. The software component testing presented in the remainder of this chapter

is a part of this process.

8.2 Component Testing for Safety Platform

This section provides an overview of differences between generic component testing process,

chapters 5 and 7, and its’ variant customized for Safety Platform. Also some specific examples

from each phase of testing are presented.

8.2.1 Real-Time Properties

Software component real-time testing described in chapter 5 can be significantly simplified for

the testing of the Safety Platform’s atomic software components. This is due to the fact that the

Safety Platform’s real-time kernel supports only one concurrent cyclic task so there is no need

to validate interrupt-related real-time properties.

The software component real-time testing is in absence of interrupts reduced to component

execution time measurement. The C8051F580 microcontroller that constitutes the backbone

of the Safety Platform is operating with 24 MHz system clock so each CPU cycle takes 41.67

ns to complete. In order to precisely measure software execution time, the application program

should have access to a timer running on the same frequency. Unfortunately, only a timer

running on 24/12 MHz = 2 MHz is available to the application program. All execution time

measurements are thus in NSY SCLK/12 so elements that execute in less than 12 clocks can

have BCET = 0. For example, this is the case with GATE component which has BCET of zero

accomplished when the component’s operation is suspended via ENABLE input, see table 8.3.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 120

8.2.2 Variants and Configurations

Safety Platform and DSC GRAPlab blocksets are composed of the so called "linked blocks"

that point to block definitions in a common block repository. The source blocks are general so

that they cover functionality for both target systems and could be further expanded in case of

introduction of a new target. The general block’s interface and code generation mapping are

limited according to the target, as described in chapter 4. This approach can lead to oversized

configuration classification tree in cases where these limitations are substantial.

For example, in order to simplify component implementation and testing, all ports of atomic

components (GRAP programming elements) must be connected in an application program for

Safety Platform. This results in Safety Platform’s components usually having less variants and

configurations than components in DSC development environment. An example of such case is

LogicalOperator component which in Safety Platform has configuration classification tree with

eight variants each of which has a single configuration, Fig. 8.3. The same component in DSC

environment has fourteen variant with fifty-four configurations altogether, see section 7.3.

Figure 8.3: LogicalOperator component variants and configurations classification tree is greatly

simplified in comparison to the same component in DSC environment

It is possible for one configuration of the component variant to be implemented with more

than one atomic components. An example for this is the CRCCALC component for calculation

of Cyclic Redundancy Check (CRC) codes. In Safety Platform, CRC algorithm is implemented

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 121

using lookup tables. Two atomic components comprise an implementation: one component

defines the lookup table and the other performs the actual calculations. CRC calculation using

"Baicheva" and "Modbus" polynomials are supported by two different lookup tables. Besides

polynomial selection, the CRCCALC component can be configured to have 4 or 8 inputs. These

two options result in a configuration classification tree shown in Fig. 8.4.

Figure 8.4: CRCCALC component variants and configurations

Figure 8.5: GENINC component variants and configurations

If atomic component’s input is considered only during initialization, than it is represented

as a parameter of the GRAPlab component and is partitioned in configuration classification

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 122

tree, rather than in vector classification tree as other "regular" inputs. This is the case with

INIVAL input of the GENINC atomic component for generation of incrementing sequence. This

component is usually used for detection of lost messages in different communication channels

and the mentioned input determines the value from which the incrementing sequence is started.

The configuration classification tree for GENINC component is shown in 8.5.

In some events, though the input is considered during run-time it makes little sense to

change it during execution. This applies to filtering constant of the LFILTP variant of the De-

bounce component. LFILTP atomic component is actually a low-pass filter of a packed logical

signal. Up to sixteen logical, i.e. boolean, signals can be packed into one 16-bit signal of

the "packed logical" type saving this way bandwidth, if signals are to be transferred through

a communication channel, or memory, if they are to be stored locally. LFILTP atomic compo-

nent performs low pass filtering of the individual bits of such packed signals. In other words, it

debounces the packed logical signals. Automatically generated classification tree for the De-

bounce component has been manually modified with sensible filtering constant values, Fig. 8.6.

Figure 8.6: Debounce component variants and configurations

8.2.3 Vectors

Automatic test vector generation based on data partitioning described in section 5.3 cannot

always bring the tested component into all states that need to be validated. In such cases, test

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 123

vector classification tree can be manually modified to produce desired test vectors.

For example, the CHKINC component represents the second part of the communication

channel monitoring, alongside GENINC component mentioned in previous subsection. CHK-

INC checks validity of the received incrementing sequence generated on the remote node an

thus enables detection of lost or corrupted messages. The input sequence is declared valid

only if consecutive samples are incremented by one. Automatic test vector generation scheme

would never (i.e. chances are very small) produce such sequence so vector classification tree

was manually modified as shown in Fig. 8.7. Equivalent classes that correspond to classifica-

tion representing Input input are organized in pairs that produce valid incrementing sequence.

Between these pairs invalid sequence is generated that should result with error detection. Trigg

input enables component operation and Reset input resets the error count output of the com-

ponent.

Figure 8.7: CHKINC vector classification tree

Waveforms of the test vectors generated based on classification tree in Fig. 8.7 are shown

in Fig. 8.8. The scale of the Input input is relatively large to cover the whole 16-bit integer range

so the valid by-one-incrementing sequences are not visible. One of these ramps has therefore

been enlarged in Fig. 8.8.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 124

Figure 8.8: CHKINC test vector waveforms

Besides varying filter constants through different configurations of the component variant,

as is done for LFILTP variant of the Debounce component in the previous subsection, the filter

constant can be manually defined through vector classification tree. This has been done for the

L_FILT variant of the Debounce component and the resulting vector classification tree and test

vector waveforms are shown in figures 8.9 and 8.10, respectively.

On the other hand, automatic test vector generation works well for most of the components,

e.g. figures 8.11 and 8.12 show fully automatically generated vector classification tree and

waveforms for a configuration of the CRCCALC component’s CRCCALC4 variant.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 125

Figure 8.9: L_FILT vector classification tree

Figure 8.10: L_FILT test vector waveforms

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 126

Figure 8.11: CRCCALC4 vector classification tree

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 127

Figure 8.12: CRCCALC4 test vector waveforms

Automatic test vector generation procedure can result in substantial vector classification

tree if equivalent classes of an input are expanded by specific values beyond the ones deter-

mined by data type. For example, UnPackL component unpacks a 16-bit arithmetical input into

sixteen logical (boolean) signals. For this component’s test vector, not only equivalent classes

determined by the data type of the input are interesting, but also all the powers of two inside

the data range. This kind of partitioning results in vector classification tree in Fig. 8.13.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 128

Figure 8.13: UNPACKL test vector classification tree

8.2.4 Models

The RTTP introduced in section 5.4, Fig. 5.7, can be significantly reduced for Safety Platform

because of the absence of concurrent tasks. The reduced pattern, shown in Fig. 8.14, con-

sists of test vector reproduction, tested configuration and its execution time measurement, and

logging.

Figure 8.14: RTTP adjusted for Safety Platform

The root view of the test model pattern is shown in Fig. 8.15, the pattern is given on the

left-hand side and the right-hand side provides example instance for the SUM2 variant of the

Summation component. The pattern is instantiated by populating Conf_CUT subsystem with

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 129

the tested configuration, as shown in Fig. 8.16, and by connecting this subsystem with the

Log subsystem for signal logging. The Log subsystem pattern and instance are same as in

section 5.4, Fig. 5.11.

Figure 8.15: Safety Platform test model root; pattern on the left and instantiated on the right

Figure 8.16: Safety Platform test model Conf_CUT subsystem; pattern on the left and instanti-

ated on the right

8.2.5 Multiple Runs

Test models deviate slightly from the presented pattern if the configuration under test has a

large number of outputs. The RECORDER component used for logging of simulation and

code execution traces can record up to eight signals. This is not sufficient for testing of, for

example, the UNPACKL variant of the UnPackL component that unpacks a 16-bit integer into

sixteen logical signals, all of which must be recorded during test, Fig. 8.17 a). Such situations

are detected during automatic test model generation and appropriate number of test model

"runs" is generated. In each run, the tested component is supplied with the same test vectors

and different outputs are recorded. When all the runs have been simulated, simulation traces

from different runs are combined into one trace effectively producing a single simulation trace.

In case of UNPACKL test model, three test model runs have been generated as depicted in

Fig. 8.17 b), c), and d). Models shown in this figure have been manually arranged to avoid

clutter produced by the Simulink autorouting during automatic model generation.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 130

Figure 8.17: UNPACKL test model: a) Conf_CUT subsystem, b) 1st test run, c) 2nd test run, d)

3rd test run

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 131

Automated executable code generation and execution for models with multiple runs follows

a similar procedure as during simulation: code is generated, loaded and executed for each run

and execution traces are retrieved. Code execution traces from multiple runs are composed into

a single trace that can be compared to the composed simulation trace on a one-to-one basis.

A comparison of composed simulation and code execution traces for the UNPACKL variant of

the UnPackL component is shown in Fig. 8.18.

Figure 8.18: Comparison of composed simulation and code execution traces

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 132

8.2.6 Testing Results

The described testing procedure has been conducted for all software components of the Safety

Platform that have inputs controllable and outputs observable from within the application pro-

gram. Special and hardware dependent components, e.g. drivers for digital inputs and outputs,

have been either manually tested or the testing has been performed indirectly through test

cases of the respective hardware unit.

Discovered defects together with their analysis and solutions are listed in Tab. 8.2. Two

errors in GRAP atomic component libraries were found and corrected: one error in graphical

library and one in the macro library. The three remaining defects impact atomic components’

inputs/outputs which are not used in application programs. They were amended by remov-

ing the unused ports from the corresponding GRAPlab components and assigning "NC" (not

connected) label to the macro calls during code generation.

Table 8.2: Defects found during Safety Platform component testing

Component Variant Defect Analysis Solution

CHKINC CHKINC

Incorrect LDIFF LDIFF is auxilary Simulink

for constant INPUT output, not used component

(255 instead of -1). in applications. modified.

Copy COPY

Defines logical Error in

Corrected.output instead graphical

of arithmetical. library.

CRCCALC all
ENABLE input Input not Simulink component

not functional. used. modified.

GENINC GENINC

OV output is A bug in element, Simulink

never active. but OV output component

is not used. modified.

Summation DIFF

Negative overflow A bug in

Corrected.to -32767 instead element

to -32768. implementation.

After correcting the listed defects, all tested components have passed the functional test.

Table 8.3 summarizes real-time properties of the Safety Platform’s software components. The

average execution time values listed in the table should be considered with a dose of caution.

These values depend on input vectors and would in most cases be different for different input

sequences.

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 133

Table 8.3: Real-time properties of the Safety Platform software components

Component Variant Config. BCET ACET WCET

Bistable
L_RS TC001 2 2.25 3

L_SR TC001 2 2.25 3

CHKINC CHKINC TC001 2 6.67 10

COMP COMP TC001 4 4.52 5

CRCCALC

CRCCALC4
TC001 20 20.55 21

TC002 20 20.56 21

CRCCALC8
TC001 38 38.54 39

TC002 38 38.51 39

Copy
COPY TC001 2 2.4 3

L_COPY TC001 1 1.5 2

Debounce

LFILTP

TC001 10 10.67 11

TC002 14 14.45 15

TC003 17 17.34 18

TC004 20 20.65 21

TC005 24 24.40 25

TC006 27 27.33 28

TC007 30 30.65 31

TC008 34 34.40 35

TC009 37 37.39 38

TC010 40 40.62 41

TC011 44 44.44 45

TC012 47 47.33 48

TC013 50 50.69 51

TC014 54 54.43 55

TC015 57 57.37 58

L_FILT TC001 2 4.06 10

L_FILTX
TC001 2 3.98 11

TC002 2 6.01 10

DelayEdge
L_TOFF TC001 1 3.19 7

L_TON TC001 1 3.09 6

EQTEST EQTEST TC001 2 2.65 4

FILTLPS FILTLPS TC001 12 13.17 14

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 134

Table 8.3: Continued from previous page...

Component Variant Config. BCET ACET WCET

GENINC GENINC

TC001 1 1.58 3

TC002 1 1.64 3

TC003 1 1.57 3

TC004 1 1.7 3

TC005 1 1.58 3

TC006 1 1.66 3

Gate GATE TC001 0 1.6 3

HiLoJoin HILOJOIN TC001 1 1.36 2

HiLoSplit HILOSPLT TC001 2 2.4 3

L_OSC

L_OSC TC001 4 4.86 7

L_OSCE TC001 2 3.91 8

L_OSCR TC001 4 6.47 9

LogicalOperator

L_AND2 TC001 1 1.75 2

L_AND4 TC001 2 2.68 4

L_AND8 TC001 6 6 6

L_EXOR TC001 1 1.75 2

L_NOT TC001 1 1.5 2

L_OR2 TC001 1 1.75 2

L_OR4 TC001 2 2.68 4

L_OR8 TC001 6 6 6

PackL
PACKL TC001 13 14.58 16

PACKL8 TC001 6 7.01 8

Peaks PEAKS TC001 3 5.61 9

Summation
DIFF TC001 3 3.38 5

SUM2 TC001 3 3.54 4

Switch
L_SWITCH TC001 2 2.12 3

SWITCH TC001 2 2.82 3

Timer TIMER TC001 1 2.73 8

Trigg L_TRIGG TC001 2 2.30 3

UnPackL
UNPACKL TC001 2 2.30 3

UNPACKL8 TC001 2 2.30 3

8. CASE STUDY: SAFETY PLATFORM COMPONENT TESTING 135

Table 8.3: Continued from previous page...

Component Variant Config. BCET ACET WCET

UnitDelay
DELAY TC001 4 4.22 5

L_DELAY1 TC001 2 2.9 3

The testing process was automatically documented using LATEX report patters, section 5.6.

This resulted in a 1183 pages of test report that was part of official documentation set submitted

during certification of the Safety Platform.

Chapter 9

Case Study: Photovoltaic Maximum
Power Point Tracking Algorithm
Testing

Control algorithm model-based real-time testing is presented on case study of MPPT algorithm.

This algorithm is used to extract maximum power from a power source with typically non-linear

current over voltage characteristic. Common example for MPPT application is a photovoltaic

inverter. Solar panels’ nonlinear voltage-current characteristic has a distinct maximum power

point (MPP) dependent on environmental factors, such as temperature and irradiation. To

harvest maximum power from solar panels, they must continuously operate at their MPP, so

controllers of all photovoltaic inverters employ some method for maximum power point track-

ing, [132]. In this case, a MPPT algorithm is used to control interface between the photovoltaic

field and the load, i.e. to create an “adaptable load”, by means of power inverter.

This chapter presents implemented MPPT algorithm, model of photovoltaic panels used

in its’ development, and real-time testing of the algorithm according to MoBREST-IT method.

Embedded target used in this case study is based on TI’s TMS320F28335 floating-point DSC,

as introduced in section 7.1.

9.1 Photovoltaic panels and maximum power point tracking model

The root view of the Simulink model with meteorological conditions subsystem Meteo, pho-

tovoltaic panels’ model subsystem Panels, and MPPT algorithm implementation subsystem

MPPT is shown in Fig. 9.1. Period of the cyclic task at which the MPPT algorithm exe-

cutes is by several orders of magnitude longer than inverter’s step response to operating point

change, [133]. That is why inverter response from the viewpoint of MPPT algorithm is approxi-

mated as instant and is not included in the model.

Photovoltaic fields are constructed out of a number of photovoltaic panels connected in se-

ries and parallels. Photovoltaic panels are, again, constructed out of a number of photovoltaic

cells. Therefore, to validate an MPPT algorithm, a sufficiently accurate model of photovoltaic

cell is needed. As shown in [134], photovoltaic cell can be modeled with equation 9-1, where

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 137

I and V are cell output current and voltage, I0 is saturation current, RS and RP are cell shunt

and series resistance, IS is the current generated by sunlight and A, T and k are diode ideality

factor, cell temperature and Boltzmann constant, respectively. Typical characteristics of a pho-

tovoltaic cell modelled by equation 9-1 are given in Fig. 9.2. In model on Fig. 9.1, the panels

are modeled by an M-function. Photovoltaic field model was sized by increasing cell outputs

until satisfactory photovoltaic field power at MPP was achieved.

I = IS − I0(e
q(V +IṘs)

kṪ Ȧ − 1)− V + IṘS

RP
(9-1)

Figure 9.1: Model of the photovoltaic panels and MPPT algorithm

Many different MPPT algorithms have been developed and implemented with various de-

grees of success, [132, 135]. In general, MPPT algorithms can be divided into “hill climbing”

types, advanced MPPTs based e.g. on neural networks or on fuzzy logic, and “approximate”

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 138

types, where part of the photovoltaic cell characteristics are known or estimated. In practice,

mostly “hill climbing” methods are used, as advanced algorithms can be hard to implement

due to computing requirements, while other types do not operate with adequate precision for

modern systems, [136]. Tested algorithm is a “hill climbing” variation known as Incremental

Conductance algorithm, [137]. The algorithm is based on assessment of the slope of power-

voltage curve of the photovoltaic panel.

Figure 9.2: Photovoltaic cell characteristics

Figure 9.3: Response of the model in Fig. 9.1 to insolation step

Environmental condition changes are relatively slow compared to photovoltaic inverter dy-

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 139

namics so testing of the real-time properties of the MPPT algorithm is not computationally de-

manding. However, this application was chosen for demonstration of integration testing meth-

ods because photovoltaic panels model as well as MPPT algorithm model are both simple

enough to provide a "school room" example while being at the same time complex enough not

to be trivial. More importantly, parallel to this research, the author was part of a team devel-

oping a photovoltaic inverter, Fig. 7.3 in section 7.1, so presented results represent real-world

application of the proposed method.

Response of the model in Fig. 9.1 to insolation step change is shown in Fig. 9.3. This

response is used as on oracle in next stages of testing.

9.2 Open-loop test

Test model for the functional stage of open-loop testing is created by replacing MPPT sub-

system in model on Fig. 9.1 with subsystem shown in Fig. 9.4. The new subsystem pads

tested algorithm with interface blocks, see section 6.1, and replaces native Simulink blocks

with functionally equivalent blocks from the GRAPlab blockset, in order to enable automatic

code generation as described in chapter 4.

Figure 9.4: MPPT subsystem for first stage of open-loop testing

Fig. 9.5 shows MPPT algorithm integrated into the RTTP for real-time stage of open-loop

testing. The same MPPT model prepared for code generation that was used in first stage is

also used in real-time testing, but here the MPPT subsystem containing it is present on two

places: in SUT_CT1 subsystem executed on CT1 and in SUT_CT2 subsystem executed on

CT2.

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 140

Figure 9.5: MPPT algorithm model integrated into RTTP

Functional behaviour of the MPPT algorithm implementation is the same in both stages of

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 141

open-loop testing and execution traces perfectly match simulation traces, Fig. 9.6.

Figure 9.6: Open-loop MPPT testing functional results

RTTP used in control algorithm real-time integration testing is derived from RTTP for com-

ponent testing. In order to validate these changes, task execution order of test application for

MPPT algorithm open-loop real-time testing was recorded by oscilloscope, Fig. 9.7-9.10. Exe-

cution of pieces of code is marked by setting a DSC’s GPIO pin at start of the code execution

and by clearing the same pin at code execution end. This way, execution timing relationships

between parts of target application were determined. In figures 9.7-9.10, signals corresponding

to execution of individual parts of target code are labeled with:

• CT1 – higher priority CT1,

• SUT_CT1 – instance of the tested algorithm on the CT1,

• SUT – instance of the tested algorithm on the CT2, i.e. the one that is actually being

tested,

• CT2 – lower priority CT2.

Fig. 9.7 shows that SUT instance placed on CT1 really executes on each second CT1

execution occasion and synchronously with CT2. This enables the SUT instance on CT1 to

interrupt CT2 and ensures that SUT instances on CT1 and on CT2 are in the same state during

the interrupt.

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 142

Figure 9.7: SUT instance on CT1 is executed synchronously with CT2 during real-time open-

loop testing of the MPPT algorithm

Waveforms on figures 9.8-9.10 represent enlarged parts of the waveforms similar to the

one in Fig. 9.7. Fig. 9.8 shows a situation in which variable CPU load generated on the CT2 is

below the point at which interrupting of the SUT by the CT1 begins. In Fig. 9.9 variable CPU

load positions SUT code so that it is interrupted by the CT1. The SUT signal is not cleared

when interrupt occurs so it is elongated by the duration of the CT1 signal pulse. When variable

CPU load rises above certain value, SUT code is executed after the point in which it can be

interrupted, Fig. 9.10. These tree figures show that variable CPU load ensures interrupting of

the SUT code by the CT1 at each possible point.

Figure 9.8: Task execution during real-time open-loop testing of the MPPT algorithm before

SUT starts being interrupted

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 143

Figure 9.9: Task execution during real-time open-loop testing of the MPPT algorithm when SUT

is interrupted

Figure 9.10: Task execution during real-time open-loop testing of the MPPT algorithm after SUT

has passed the "interrupt zone"

Execution time of the MPPT algorithm has been measured during open-loop real-time

testing and is plotted against algorithm’s output in Fig. 9.11. Execution time jumps to 408 CPU

cycles at start of execution, oscillates between 395 and 404 cycles during transient, rises to

406 cycles at end of transient and finally stabilizes on 395 cycles in steady state. This kind of

measurement can be a starting point for in-depth analysis of SUT real-time behaviour.

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 144

Figure 9.11: SUT output versus its’ execution time

Maximal interrupt delay introduced by the MPPT algorithm implementation was determined

to be 2 processor cycles.

9.3 Closed-loop test with simulated environment

MPPT algorithm model is prepared for non-real time closed-loop testing by adding InputPiL and

OutputPiL blocks into signal path in same way as in Fig. 6.4, section 6.2. In model on Fig. 9.12,

two additional blocks are added. RunCT1 block sends a command to the target to perform one

execution of the code generated from the MPPT subsystem in each simulation step. This way

the algorithm executed on the target is fed with input and algorithm output is passed back into

the model in a step-by-step manner. The EndAP block stops target application when simulation

time elapses.

Figure 9.12: MPPT subsystem for non-real-time closed-loop testing

Fig. 9.13 shows B2B comparison of U-I and U-P characteristics for cases when feedback

loop is closed with model of the MPPT algorithm and when feedback is closed with code exe-

cuted on the target. Here a mismatch can be seen caused by a single step delay introduced

by the RTW serial communication. Nevertheless, code response follows simulation traces and

reaches the same steady state.

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 145

Figure 9.13: Non-real-time closed-loop MPPT testing functional results

A workaround the one step delay problem of the RTW serial communication could probably

be devised. However, this was not pursued because the focus of the thesis is on real-time

testing. This step is provided here as a proof of concept which shows that presented methods

and tools are suitable for non-real time testing with interaction between simulation environment

and real-time embedded target.

9.4 Real-time closed-loop test

In order to validate real-time properties of the MPPT algorithm implementation, the model of its’

environment, i.e. the photovoltaic panels model, must be executed in real-time. One of goals

of this case study was to show that this can be realized without expensive real-time simulators.

This was achieved by preparing the panels model for ACG and by executing generated code

on the embedded target, alongside the MPPT algorithm implementation.

ACG procedure doesn’t support code generation from M-functions, so functional panels

model in Fig. 9.1 must be reimplemented with Simulink blocks. In Fig. 9.14, implementational

panels model is broken down into two subsystems. Panels1 subsystem implements part of the

M-function that is executed once in each simulation step, while Panels2 subsystem implements

iterative part of the M-function.

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 146

Figure 9.14: Model for real-time closed-loop testing

Before using photovoltaic panels model in MPPT algorithm testing, it has been functionally

validated in an open-loop test. Simulation traces, i.e. test vectors and oracle, have been taken

from open-loop testing of the MPPT algorithm described section 9.2. This means that a loop

including functional model of photovoltaic panels and the MPPT model has been closed inside

simulation environment, simulation was performed, and inputs to photovoltaic panels model

have been recorded as well as its’ output. Next, implementational model was simulated with

obtained test vector at its’ inputs. Final step in model validation was ACG and execution of

the generated code on the embedded target, again with the same test vectors. Outputs of

the functional model, implementational model and executable code of the photovoltaic panels

model are compared in Fig. 9.15.

Outputs of the implementational model and of the code match perfectly, but differ from

output of the functional model. The difference arises because of GRAPlab’s approximate im-

plementation of exponent function (block marked with eu in Fig. 9.14) with Maclaurin series

according to equation 9-2. This is exactly a kind of problem that can arise during design of

closed-loop real-time algorithm test. Refinement of environment functional model into a form

suitable for code generation can require simplifications and approximations that influence its’

functional behaviour. At this point in test design, the test and/or application engineer must

decide whether such deviations are acceptable. If not, closed-loop real-time testing is unfortu-

nately not applicable to that specific application.

eu =
inf∑
n=0

un

n!
≈

16∑
n=0

un

n!
(9-2)

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 147

Figure 9.15: Responses of photovoltaic panel models

If quality of photovoltaic panels model is assumed to be satisfactory, testing process can

be resumed by simulating model in Fig. 9.14, by generating code from it, and by executing

the code on the embedded target. Recorded simulation traces match code execution traces

perfectly, but they both differ from responses of the open-loop test. This discrepancy is caused

by approximate implementation of photovoltaic panels model.

Figure 9.16: Real-time closed-loop MPPT testing functional results

This section presented closed-loop testing of the MPPT algorithm where photovoltaic panel

model implementation and MPPT algorithm implementation have been executed in a closed-

9. CASE STUDY: PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING ALGORITHM TESTING 148

loop on the real-time embedded target. Real-time properties of the MPPT algorithm have not

been validated here because they have already been determined in open-loop test, section 9.2.

If MPPT subsystem in model on Fig. 9.14 was embedded inside RTTP, similar as has been

done in open-loop test, than real-time properties could be tested alongside functional operation.

The main purpose of this section is to show that real-time testing of control algorithms in a

closed-loop on embedded target is possible and to point out potential problems that could arise

in designing such tests.

Chapter 10

Summary, Conclusion, and Outlook

10.1 Summary

In the first chapter of the thesis, background of the research has been presented. Applica-

tion domain of the thesis’ results has been designated to be low-volume safety critical hard

real-time embedded control systems that should have long lifetime. Legacy software devel-

opment environment, encompassing development tools, code generation scheme, importance

of component reuse, and application development process, has been presented. Next, it has

been shown how advantages and drawbacks of the legacy embedded software development

process motivated the research and research gaps gave been identified in integrating legacy

components into MBD of embedded control systems and in MBT of real-time properties of such

systems. Three contributions have been proposed to fill these gaps.

In chapter 2, relevant terms regarding embedded systems, such as "real-time" and "hy-

brid", have been defined. The growing importance of embedded systems in general and of

particular problems this thesis dealt with has been stressed through an overview of embed-

ded market trends. A discussion on non-functional requirements has been provided which has

shown divergence of their definitions in literature but has also explained their impact on em-

bedded control systems in focus of conducted research. Emphasis has been placed on timing

related non-functional requirements, so processing resources management and task execu-

tion analysis have been explored in more detail. Since the focus of the thesis has been on

component based embedded control software development, definitions of the term CBSE have

been discussed and it has been shown how proprietary components used in case studies fit

into these definitions. Next, structure and organization of the proprietary software components

has been elaborated. An overview of publications on model-based control software develop-

ment has been presented by exploring how they relate to development aspects such as REQM,

modeling, model transformations, ACG, and testing. Advantages of using patterns in software

development and testing have been identified at the end of this chapter.

Chapter 3 has provided an analysis of selected MBT tools and methods by placing each

of the investigated approaches into MBT taxonomy. The taxonomy available in literature has

been adapted for real-time embedded control systems considered in the thesis by expanding it

with additional categories and options. This analysis has shown that there is very little support

10. SUMMARY, CONCLUSION, AND OUTLOOK 150

in investigated tools and methods for real-time unit and integration testing of hybrid embedded

control systems. The MoBREST method has been shortly presented to show that it can fill the

identified gap.

An approach to MBD of embedded real-time control software that systematically integrates

legacy components has been presented in chapter 4. The approach has been showcased on

integration of legacy assembler software components into MATLAB/Simulink environment via

a toolbox developed in scope of the research. A Simulink blockset, a set of Simulink compo-

nents, has been constructed where each component comprises graphical symbol with dialog

window, the so called Simulink masked block, a dependency definition file, and an initializa-

tion function. It has been shown how these blocks can be used to create models or parts of

models (subsystems) which can participate in a flexible ACG procedure that utilizes legacy soft-

ware components. Mapping of high level software components (Simulink blocks) onto atomic

components (legacy assembler macros) has been implemented using mapping definition files.

Model-Based Real-time Embedded System Testing method has been elaborated in chap-

ter 5. The method uses Classification Tree Method extensively so it has been explained on

an example from the literature. The remainder of the chapter has dealt with each step of

the MoBREST component testing in more detail. Component configuration space partitioning

has been presented that decomposes a software component on the MBD level into variants,

representing software components on the embedded target implementation level, and further

into configurations, representing parametrized instances of implementational components. The

real-time testing pattern used in automated generation of test models for validation of functional

and of real-time properties has been elaborated. It has been emphasized that test vectors, i.e.

inputs to the test object, can be introduced from previous stages of development or that they

can be generated using the developed tool. An iterative executable code generation and execu-

tion process has been introduced that ensures the desired test coverage. Finally, adjudication

and test documentation procedures have been described.

In chapter 6, the MoBREST method has been adapted for integration testing of complex

software control structures. Modifications to the real-time testing pattern have been presented

and braking the testing process into three steps has been proposed: open-loop testing, closed-

loop step-by-step testing and closed-loop real-time testing. Open-loop testing, which doesn’t

take environment (model) into account, has been further decomposed into two phases: firstly,

functional testing is performed and, secondly, the system under test is incorporated into RTTP

for real-time properties validation. Closed-loop step-by-step testing has been presented where

model of the environment is executed inside simulation environment on a standard personal

computer so real-time properties cannot be validated. Elements of the first two steps of the

MoBREST integration testing have been merged into the third step, the closed-loop real-time

testing. Here it has been presumed that the model of the environment can be accommodated

for ACG and that the real-time embedded target has enough resources to execute it alongside

the SUT incorporated in RTTP. If the said assumptions have been fulfilled, than validation of

real-time properties of the SUT can be conducted in a closed control loop.

A case study on testing software components for Texas Instruments’s digital signal con-

troller has been presented in chapter 7. Firstly, the target controller family has been described

10. SUMMARY, CONCLUSION, AND OUTLOOK 151

and a short overview of applications of members of this family in proprietary real-time control

systems has been given. Next, the specific controller and experimental kit on which the study

was performed have been introduced. Validation of the RTTP has been conducted to establish

confidence in the testing tool and results it provides. Execution time measurement, variable

CPU load generation, interrupt coverage, and interrupt delay detection functions of the RTTP

have been checked. The whole component testing process and its outputs have been illustrated

on an example of LogicalOperator component which performs Boolean operations. Partitioning

of its’ configuration space has produced fourteen variants which have fifty-four configurations

all together so fifty-four sets of test vectors and the same number of test models have been

automatically constructed. Executable applications have been automatically generated and

executed and test results have been presented.

In chapter 8, real world application of MoBREST method in testing of software components

for the Safety Platform has been summarized. The presented testing process has been con-

ducted during certification of the Safety Platform as a part of railway crossing control system.

The Safety Platform, based on 8051 series microcontroller, has been shortly introduced at the

beginning of the chapter. Next, it has been shown that Safety Platform’s software architecture

deviates from assumptions made during design of MoBREST method. The RTTP and the Mo-

BREST testing procedure have been adapted (simplified) and successfully applied to the Safety

Platform. Every step in the testing process has been elaborated through examples of selected

software components that have shown characteristic properties in the particular step.

The final case study that deals with real-time testing of photovoltaic MPPT algorithm is

presented in chapter 9. The implemented MPPT algorithm, its’ model as well as model of

photovoltaic panels used during testing have been described. The model of the MPPT algorithm

has then been accommodated to the ACG procedure and used in functional open-loop testing.

The same model has been incorporated in the RTTP and real-time properties of the algorithm

have been validated in the second stage of open-loop testing. The RTTP has been slightly

adapted for control algorithm testing so these changes have been validated, similar to RTTP

validation in chapter 7. Functional testing of the MPPT algorithm in a closed control loop with

photovoltaic panels model simulated on a personal computer has been conducted in a step-

by-step manner. This test has shown viability of proposed methods and developed tools for

conventional PiL testing but has also revealed issues in commercial tool used to establish

communication between real-time embedded target and simulation environment. In order to

conduct real-time testing of the algorithm in a closed control loop, photovoltaic panels model

has been adapted for ACG and tested in a functional open-loop test. It has been shown that

panels model can be executed on the embedded target alongside the MPPT algorithm and that

real-time testing can be performed with closed control loop.

10.2 Conclusion

Main goals of this thesis were to investigate possibilities of structured and systematic integra-

tion of legacy software components into MBD of embedded control systems and to propose

methods and tools for validation of real-time properties of these systems. Suitable answers to

10. SUMMARY, CONCLUSION, AND OUTLOOK 152

these questions were found neither in literature nor in available commercial tools. However,

many partial answers were discovered and their elements were employed in methods and tools

developed during the research. The remainder of this section summarizes most important con-

tributions of the thesis.

The proposed ACG scheme, and MATLAB/Simulink toolbox GRAPlab which implements

it, have shown that legacy software components can indeed be systematically integrated in de-

velopment of embedded control software based on a model. The approach makes no assump-

tions as to programming language of the legacy components so even components written in

assembly languages can be integrated in the development process. This is a more general so-

lution to the legacy components issue than those available in investigated existing approaches

which presume that the legacy code is in some higher programing language, mostly in C. It has

been shown that this approach provides flexibility in managing components and facilitates their

reuse, that it provides highly customizable ACG and enables linking of newly generated code

with legacy object files. Extensive validation of the GRAPlab approach has been conducted

through construction of test models and executable code generation in component and integra-

tion testing for two different embedded targets. This approach promises to ease transition from

legacy embedded control systems development into modern MBD by transferring knowledge

and confidence condensed in legacy software components across the gap.

A novel model-based method for validation of real-time properties of embedded control

systems has been presented. The MoBREST-CT method performs partitioning of the tested

component on two levels: firstly, component configuration space is partitioned so that each

parametrized implementation of the component represents one test case and, secondly, input

data ranges of the software component are partitioned during test vector generation. The for-

mer represents a novel application of the CTM. Besides generating test inputs, the method

can be conducted with test vectors imported from previous stages of development. This way,

MoBREST-CT method can supplement other MBT approaches to provide desired test cover-

age. For instance, thorough functional testing can be conducted using some of the available

MBT tools followed by real-time properties validation using MoBREST-CT method and vectors

from the functional testing phase. All steps of the MoBREST-CT method, from test genera-

tion, through test execution to its’ documentation, can be fully automated, but they can also be

tweaked or performed completely manually. This enables full control of the tests on the one

side and effortless regression testing of large number of components on the other side.

It has been shown that MoBREST method can, with some adjustments, also be applied to

validation of real-time properties of complex control software structures. A novel approach of

generating executable target code from environment model and executing it alongside system

under test in a real-time closed-loop test has been presented. If ACG of the environment code

is not applicable, real-time propertied of the SUT can be validated in an open-loop real-time

test. The tools developed in course of the research have been shown to be appropriate for

conventional functional PiL testing where SUT executed on the target system is tested with

simulated model of the environment.

The MoBREST method, with both its’ component and integration testing subsets, fulfills

most of the requirements placed on the generic MBT process in section 2.3:

10. SUMMARY, CONCLUSION, AND OUTLOOK 153

• High level of automation aligns MoBREST method with interdisciplinary and iterative na-

ture of MBD.

• Possibilities to reuse vectors from previous stages of testing and to compare functional

test results with results of previous or subsequent tests provide link to testing on other

integration levels.

• Usage of test patterns ensures systematic test design which achieves desired test cover-

age without redundancy and eases navigation among possibly hundreds of test cases.

• All test artifacts have graphical representations: classification trees (for configuration

space partitioning and test vector generation), signal waveforms (for test vectors and

test results), and models (for executable code). These are all systematically organized in

automatically generated test documentation so tests are highly readable which enables

stakeholders from different domains to participate in testing process.

The only requirement not met is the one for reactive testing where test cases depend on system

behaviour. Reactive testing is primarily interesting in testing non-deterministic systems, which

are not in scope of this thesis. Besides, real-time reactive test would require on-line test gen-

eration and control to be executed on the target system alongside the test application. This

would significantly complicate the testing process and possibly overload the target’s memory

and processing resources.

Capabilities of GRAPlab toolbox and of MoBREST method have been shown through three

case studies. Correct operation of the RTTP has been validated on a nanosecond scale by ex-

periments in the first study. The second case study displayed great flexibility of the MoBREST-

CT method. The final study has shown three different approaches to integration testing pro-

vided by the MoBREST-IT method, two of which are novel techniques for real-time properties

validation. Credibility of the proposed methods and implemented tools stems from the fact

that they have been applied during development of real-life industrial products based on two

different hardware platforms: railway crossing control system and control system for the photo-

voltaic power inverter. In case of railway crossing control system, the proposed methods and

tools have contributed to untypically short certification process; certification of similar systems

is usually lengthy procedure with several iterations.

10.3 Outlook

Integration of legacy software components into MBD of embedded control systems presented in

this thesis and implemented by the developed GRAPlab toolbox represents a first step toward

modernization of development tools and processes in a conservative industrial environment.

The shift is alleviated by reusing tried and proven components and its final goal is building con-

fidence in the newly introduced methodologies. The next step in this direction would be using

the GRAPlab ACG method alongside commercial code generator, e.g. Simulink Coder [138].

This way, automatically generated C/C++ code could be slowly introduced into development

process, firstly in non critical tasks and later, as the confidence grows, even for safety critical

10. SUMMARY, CONCLUSION, AND OUTLOOK 154

functions. The commercial code generator must in such case be configured to generate code

that complies to restrictions inflicted by the proprietary tools and real-time kernel. Another re-

search direction, but along the same lines, would be adaptation of GRAPlab code generation

to commercial RTOS, e.g. to TI-RTOS [139].

Seamless integration of real-time properties validation, provided by the MoBREST method,

with model-based functional testing would simplify the testing process and would facilitate its’

usage. The integration scheme should be indiscriminatory with regard to targeted functional

testing approach so that as many as possible of the abundant existing functional MBT methods

can benefit from it. Such integration would enable the test engineer to use the most appropriate

testing tool and, when functional testing is over, to validate real-time properties of the SUT with

minimal effort.

Both GRAPlab and MoBREST are just peaces of a greater puzzle called model-based

development of embedded control systems. As such they provide limited benefits on their own

and their full potential can be realized only by integrating them in a complete MBD process.

Modality of integration depends on application domain, on structure of the development team,

and on existing toolchain into which they should be integrated. Case studies presented in the

thesis provide an example of initial steps toward such integration, but additional research is

necessary to achieve all round real-time MBD environment.

Acronyms

ACET average-case execution time

ACG automated code generation

AE application engineer

AP application program

AUTOSAR AUTomotive Open System ARchitecture

B2B Back-to-Back

BCET best-case execution time

CAN controller area network

CBSE Component-Based Software Engineering

COFF Common Object File Format

COTS commercial off-the-shelve

CPU central processing unit

CRC Cyclic Redundancy Check

CT1 cyclic task 1

CT2 cyclic task 2

CTM Classification Tree Method

CTM/ES Classification Tree Method for Embedded Systems

DSC digital signal controller

DSP digital signal processor

ECU electronic control unit

ESMoL Embedded Systems Modeling Language

FBD Function Block Diagram

Acronyms 156

FM functional module

GPIO general purpose input-output

GRAP GRaphical Application Programming tool

GRAPlab GRAP Laboratory

GReAT Graph Rewriting and Transformation

HiL Hardware-in-the-Loop

HTG Hybrid systems Test Generation

HWM hardware module

I2C inter-integrated circuit

IDE integrated development environment

KEEI KONČAR - Electrical Engineering Institute Inc.

LIN local interconnect network

MARTE Model and Analysis of Real-Time Embedded System

MBD Model Based Development

MBT model based testing

McBSP multi-channel buffered serial port

MCU microcontroller

MD module developer

MDD Model Driven Development

MiL Model-in-the-Loop

MiLEST Model-in-the-Loop for Embedded System Test

MoBREST Model-Based Real-time Embedded System Testing

MoBREST-CT MoBREST Component Testing

MoBREST-IT MoBREST Integration Testing

MPP maximum power point

MPPT maximum power point tracking

MTest Model Test

N/A not applicable

Acronyms 157

PDF Portable Document Format

PiL Processor-in-the-Loop

PL project leader

PLC programmable logic controller

PWM pulse width modulation

REQM requirements management

RTOS Real-Time Operating System

RTTP real-time testing pattern

RTW Real-Time Windows

SBS sequence-based specification

SCADE Safety Critical Application Development Environment

SCI serial communication interface

SE system engineer

SEI Software Engineering Institute

SIL Safety Integrity Level

SiL Software-in-the-Loop

SL DV Simulink Design Verifier

SL VV Simulink Verification and Validation

SPI serial peripheral interface

SUT system under test

SysML Systems Modeling Language

TE test engineer

TI Texas Instruments

TPT Time Partitioning Test

TPT-VM TPT Virtual Machine

UML Unified Modeling Language

VETESS Verification of Embedded systems for vehicles using

automatic TESt generation from Specification

VTB Virtual Test Bed

Acronyms 158

VTB-RT Virtual Test Bed – Real Time extension

WCET worst-case execution time

List of Figures

1.1 Software architecture . 4
1.2 GRAP code generation . 4
1.3 Legacy component inheritance . 5
1.4 Inherited atomic components . 6
1.5 Existing software development process . 7
1.6 Contribution of the thesis in V-model . 12

2.1 World and European electronic production per application domain in 2012, [32] . 15
2.2 Ratio of development resources spent on embedded software and hardware, [33] 16
2.3 Embedded software size vs deployment (left) ant the rise of embedded software

complexity (right), [1] . 16
2.4 Capabilities included in embedded projects, [33] 18
2.5 Environmental, shock and vibration immunity and electromagnetic compatibility

tests of proprietary embedded control systems, [7] 18
2.6 Reuse of code in embedded projects, [33] . 20
2.7 An example of graphical composed component 23
2.8 Graphical processor provides interface between graphical and code environments 24
2.9 Model Based Development workflow . 25
2.10 Percentage of time spent on design stages, [33] 25
2.11 Cost of finding and fixing defects grows exponentially in the development cycle, [66] 28

3.1 Diagram of the MBT taxonomy . 31

4.1 Integrator block from GRAPlab blockset . 53
4.2 SWGNL block from GRAPlab blockset . 54
4.3 SWGNL block with changed settings . 57
4.4 Dependency file enables block interface customization for different target systems 57
4.5 Simulink-GRAPlab model ready for automatic code generation 59
4.6 Simulink model with GRAPlab subsystem ready for code generation 59
4.7 Example of mappings definition for Summation GRAPlab block 61
4.8 Code generation tab of the GRAPlab block dialog window 62
4.9 ModConf GRAPlab block configures settings on a composite component level . 63
4.10 GRAP code generation from Simulink . 63

5.1 MoBREST component testing workflow . 65
5.2 CTM example – a) computer vision system, b) aspects for classification, [91] . . 66
5.3 CTM example – classification tree, [91] . 67
5.4 Summation component partitioning into variants and configurations 68
5.5 Summation component parameter space partitioning process 70
5.6 Input data partitioning and test vectors generation for DIFF_L configuration . . . 73

159

LIST OF FIGURES 160

5.7 Mapping between a) RTTP diagram, b) Simulink implementation of the RTTP,
and c) task interrupt scheme . 75

5.8 Test model root; pattern on the left and instantiated on the right 76
5.9 Conf_CUT subsystem of the test model; pattern on the left and instantiated on

the right . 77
5.10 Conf_n subsystems of the test model; pattern on the left and instantiated on the

right . 77
5.11 Log subsystem of the test model; pattern on the left and instantiated on the right 78
5.12 IntWDog (interrupt watchdog) subsystem of the test model 78
5.13 Task execution time measurement subsystems a) LoadBeg and b) LoadEnd . . 79
5.14 Execution time measurement implemented in GRAP 80
5.15 Measurement of the CT1 execution time . 81
5.16 Measurement of the execution times of the CT2 code 81
5.17 Task interrupt scheme . 82
5.18 During the test run blocks used to measure execution time are excluded 83
5.19 Test vectors, simulation and code execution traces, and error for safety platform’s

low pass filter atomic component FILTLPS . 84
5.20 The structure of automatically generated LATEX test report 85
5.21 MATLAB/MoBREST to CTE XL interface via AutoIt scripting 87

6.1 Mapping between a) integration RTTP diagram, b) its’ Simulink implementation,
and c) task interrupt scheme . 89

6.2 Subsystems of the Simulink implementation of the integration RTTP 90
6.3 Open-loop integration testing. 91
6.4 Testing in a closed-loop with simulated environment 93
6.5 Real-time testing in a closed-loop with environment model’s code in the loop . . 94

7.1 Hardware modules based on Texas Instruments’ C2000 family of DSCs 98
7.2 Converter for main propulsion of low floor train with modular proprietary control

system equipped with two electronic modules based on F2407 DSC 98
7.3 Two power converters with proprietary integral control systems based on F28335

DSC: a) auxiliary power supply converter in tram and b) photovoltaic power con-
verter . 99

7.4 a) Block diagram and b) photograph of the eZdsp28335 development board . . . 99
7.5 Model for validation of execution time measurement 100
7.6 Execution time measurement of the L_RS variant of the Bistable component by

oscilloscope: a) one component instance and b) two instances 101
7.7 Execution traces of the code generated from the model in Fig. 7.5 102
7.8 Simulink test model for variable CPU load generator 102
7.9 Variable CPU load generator test: a) minimal and b) maximal load measurement 103
7.10 Variable CPU load increments by one CPU cycle 103
7.11 Task execution during real-time testing before the tested component starts being

interrupted . 104
7.12 Task execution during real-time testing when the tested component is interrupted 104
7.13 Task execution during real-time testing after the tested component has passed

the "interrupt zone" . 105
7.14 Interrupt delay detection with fixed position and rising execution time of the in-

jected uninterruptible code . 105
7.15 Interrupt delay detection with variable position and fixed execution time of the

injected uninterruptible code . 106
7.16 Interrupt vulnerability detection in L_RS variant of the Bistable component 107

LIST OF FIGURES 161

7.17 LogicalOperator component’s a) Settings dialog and b) Code generation dialog . 108
7.18 LogicalOperator component variants and configurations, 1st part 109
7.19 LogicalOperator component variants and configurations, 2nd part 110
7.20 Test vector classification tree for the TC002 configuration of the L_AND4 variant

of the LogicalOperator component . 111
7.21 Test vector waveforms for the TC002 configuration of the L_AND4 variant of the

LogicalOperator component . 111
7.22 Test model of the TC002 configuration of the L_AND4 variant of the LogicalOp-

erator component . 112
7.23 Test vectors, output and output error of the TC002 configuration of the L_AND4

variant of the LogicalOperator component . 113

8.1 An example of level crossing with half barrier and light signalization 116
8.2 Safety platform mounting rack with installed electronic modules 117
8.3 LogicalOperator component variants and configurations classification tree is greatly

simplified in comparison to the same component in DSC environment 120
8.4 CRCCALC component variants and configurations 121
8.5 GENINC component variants and configurations 121
8.6 Debounce component variants and configurations 122
8.7 CHKINC vector classification tree . 123
8.8 CHKINC test vector waveforms . 124
8.9 L_FILT vector classification tree . 125
8.10 L_FILT test vector waveforms . 125
8.11 CRCCALC4 vector classification tree . 126
8.12 CRCCALC4 test vector waveforms . 127
8.13 UNPACKL test vector classification tree . 128
8.14 RTTP adjusted for Safety Platform . 128
8.15 Safety Platform test model root; pattern on the left and instantiated on the right . 129
8.16 Safety Platform test model Conf_CUT subsystem; pattern on the left and instan-

tiated on the right . 129
8.17 UNPACKL test model: a) Conf_CUT subsystem, b) 1st test run, c) 2nd test run,

d) 3rd test run . 130
8.18 Comparison of composed simulation and code execution traces 131

9.1 Model of the photovoltaic panels and MPPT algorithm 137
9.2 Photovoltaic cell characteristics . 138
9.3 Response of the model in Fig. 9.1 to insolation step 138
9.4 MPPT subsystem for first stage of open-loop testing 139
9.5 MPPT algorithm model integrated into RTTP . 140
9.6 Open-loop MPPT testing functional results . 141
9.7 SUT instance on CT1 is executed synchronously with CT2 during real-time open-

loop testing of the MPPT algorithm . 142
9.8 Task execution during real-time open-loop testing of the MPPT algorithm before

SUT starts being interrupted . 142
9.9 Task execution during real-time open-loop testing of the MPPT algorithm when

SUT is interrupted . 143
9.10 Task execution during real-time open-loop testing of the MPPT algorithm after

SUT has passed the "interrupt zone" . 143
9.11 SUT output versus its’ execution time . 144
9.12 MPPT subsystem for non-real-time closed-loop testing 144
9.13 Non-real-time closed-loop MPPT testing functional results 145

LIST OF FIGURES 162

9.14 Model for real-time closed-loop testing . 146
9.15 Responses of photovoltaic panel models . 147
9.16 Real-time closed-loop MPPT testing functional results 147

List of Tables

3.1 Positioning of investigated MBT approaches with respect to Model class of the
proposed taxonomy . 43

3.1 Continued from previous page... 44
3.1 Continued from previous page... 45
3.2 Positioning of investigated MBT approaches with respect to Test Generation

class of the proposed taxonomy . 46
3.2 Continued from previous page... 47
3.3 Positioning of investigated MBT approaches with respect to Test Execution and

Test Evaluation classes of the proposed taxonomy 48
3.3 Continued from previous page... 49
3.3 Continued from previous page... 50

7.1 Summary of the LogicalOperator component testing 114
7.1 Continued from previous page... 115

8.1 Safety Integrity Levels . 119
8.2 Defects found during Safety Platform component testing 132
8.3 Real-time properties of the Safety Platform software components 133
8.3 Continued from previous page... 134
8.3 Continued from previous page... 135

163

Bibliography

[1] Ebert, C., Jones, C., "Embedded software: Facts, Figures, and Future", Computer, Vol.

42, No. 4, 2009, pp. 42–52.

[2] Zander-Nowicka, J., "Model-based Testing of Real-Time Embedded Systems in the Au-

tomotive Domain", PhD thesis, Technische Universität Berlin, Berlin, Germany, 2009.

[3] Hjertström, A., Nyström, D., Sjödin, M., "A Data-Entity Approach for Component-Based

Real-Time Embedded Systems Development", In IEEE Conference on Emerging Tech-

nologies & Factory Automation (ETFA 2009), Mallorca, Spain, September 2009.

[4] Schätz, B., Pretschner, A., Huber, F., Philipps, J., "Model-Based Development of Embed-

ded Systems", Technical report, Technische Universität München 2002.

[5] Rau, A., "Model-Based Development of Embedded Automotive Control Systems", PhD

thesis, University of Tübingen, Tübingen, Germany, 2002.

[6] Ueda, K., Baloh, M., Baloh, M., "Converting Legacy Embedded Control Software to Ex-

ecutable Specifications", In MathWorks’ International Automotive Conference, Stuttgart,

Germany, May 2006.

[7] Marijan, S., "Sustainability of embedded control systems for rail vehicles and power

generation units", PhD thesis, University of Zagreb, Zagreb, Croatia, 2011.

[8] Babić, J., Marijan, S., Petrović, I., "The comparison of MATLAB/Simulink and proprietary

code generator efficiency", In Proceedings of the International Conference on Electrical

Drives and Power Electronics, EDPE 2009, Dubrovnik, Croatia, October 2009., pp. 12–

14.

[9] Stürmer, I., "Systematic Testing of Code Generation Tools: A Test Suite-oriented

Approach for Safeguarding Model-based Code Generation", PhD thesis, Technische

Universität Berlin, Berlin, Germany, 2006.

[10] Marijan, S., "Control electronics of TMK2200 type tramcar for the City of Zagreb", In

Proc. International Symposium on Industrial Electronics, ISIE 2005, Dubrovnik, Croatia,

June 2005., pp. 1617–1622.

[11] Marijan, S., "Vehicle control unit for the light rail applications", In Proc. 13th International

Conference on Electrical Drives and Power Electronics, EDPE 2005, Dubrovnik, Croatia,

September 2005.

BIBLIOGRAPHY 165

[12] Marijan, S., Petrović, I., "Platform based development of embedded systems for traction

and power engineering applications – experiences and challenges", In Proc. 5th IEEE

International Conference on Industrial Informatics, INDIN 2007, Vienna, Austria, July

2007.

[13] Helmerich, A., Koch, N., Braun, L. M. P., Dornbusch, P., Gruler, A., Keil, P., Leisibach,

R., Romberg, J., Schätz, B., Wild, T., Wimmel, G., "Study of Worldwide Trends and R&D

Programmes in Embedded Systems in View of Maximising the Impact of a Technology

Platform in the Area", Technical report, FAST GmbH, Munich, Germany and Technische

Universität M̈nchen, Germany 2005.

[14] Chowdhury, P. K., "Symbolic Interpretation of Legacy Assembly Language", Master’s

thesis, McMaster University, Hamilton, Ontario, 2005.

[15] Baloh, M., Raghav, G., Sivashankar, S., "Key Considerations in the Translation of Legacy

Embedded Control Software to Model Based Executable Specifications", In Computer

Aided Control System Design, 2006 IEEE International Conference on Control Appli-

cations, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany,

October 2006.

[16] France, R., Rumpe, B., "Model-driven Development of Complex Software: A Research

Roadmap", In Proceedings of Future of Software Engineering (FOSE 2007), Minneapolis,

MN, USA, May 2007.

[17] Toeppe, S., Ranville, S., Bostic, D., Wang, Y., "Practical Validation of Model Based Code

Generation for Automotive Applications", In Proceedings of the 18th Digital Avionics

Systems Conference, Gateway to the New Millennium, St Louis, MO, USA, October 1999.

[18] Ward, M. P., Zedan, H., Hardcastle, T., "Legacy Assembler Reengineering and Migra-

tion", In Proceedings of the 20th IEEE International Conference on Software Mainte-

nance, Chicago, Illinois, USA, September 2004.

[19] Jürjens, J., Reiss, D., Trachtenherz, D., "Model-Based Quality Assurance of Automotive

Software", In Proceedings of the 11th international conference on Model Driven Engi-

neering Languages and Systems, MoDELS ’08, Toulouse, France, September/October

2008.

[20] Dang, T., "Model-Based Testing for Embedded Systems"„ chapter Part IV: Specific Ap-

proaches, Model-Based Testing of Hybrid Systems.

[21] Bienmüller, T., Brockmeyer, U., Sandmann, G., "Automatic Validation of Simu-

link/Stateflow Models - Formal Verification of Safety-Critical Requirements", In Interna-

tional Automotive Conference, Stuttgart, Germany, June 2004.

[22] Lehmann, E., "Time Partition Testing: A Method for Testing Dynamic Functional Be-

haviour", In Proceedings of TEST2000, London, Great Britain, 2000, pp. 1–11.

BIBLIOGRAPHY 166

[23] Bringmann, E., Kramer, A., "Model-Based Testing of Automotive Systems", In 1st In-

ternational Conference on Software Testing, Verification, and Validation, Lillehammer,

Norway, April 2008., pp. 485–493.

[24] PikeTec, GmbH, "TPT - model-based testing of embedded control systems", available

at: http://www.piketec.com/products/tpt.php (3 March 2014.).

[25] Lu, B., Wu, X., Figueroa, H., Monti, A., "A Low-Cost Real-Time Hardware-in-the-Loop

Testing Approach of Power Electronics Controls", IEEE Transactions on Industrial Elec-

tronics, Vol. 54, No. 2, 2007, pp. 919–931.

[26] Neukirchen, H. W., "Languages, Tools and Patterns for the Specification of Distributed

Real-Time Tests", PhD thesis, Georg-August-Universität zu Göttingen, Göttingen, Ger-

many, 2004.

[27] Pfaller, C., Fleischmann, A., Hartmannd, J., Rappl, M., Rittmann, S., Wild, D., "On the

Integration of Design and Test: A Model-Based Approach for Embedded Systems", In

International Conference on Software Engineering, Proceedings of the 2006 international

workshop on Automation of software test, Shanghai, China, May 2006., pp. 15–21.

[28] Bauer, T., Böhr, F., Eschbach, R., "On MiL, HiL, Statistical Testing, Reuse, and Efforts",

In Proceedings of the 1st Workshop on Model-based Testing in Practice, MoTiP 2008,

Berlin, Germany, June 2008.

[29] Philipps, J., Hahn, G., Pretschner, A., Stauner, T., "Prototype-Based Tests for Hybrid

Reactive Systems", In Proceedings of the 14th IEEE International Workshop on Rapid

Systems Prototyping, San Diego, CA, USA, June 2003.

[30] Henzinger, T. A., "The Theory of Hybrid Automata", In Proceedings of the 11th Annual

Symposium on Logic in Computer Science (LICS), New Brunswick, New Jersey, USA,

July 1996.

[31] "ARTEMIS Strategic Research Agenda 2011", Technical report, ARTEMIS Joint Under-

taking 2011.

[32] "World electronics Industry outlook 2015-2020, Challenges and opportunities ahead, Eu-

rope at a crossroad", Technical report, DECISION Etudes Conseil, Paris, France pre-

sentation held at Electronica 2012, Munich, Germany, 2012.

[33] "2013 Embedded Market Study", Technical report, UBM Tech Embedded 2013.

[34] Glinz, M., "On Non-Functional Requirements", In Proceedings of the 15th IEEE Inter-

national Requirements Engineering Conference (RE 2007), New Delhi, India, October

2007.

[35] Neukirchner, M., Stein, S., Ernst, R., "SMFF : System Models for Free", In Proceedings

of the 2nd International Workshop on Analysis Tools and Methodologies for Embedded

and Real-time Systems (WATERS 2011), Porto, Portugal, July 2011.

BIBLIOGRAPHY 167

[36] Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R., Wallnau, K.,

"Volume I: Market Assessment of Component-Based Software Engineering", Technical

report, Software Engineering Institute Technical Note CMU/SEI-2001-TN-007, 2000.

[37] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord,

R., Wallnau, K., "Volume II: Technical Concepts of Component-Based Software Engi-

neering, 2nd Edition", Technical report, Software Engineering Institute Technical Report

CMU/SEI-2000-TR-008 ESC-TR-2000-007, 2000.

[38] Feljan, J., "Design-Time Verification of Component-Based Embedded Systems With Re-

spect to Extra-Functional Properties", In Proceedings of the 16th International Workshop

on Component-Oriented Programming (WCOP), Boulder, Colorado, USA, June 2011.

[39] Rastofer, U., Bellosa, F., "An Approach to Component-Based Software Engineering for

Distributed Embedded Real-Time Systems", In Proceedings of the 4th World Multiconfer-

ence on Systemics, Cybernetics and Informatics (SCI 2000), Orlando, Florida, USA, July

2000.

[40] Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., Crnković, I., "A Component Model for

Control-Intensive Distributed Embedded Systems", In 11th International Symposium on

Component Based Software Engineering, Karlsruhe, Germany, October 2008.

[41] Sentilles, S., Štěpán, P., Carlson, J., Crnković, I., "Integration of Extra-Functional Prop-

erties in Component Models", In 12th International Symposium on Component Based

Software Engineering (CBSE), East Stroudsburg, Pennsylvania, USA, June 2009.

[42] Hamouche, R., Kocik, R., "Component-Based and Aspect-Oriented Methodology and

Tool for Real-Time Embedded Control Systems Design", In Proceedings of Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, March

2012., pp. 1421–1424.

[43] Lipka, R., Potuzak, T., Brada, P., Herout, P., "Verification of SimCo - Simulation Tool for

Testing of Component-based Applications", In Proceedings of the EUROCON, Zagreb,

Croatia, July 2013., pp. 467–474.

[44] Autosar Consortium, "AUTomotive Open System Architecture", available at:

http://www.autosar.org/ (8 February 2014.).

[45] Schreiner, D., "Dissertation Component Based Communication Middleware for AU-

TOSAR", PhD thesis, Technische Universität Wien, Fakultät für Informatik, Wien, Austria,

2009.

[46] Quang, T. L., "Component Design Tool for Embedded System Components", Master’s

thesis, Mälardalen University, Department of Computer Science and Electronics, 2008.

[47] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa, B.,

Zölch, R., Stauner, T., "One evaluation of model-based testing and its automation", In

BIBLIOGRAPHY 168

Proceedings of the 27th international conference on Software engineering, St. Louis,

USA, May 2005., pp. 392–401.

[48] Boulanger, J.-L., Ðao, V. Q., "Requirements engineering in a model-based methodology

for embedded automotive software", In IEEE International Conference on Research,

Innovation and Vision for the Future, RIVF 2008., Ho Chi Minh City, China, July 2008.,

pp. 263–268.

[49] Siegl, S., Hielscher, K.-S., German, R., "Model Based Requirements Analysis and Test-

ing of Automotive Systems with Timed Usage Models", In 18th IEEE International Re-

quirements Engineering Conference, Sydney, Australia, September 2010., pp. 345–350.

[50] Dubois, H., Peraldi-Frati, M.-A., Lakhal, F., "A model for requirements traceability in a

heterogeneous model-based design process: Application to automotive embedded sys-

tems", In 15th IEEE International Conference on Engineering of Complex Computer

Systems, Oxford , UK, March 2010., pp. 233–242.

[51] Geisberger, E., Grünbauer, J., Schätz, B., "A Model-Based Approach To Requirements

Analysis", In Methods for Modelling Software Systems, MMOSS, Dagstuhl, Germany,

August 2007., pp. 1862–4405.

[52] Jnior, V. A. D. S., Vijaykumar, N. L., "Generating model-based test cases from natural

language requirements for space application software", Software Quality Journal, Vol.

20, No. 1, 2011, pp. 77–143.

[53] OMG, "A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded sys-

tems, Beta 2", Technical Report ptc/2008-06-09, Object Management Group consortium

2008.

[54] Wang, Y., Yikun, L. X. W., "Modeling Embedded Software Test Requirement Based on

MARTE", In Proceedings of the 7th International Conference on Software Security and

Reliability-Companion (SERE-C), Gaithersburg, Maryland, USA, June 2013., pp. 109–

115.

[55] Wild, D., "AutoFOCUS 2: The Picture Book", Technical report, Technische Universität

München 2006.

[56] Gambuzza, A., Koert, D., "A Concept for Improving the Reusability of Mechatronic Sys-

tem Models", In In Proc. of the Workshop on Object-oriente Modeling of Embedded

Real-Time Systems, OMER3, Paderborn, Germany, October 2005., pp. 43–48.

[57] Mellor, A. J., Ulber, T., "Executable and Translatable UML", In 3rd Workshop on Object-

oriented Modeling of Embedded Real-Time Systems, OMER3, Paderborn, Germany, Oc-

tober 2005., pp. 69–72.

[58] Raghav, G., Gopalswamy, S., Radhakrishnan, K., Hugues, J., Delange, J., "Model based

code generation for distributed embedded systems", In European Congress on Embed-

ded Real-Time Software,ERTS 2010, Toulouse, France, May 2010., pp. 1–9.

BIBLIOGRAPHY 169

[59] Prenninger, W., Pretschner, A., "Abstractions for Model-Based Testing", Electronic Notes

in Theoretical Computer Science, Vol. 116, 2005, pp. 59–71.

[60] Agrawal, A., Karsai, G., Shi, F., "A UML-based graph transformation approach for imple-

menting domain-specific model transformations", International Journal on Software and

Systems Modeling, 2003, pp. 1–19.

[61] Eyisi, E., Zhang, Z., Koutsoukos, X., Porter, J., Karsai, G., Sztipanovits, J., "Model-

Based Control Design and Integration of Cyberphysical Systems: An Adaptive Cruise

Control Case Study", Journal of Control Science and Engineering, Vol. 2013, 2013.

[62] Sendall, S., Kozaczynski, W., "Model transformation: the heart and soul of model-driven

software development", IEEE Software, Vol. 20, No. 5, 2003, pp. 42–45.

[63] Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A. L., Freund, U.,

E. Schlenker, H. J. W., "Correct-by-Construction Transformations across Design Environ-

ments for Model-Based Embedded Software Development", In Proceedings of the con-

ference on Design, Automation and Test in Europe, DATE05, Munich, Germany, March

2005., pp. 1044–1049.

[64] Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D., "Seamless Model-

based Development: from Isolated Tools to Integrated Model Engineering Environments",

Proceedings of the IEEE, Special Issue on Aerospace and Automotive Software, Vol. 98,

No. 4, 2010., pp. 526–545.

[65] Mäkinen, M. A., "Model Based Approach to Software Testing", Master’s thesis, Helsinki

University of Technology, 2007.

[66] Jones, C., "Applied Software Measurement", The McGraw-Hill Companies, 2008.

[67] Utting, M., Pretschner, A., Legeard, B., "A taxonomy of model-based testing", Technical

report, University of Waikato 2006.

[68] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S., "A

Pattern Language: Towns, Buildings, Construction", Oxford University Press, 1977.

[69] Zander-Nowicka, J., Pérez, A. M., Schieferdecker, I., Dai, Z. R., "Test Design Patterns for

Embedded Systems", In Proceedings of the 10th International Conference on Quality En-

gineering in Software Technology (CONQUEST 2007), Potsdam, Germany, September

2007., pp. 183–200.

[70] Berkenkotter, K., Kirner, R., "Real-Time and Hybrid Systems Testing",In Broy, M., Jon-

sson, B., Katoen, J.-P., Leucker, M., Pretschner, A., , editors, Model-Based Testing of

Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science) Springer-

Verlag New York, 2005.

[71] Reactive Systems, Inc., "Testing and Validation of Simulink Models with Reactis", avail-

able at: http://www.reactive-systems.com/ (8 February 2014.).

BIBLIOGRAPHY 170

[72] Stürmer, I., Conrad, M., Dörr, H., Pepper, P., "Systematic Testing of Model-Based Code

Generators", IEEE Transactions on Software Engineering, Vol. 33, No. 9, 2007, pp.

622–634.

[73] Venkatesh, R., Shrotri, U., Darke, P., Bokil, P., "Test Generation for Large Automotive

Models", In Proceedings of the 2012 IEEE International Conference on Industrial Tech-

nology, Athens, Grece, March 2012., pp. 662–667.

[74] Baresel, A., Conrad, M., Sadeghipour, S., Wegener, J., "The Interplay between Model

Coverage and Code Coverage", In Proceedings of the Conference On Computer Aided

Systems Theory - EUROCAST , 2003, Las Palmas de Gran Canaria, Canary Islands,

Spain, February 2008.

[75] Pfaller, C., Pister, M., "Combining Structural and Functional Test Case Generation", In

Proceedings of Software Engineering 2008, SE08, Munich, Germany, May 2008.

[76] Conrad, M., Fey, I., Sadeghipour, S., "Systematic Model-Based Testing of Embedded

Control Software: The MB3T Approach", In ICSE 2004 Workshop on Software Engineer-

ing for Automotive Systems, Edinburgh, UK, May 2004., pp. 17–25.

[77] Prowell, S. J., Poore, J. H., "Foundations of Sequence-Based Software Specification",

IEEE Transactions on Software Engineering, Vol. 29, No. 5, 2003, pp. 417–429.

[78] Bauer, T., Bohr, F., Landmann, D., Beletski, T., Eschbach, R., Poore, J., "From Re-

quirements to Statistical Testing of Embedded Systems", In Proceedings of the 4th Inter-

national Workshop on Software Engineering for Automotive Systems, Minneapolis, MN,

USA, May 2007.

[79] Carter, J. M., Lin, L., Poore, J. H., "Automated Functional Testing of Simulink Control

Models", In Proceedings of the 1st Workshop on Model-based Testing in Practice, MoTiP

2008, Berlin, Germany, June 2008.

[80] Iqbal, M. Z., Arcuri, A., Briand, L., "Empirical Investigation of Search Algorithms for

Environment Model-Based Testing of Real-Time Embedded Software", In Proceedings

of the 2012 International Symposium on Software Testing and Analysis (ISSTA 2012),

New York, New York, USA, June 2012., pp. 199–209.

[81] Iyenghar, P., JuergenWuebbelmann, ClemensWesterkamp, Pulvermueller, E., "Model-

Based Test Case Generation by Reusing Models From Runtime Monitoring of Deeply

Embedded Systems", Embedded Systems Letters, Vol. 5, No. 3, 2013, pp. 38–41.

[82] Board, I. S. T. Q., "A taxonomy of model-based testing", Technical report, International

Software Testing Qualification Board Produced by the ’Glossary Working Party’, Editor:

van Veenendaal E., 2010.

[83] Muresan, M., Pitica, D., "Software in the Loop Environment Reliability for Testing Em-

bedded Code", In Proceedings of the 18th International Symposium for Design and

BIBLIOGRAPHY 171

Technology in Electronic Packaging (SIITME), Alba Iulia, Romania, October 2012., pp.

325–328.

[84] Shokry, H., Hinchey, M., "Model-Based Verification of Embedded Software", Computer,

Vol. 42, No. 4, 2009, pp. 53–59.

[85] Zander-Nowicka, J., "Reactive Testing and Test Control of Hybrid Embedded Software",

In Proceedings of the 5th Workshop on System Testing and Validation (STV 2007), in

conjunction with ICSSEA 2007, Paris, France, December 2007., pp. 45–62.

[86] The MathWorks, Inc., "Simulink Verification and Validation", available at:

http://www.mathworks.com/products/simverification/ (8 February 2014.).

[87] The MathWorks, Inc., "Simulink Design Verifier", available at:

http://www.mathworks.com/products/sldesignverifier/ (8 February 2014.).

[88] Sims, S., DuVarney, D. C., "Experience Report: The Reactis Validation Tool", In Pro-

ceedings of the ICFP ’07 Conference, New York, USA, 2007, pp. 137–140.

[89] dSPACE GmbH, "TargetLink", available at: http://www.dspace.com (8 February 2014.).

[90] BTC Embedded Systems AG, "BTC EmbeddedValidator", available at: http://www.btc-

es.de/index.php?idcatside=5&lang=2 (19 March 2014.).

[91] Grochtmann, M., "Test Case Design Using Classification Trees", In Proceedings of

STAR’94, Washington, D.C., USA, May 1994.

[92] Lamberg, K., Beine, M., Eschmann, M., Otterbach, R., Conrad, M., Fey, I., "Model-based

testing of embedded automotive software using MTest", In SAE World Congress 2004,

Detroit, USA, March 2004.

[93] Conrad, M., Fey, I., "Systematic Model-Based Testing of Embedded Automotive Soft-

ware", Electronic Notes in Theoretical Computer Science, Vol. 111, 2005, pp. 13–26.

[94] Conrad, M., Krupp, A., "An Extension of the Classification-Tree Method for Embedded

Systems for the Description of Events", Electronic Notes in Theoretical Computer Sci-

ence, Vol. 164, No. 4, 2006, pp. 3–11.

[95] Alexander Krupp, W. M., "A Systematic Approach to the Test of Combined HW/SW

Systems", In Proceedings of the Conference on Design, Automation and Test in Europe,

DATE, Dresden , Germany, March 2010., pp. 323–236.

[96] Conrad, M., "A Systematic Approach to Testing Automotive Control Software", In Proc.

of Convergence 2004, Detroit, USA, October 2004.

[97] Model Engineering Solutions GmbH, "MTest classic User Guide", available at:

http://www.mtest-classic.com (8 February 2014.).

[98] The MathWorks, Inc., "SystemTest, Product Description", available at:

http://www.mathworks.com/products/systemtest/ (8 February 2014.).

BIBLIOGRAPHY 172

[99] The MathWorks, Inc., "Parallel Computing Toolbox", available at:

http://www.mathworks.com/products/parallel-computing/ (14 February 2014.).

[100] Dai, Z. R., Engel, K.-D., Truscan, D., Streitferdt, D., Vouffo, A., Rennoch, A., "Test

Modeling, Test Generation and Test Execution with Model-Based Testing", Technical

Report D.2.1.v2.1, D-Mint Consortium 2009.

[101] ETAS GmbH, "Software Products & Systems", available at:

http://www.etas.com/en/products/software_products.php (3 March 2014.).

[102] Vector Informatik GmbH, "CANape - Measuring, Calibrating, Diagnosing and Flash-

ing ECUs", available at: http://vector.com/vi_canape_en.html?markierung=CANape (3

March 2014.).

[103] Conrad, M., Sadeghipour, S., Wiesbrock, H. W., "Automatic Evaluation of ECU Software

Tests", In SAE 2005 World Congress, Detroit, USA, April 2005.

[104] ITPower Solutions GmbH, "MEval", available at: http://www.itpower.de/101-1-MEval-

Automatic-signal-comparison-in-MATLABSimulink.html (8 February 2014.).

[105] Zander-Nowicka, J., Mosterman, P. J., Schieferdecker, I., "Quality of Test Specification

by Application of Patterns", In Proceedings of the 15th Conference on Pattern Languages

of Programs - PLoP ’08, Nashville, TN, USA, October 2008.

[106] VETESS Consortium, "VETESS - Verification of Embedded systems for vehicles

using automatic TESt generation from Specification", available at: http://lifc.univ-

fcomte.fr/vetess/index.php (10 March 2014.).

[107] Ambert, F., Bouquet, F., Lasalle, J., Legeard, B., Peureux, F., "Applying an MBT

Toolchain to Automotive Embedded Systems: Case Study Reports", In Proceedings

of the 4-th Int. Conf. on Advances in System Testing and Validation Lifecycle, VALID’12,

Lisbon, Portugal, November 2012., pp. 139–144.

[108] Gauthier, J.-M., "Test Generation for RTES from SysML Models: Context, Motivations

and Research Proposal", In Proceedings of the 6-th IEEE International Conference on

Software Testing, Verification and Validation (ICST), Luxembourg, March 2013., pp. 503–

504.

[109] Enoiu, E. P., Doganay, K., Bohlin, M., Sundmark, D., Pettersson, P., "MOS: An Integrated

Model-Based and Search-Based Testing Tool for Function Block Diagrams", In Proceed-

ings of the 1st International Workshop on Combining Modelling and Search-Based Soft-

ware Engineering (CMSBSE), San Francisco, CA, USA, May 2013., pp. 55–60.

[110] Enoiu, E. P., "Model-based Test Suite Generation for Function Block Diagrams using

the UPPAAL Model Checker", In Proceedings of the 6th International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), Luxembourg, March

2013., pp. 158–167.

BIBLIOGRAPHY 173

[111] ETAS Group, "ETAS RT2: Test for Model-in-the-Loop and Software-in-the-Loop", avail-

able at: http://www.etas.com/en/products/rt2.php (16 March 2014.).

[112] Dormoy, F. X., "Scade 6: a model based solution for safety critical software development",

In Proceedings of the 4th European Congress on Embedded Real Time Software, ERTS

’08, Toulouse, France, January 2008.

[113] Technologies, E., "SCADE Suite 6.4 Technical Data Sheet", Technical Report SC-TDS-

6.4 - 21/01/13, Esterel Technologies 2013.

[114] Technologies, E., "SCADE Suite Model Test Coverage 6.2 Technical Data Sheet", Tech-

nical Report MTC-TDS-6.2 - 19/04/11, Esterel Technologies 2011.

[115] Dajani-Brown, S., Cofer, D., Bouali, A., "Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems"„ chapter Formal Verification of an Avionics Sensor

Voter Using SCADE.

[116] McElroy, J., "Reliving Pressure for UAV Software Development", Electronic Product

Design and Test, 2009.

[117] The MathWorks, Inc., "Block Masks", available at:

http://www.mathworks.com/help/simulink/ug/block-masks.html (8 February 2014.).

[118] The MathWorks, Inc., "Use S-Functions in Models", available at:

http://www.mathworks.com/help/simulink/sfg/using-s-functions-in-models.html (8 Febru-

ary 2014.).

[119] Babić, J., Marijan, S., Petrović, I., "Introducing Model-Based Techniques into Develop-

ment of Real-Time Embedded Applications", AUTOMATIKA: Journal for Control, Mea-

surement, Electronics, Computing and Communications, Vol. 52, No. 4, 2011, pp. 329–

338.

[120] Mattavelli, P., "Digital Control of dc-dc Boost Converters with Inductor Current Estima-

tion", In Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition,

APEC ’04., Anaheim, California, USA, February 2004., pp. 74–80.

[121] Kaner, C., "Software Negligence and Testing Coverage", In Proceedings of Fifth In-

ternational Conference on Software Testing, Analysis, and Review (STAR 96), Orlando,

Florida, USA, 1996.

[122] Berner & Mattner Systemtechnik GmbH, "Classification Tree Editor CTE XL", avail-

able at: http://www.berner-mattner.com/en/berner-mattner-home/products/cte/index.html

(8 February 2014.).

[123] Jonathan Bennett & AutoIt Team, "AutoIt v3", available at:

http://www.autoitscript.com/site/autoit/ (8 February 2014.).

[124] The MathWorks, Inc., "Real-Time Windows Target", available at:

http://www.mathworks.com/products/rtwt/ (8 February 2014.).

BIBLIOGRAPHY 174

[125] Wikipedia, "Digital signal controller", available at: http://en.wikipedia.org/wiki/Digital_-

signal_controller (8 February 2014.).

[126] Texas Instruments, Inc., "Overview for C2000 32-bit Real-time Control MCUs", avail-

able at: http://www.ti.com/lsds/ti/microcontroller/32-bit_c2000/overview.page (8 February

2014.).

[127] "TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234,

TMS320F28232 Digital Signal Controllers (DSCs) Data Manual", Technical Report

SPRS439I, Texas Instruments, Inc. 2011.

[128] "C8051F58x/F59x Mixed Signal ISP Flash MCU Family", Technical report, Silicon Labs,

Inc. 2011.

[129] "Railway applications - The specification and demonstration of Reliability, Availability,

Maintainability and Safety (RAMS)", Technical Report EN 50126:1999, European Com-

mittee for Electrotechnical Standardization 1999.

[130] Smith, D. J., "Reliability, Maintainability and Risk", Elsevier Butterworth-Heinemann,

2005.

[131] "Railway applications - Communications, signaling and processing systems - Software

for railway control and protection systems", Technical Report EN 50128:2001, European

Committee for Electrotechnical Standardization 2001.

[132] Morales, D. S., "Maximum Power Point Tracking Algorithms for Photovoltaic Applica-

tions", Master’s thesis, Aalto University, School od Science and Technology, Faculty of

Electronics, Communications and Automation, 2010.

[133] Teodorescu, R., Liserre, M., Rodriguez, P., "Grid Converters for Photovoltaic and Wind

Power Systems Grid Converters for Photovoltaic and Wind Power Systems", John Wiley

& Sons, 2011.

[134] González-Longatt, F. M., "Model of Photovoltaic Module in Matlab", In 2DO Congreso

Iberoamericano de estudiantes de ingenieria electrica, electronica y computacion, II CIB-

ELEC 2006, Puerto la Cruz, Venezuela, April 2006.

[135] Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M., "Power Electronics and Control Tech-

niques for Maximum Energy Harvesting in Photovoltaic Systems", CRC Press, 2012.

[136] Babic, J., Čihak, T., Marijan, S., "Model-Based Development of MPPT Algorithm with

Legacy Components Integration", In Proceedings of the International Conference on

Electrical Drives and Power Electronics, EDPE 2013, Dubrovnik, Croatia, October 2013.

[137] Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F., "Improved MPPT Algorithms for

Rapidly Changing Environmental Conditions", In Proceedings of the 12th International

Power Electronics and Motion Control Conference, EPE-PEMC 2006, Portoroz, Slovenia,

August–September 2006., pp. 1614–1619.

BIBLIOGRAPHY 175

[138] The MathWorks, Inc., "Simulink Coder", available at:

http://www.mathworks.com/products/simulink-coder/description1.html (8 February

2014.).

[139] Texas Instruments, Inc., "TI-RTOS: Real-Time Operating System (RTOS)", available at:

http://www.ti.com/tool/ti-rtos (8 February 2014.).

CURRICULUM VITAE 176

Curriculum Vitae

Josip Babić was born in 1982 in Slavonski Brod, Croatia where he completed elemen-

tary and secondary schools. In 2006 he received B.Sc. degree from the Faculty of Electrical

Engineering, University of Zagreb.

Since 2007 he has been with Section for Embedded Systems of Power Electronics and

Control Department at Končar - Electrical Engineering Institute in Zagreb, where he is currently

employed. He is responsible for research and development of embedded systems based on

digital signal microcontrollers. He participated in development of embedded control systems for

synchronous machine excitation systems, for traction converters in tramcars and in trains, for

multi-system converters in passenger coaches, for auxiliary power supplies for trains and trams,

and for wind turbines. Besides that, he was also involved in development of monitoring systems

for structural vibrations in wind turbine, for rotating machinery, and for power transformers.

His main research interests are model based development and testing in the field of em-

bedded real-time systems. He is author or co-author of six papers published in a journal and in

proceedings of domestic and foreign conferences.

In 2009 he and his colleagues received national award ARCA for main control unit of low

floor train. Wind turbine control system for strong and turbulent wind conditions developed by

his colleagues and him also won national award ARCA in 2012.

ŽIVOTOPIS 177

Životopis

Josip Babić rod̄en je 1982 u Slavonskom Brodu gdje je završio osnovnu i srednju školu.

Godine 2006 primio je diplomu Fakulteta elektrotehnike i računarstva na Sveučilištu u Zagrebu.

Od 2007 zaposlen je u Odjelu za ugradbene računalne sustave Zavoda za energetsku

elektroniku i upravljanje pri Končar - Institutu za elektrotehniku. Njegove odgovornosti obuh-

vaćaju istraživanje i razvoj ugradbenih računalnih sustava zasnovanih na signalnim mikrokon-

trolerima. Sudjelovao je u razvoju ugradbenih sustava upravljanja za sustave uzbude sinkronih

strojeva, za pretvarač glavnog pogona tramvaja, za višesistemske vagonske pretvarače, za po-

moćne pogone tramvaja i vlaka i za vjetroagregat. Pored toga, bio je uključen u razvoj sustava

nadzora strukturnih vibracija vjetroagregata, rotacijskih strojeva i energetskih transformatora.

Provodi istraživanja na polju modelskog razvoja i vrednovanja programske podrške ugrad-

benih računalnih sustava za rad u stvarnom vremenu. Autor je ili koautor šest znanstvenih

radova objavljenih u jednom časopisu i u zbornicima med̄unarodnih konferencija.

Zajedno s kolegama dobitnik je nacionalne nagrade ARCA 2009. godine za centralno

računalo niskopodnog elektromotornog vlaka. Sustav upravljanja vjetroagregatom za područja

jakih i turbulentnih vjetrova, u čijem razvoju je sudjelovao, takod̄er je 2012. godine osvojio

nacionalnu nagradu ARCA.

PUBLICATIONS 178

Publications

• Babić, J., Čihak, T., Marijan, S., "Model-Based Development of MPPT Algorithm with

Legacy Components Integration", In Proceedings of the International Conference on Elec-

trical Drives and Power Electronics, EDPE 2013, Dubrovnik, Croatia, October 2013.

• Babić, J., Marijan, S., Petrović, I., "Introducing Model-Based Techniques into Develop-

ment of Real-Time Embedded Applications", AUTOMATIKA: Journal for Control, Mea-

surement, Electronics, Computing and Communications, Vol. 52, No. 4, 2011, pp. 329-

338.

• Babić, J., Marijan, S., Petrović, I., "The comparison of MATLAB/Simulink and proprietary

code generator efficiency", In Proceedings of the International Conference on Electrical

Drives and Power Electronics, EDPE 2009, Dubrovnik, Croatia, October 2009, pp. 12-14.

• Tečec, Z.; Babić, J.; Petrović, I., "Implementation of Fuzzy-Model Based Autotuning Power

System Stabilizer" In Proceedings of the International Conference on Electrical Drives and

Power Electronics, EDPE 2009, Dubrovnik, Croatia, October 2009.

• Babić, J.; Budišić, Marko; Petrović, I., "Dynamic Window based Force Reflection for Safe

Teleoperation of A Mobile Robot via Internet" In Proceedings of the 2007 IEEE/ASME In-

ternational Conference on Advanced Intelligent Mechatronics, AIM2007, Zurich, Switzer-

land, September 2007.

• Petrović, I.; Babić, J.; Budišić, M., "Teleoperation Of Collaborative Mobile Robots With

Force Feedback Over Internet" In Proceedings of the Fourth International Conference on

Informatics in Control, Automation and Robotics, Angers, France, May 2007, pp. 430-437

• Babić, J., "Force Feedback in Mobile Robots Teleoperation", pre-Bologna graduate thesis,

Faculty of electrical engineering and computing, University of Zagreb, July 2006.

	1 Introduction
	1.1 Background
	1.1.1 Application Domain
	1.1.2 Integrated development environment
	1.1.3 GRAP code generation
	1.1.4 Legacy Component Reuse
	1.1.5 Application Development Process

	1.2 Motivation and Research Gaps
	1.2.1 Motivation: Advantages and Drawbacks of the Existing Process
	1.2.2 Gap 1: Legacy Components and Model-Based Development
	1.2.3 Gap 2: Model-Based Real-Time Testing

	1.3 Contributions and Outline
	1.3.1 Contributions
	1.3.2 Outline of the Thesis

	2 Fundamentals
	2.1 Embedded Systems
	2.1.1 Market
	2.1.2 Non-functional Requirements
	2.1.3 Processing Resources

	2.2 Legacy Software Components
	2.2.1 Component-Based Software Engineering
	2.2.2 Proprietary Legacy Components

	2.3 Model-Based Development
	2.3.1 Requirements
	2.3.2 Modeling
	2.3.3 Model Transformations
	2.3.4 Automated Code Generation
	2.3.5 Testing

	2.4 Test Patterns

	3 Model-Based Testing
	3.1 Model-Based Embedded Systems Testing Taxonomy
	3.1.1 Model
	3.1.2 Test generation
	3.1.3 Test execution
	3.1.4 Test evaluation

	3.2 Investigated MBT Approaches
	3.2.1 EmbeddedValidator
	3.2.2 CTM-based approaches
	3.2.3 Reactis Validation Tool
	3.2.4 SLVV
	3.2.5 SLDV
	3.2.6 SystemTest
	3.2.7 TPT
	3.2.8 MEval
	3.2.9 MiLEST
	3.2.10 Code Generation Tools Testing
	3.2.11 VTB-RT
	3.2.12 SBS
	3.2.13 VETESS approach
	3.2.14 MOS
	3.2.15 HTG
	3.2.16 ETAS RT2
	3.2.17 SCADE Suite

	3.3 Filling the gap
	3.3.1 The Gap
	3.3.2 The Filling

	4 Model Based Development with Legacy Components Integration
	4.1 The blockset
	4.2 The model
	4.3 The code
	4.3.1 Simulink to GRAP conversion
	4.3.2 Block to component mapping
	4.3.3 Code generation customization
	4.3.4 Mixing Simulink and GRAP

	5 Component Real-Time Testing
	5.1 Classification Tree Method
	5.2 Variants and Configurations
	5.2.1 Automatic Partitioning of the Configuration Space

	5.3 Test Vectors
	5.4 Test Model
	5.4.1 The Pattern
	5.4.2 Instantiation

	5.5 Test Code
	5.5.1 Execution time measurement
	5.5.2 The Test Run

	5.6 Verdict and Documentation
	5.6.1 Test Verdict
	5.6.2 Test Report

	5.7 Infrastructure
	5.7.1 Classification Tree Editor and Automation
	5.7.2 Serial Communication

	6 Algorithm Real-Time Testing
	6.1 Open-Loop Integration Testing
	6.2 Closed-Loop Step-by-Step Integration Testing
	6.3 Closed-Loop Real-Time Testing

	7 Case Study: Digital Signal Controller Component Testing
	7.1 Digital Signal Controller
	7.1.1 The Controller
	7.1.2 Applications
	7.1.3 Experimental Target

	7.2 Real-Time Test Pattern Validation
	7.2.1 Execution Time Measurement
	7.2.2 Variable Load
	7.2.3 Interrupt Coverage
	7.2.4 Interrupt Delay Detection
	7.2.5 Interrupt Vulnerability

	7.3 LogicalOperator Component
	7.3.1 Variants and Configurations
	7.3.2 Vectors
	7.3.3 Models
	7.3.4 Executable code and test results

	8 Case Study: Safety Platform Component Testing
	8.1 Safety Platform
	8.1.1 Safety Platform Hardware
	8.1.2 Safety Platform System Software
	8.1.3 Safety Integrity Level

	8.2 Component Testing for Safety Platform
	8.2.1 Real-Time Properties
	8.2.2 Variants and Configurations
	8.2.3 Vectors
	8.2.4 Models
	8.2.5 Multiple Runs
	8.2.6 Testing Results

	9 Case Study: Photovoltaic Maximum Power Point Tracking Algorithm Testing
	9.1 Photovoltaic panels and MPPT model
	9.2 Open-loop test
	9.3 Closed-loop test with simulated environment
	9.4 Real-time closed-loop test

	10 Summary, Conclusion, and Outlook
	10.1 Summary
	10.2 Conclusion
	10.3 Outlook

	Acronyms
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae
	Životopis
	Publications

