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∗University of Rijeka Department of Informatics
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Abstract—Network availability is an essential feature of an
optical telecommunication network. Should a failure of a network
component occur, be it a link or a component inside a node,
network control plane must be able to detect the failure and
reroute the traffic using spare components until a repair is done.
Shared risk link groups (SRLGs) are used to describe a situation
where seemingly unrelated logical failures happen due to a single
physical failure. For example, two or more links might share a
bridge crossing; should a failure happen, all of them will be
damaged. Routing algorithms were proposed to ensure working
and spare paths of a connection in a network are SRLG-disjoint
to avoid such common cause failures. However, complete SRLG-
disjointness of working and spare path is not always possible
due to limited number of links or limited capacity available
in the network, so maximum SRLG-disjoint paths algorithm
is taken instead. Maximum SRLG-disjoint path problem is in
general NP-hard. In terms of solution quality greedy algorithms
for maximum SRLG-disjoint path problem are as good as more
complicated heuristics. To improve the performance of maximum
SRLG-disjoint path greedy algorithm, it was implemented using
NVIDIA CUDA heterogeneous parallel programming platform
and executed on graphics processing unit. The implementation
of maximum SRLG-disjoint path algorithm on GPU increases
performance significantly compared to implementation utilizing
only CPU, especially in simulations of large networks.

Index Terms—optical networks, reliability, shared risk link
group, modelling, simulation, ns-3, maximum SRLG-disjoint
path algorithm, algorithm optimization, heterogeneous paralell
programming, NVIDIA CUDA

I. INTRODUCTION

With continuous increase in Internet traffic, enabled by ca-
pacity growth of optical transport networks, network resilience
becomes an important consideration. A failure of any network
component (e.g. a fiber or a switching element in network
node) can cause outage for many lightpaths, and lead to user
dissatisfaction and effectually decreased operator revenues.

In case a working lightpath goes down due to a component
failure, a spare lightpath is used until the working is repaired.
Routing of working and spare lightpaths is a non-trivial
problem and, combined with wavelength assignment, it can
be shown to be NP-complete [1]. Many heuristics for solving
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Figure 1. Example SRLG containing two cables (3–4 and 3–5) that share an
exit at a particular network node. For comparison, there is no SRLG containing
cables 1–3 and 2–3.

this problem have been developed over the years, and many
special case optimizations have been made.

A particularly interesting special case optimization is rout-
ing and wavelength assignment (RWA) for working and spare
lightpath in presence of shared risk link groups (SRLGs),
groups of links that have a common physical location [2].
Example of a SRLG where two cables share a common exit
at a node can be seen in Figure 1. Due to shared location, be
it a cable, duct or bridge crossing, SLRGs are prone to failing
at the same time due to a single physical damage. In effect,
multiple seemingly unrelated logical failures can occur, for
example two link-disjoint (but not SRLG-disjoint) lightpaths
can fail at the same time. Therefore, an algorithm for RWA
should be designed to avoid common shared risk link groups
in working and spare lightpaths, to prevent them from failing
at the same time due to a common physical force. Since link-
and SRLG-disjoint paths might not exist or be possible to
set up in a network, maximum disjoint paths are usually are
reasonable substitute. However, finding maximum link disjoint
paths is NP-hard problem [1]. Furthermore, it is known that
greedy algorithms for it are performing as well as (much more
complex) heuristics.

Simulation methods are often employed for studies of net-
work resilience [3]–[5]. In particular, Monte Carlo simulation
can be used to give an estimate of network availability and



comparison of different network scenarios using different
RWA strategies. Monte Carlo simulation require many runs
of the same scenario to give a good estimate, so reduction of
simulation execution time becomes crucial. One approach is
parallelization of suitable parts of simulation, utilizing multi-
core central processing units (CPUs) and one or more graphics
processing units (GPUs) on one or more compute nodes.

Horizontal scaling means adding more compute nodes to
a computer cluster used for running simulations. Vertical
scaling, on the other hand, implies adding resources to a single
compute node in the cluster, meaning additional CPUs, GPUs,
memory etc. When scaling is required to satisfy computation
demands, one can utilize horizontal or vertical scaling, or
combine both.

This paper presents our approach to performance optimiza-
tion of best-effort RWA algorithm using CUDA heterogeneous
parallel programming platform enabling code to run on both
GPU(s) and CPU(s). Part of the algorithm is moved to GPU
for computation to reduce overall execution time. Meanwhile,
CPU handles computations not suitable for the GPU. Our
approach is based on extending models implemented by ns-
3 network simulator [6] with GPU-enabled code, utilizing
NVIDIA CUDA programming platform [7]. Compute clusters
are becoming increasingly heterogeneous over time, with com-
putation power divided over a number of different processors
of vastly disparate computational features [8].

The paper is organized as follows: first we overview related
work in Section II, then we describe the application of
maximum disjoint path algorithms in RWA in Section III. We
follow up with description of our approach to algorithm par-
allelization in Section IV. We do performance benchmarks in
Section V, and finally conclude along with possible directions
for future work.

II. RELATED WORK

The usage of GPUs for general purpose computing has
been on the rise in recent years [9]. Many application do-
mains, especially computational science and engineering, have
benefited greatly and expanded their scope significantly from
computational performance increase due to GPUs.

In domain of computer networks, usage of GPUs for IP
routing has been studied by Han et al. [10] using custom
PacketShader software. Benchmarks have shown that peak per-
formance of NVIDIA GeForce GTX 480 consumer-grade GPU
is roughly comparable to ten Intel Xeon X5500 processors. In
effect, this result enables a well-designed PC-based router to
forward IP packets at 40 Gbps.

A. Parallelization of Graph Search

Swenson and Riley provided an implementation of CUDA-
enabled computation of Floyd-Warshall algorithm used for
solving all pairs shortest path problems [11]. The goal was
performance improvement of IP routing in ns-3 network
simulator and therefore decrease of simulation runtime. It was
shown that CUDA-enabled routing reduced simulation runtime

compared to CPU-only Nix-vector routing [12] consistently by
a factor over three.

Harish and Narayanan described the approach to paralleliza-
tion of breadth-first search, single source shortest path and
all pairs shortest path using CUDA [13]. They parallelized
Dijkstra algorithm using two kernels and found a two orders
of magnitude speedup in GPU-enabled code over the code that
utilizes only the CPU.

B. Algorithms for Maximum Link and Shared Risk Link Group
Disjoint Paths

Maximum edge (link) disjoint path problem is a variant of
k-shortest path problem (in most applications k = 2). Say two
(disjoint) shortest paths can not be found in a given network;
one can ask for maximum link or shared risk link group
disjoint paths instead. algorithms have been studied for RWA
in optical networks for many years [1], [14]–[16]. In particular,
Oki et al. study RWA in presence of SRLGs, introducing the
concept of weighted SRLGs. Two paths sharing many SRLGs
have low probability to be selected as working and spare path
pair, since weight of SRLGs contained on links is added to link
cost. Shao et al. [16] present a custom maximum link disjoint
path algorithm to RWA problem in optical telecommunication
network in presence of SRLGs, taking a different approach
than Oki et al. and using number of SRLGs as a metric
independently of path length.

III. ROUTING AND WAVELENGTH ASSIGNMENT IN
PRESENCE OF SHARED RISK LINK GROUPS

We now turn our attention to RWA of logical connections in
the network, namely RWA of working and spare paths required
for establishment of each connection. Routing requires link-
and SRLG-disjointness of working and spare paths. On the
other hand, wavelength assignment requires a common unused
wavelength on each of the links the path traverses for both
paths. The first requirement can be relaxed to maximum dis-
jointness, if completely disjoint paths do not exist. The second
requirement can be relaxed if optical network contains support
for wavelength conversion, so only an unused wavelength on
each link is required, i.e. the wavelength does not need to be
the same one in all the links used by the path.

A. Shared Risk Link Group Disjoint Paths

Despite the fact a network might offer many options for
routing working and spare paths for of a particular connection,
generally not all of them need to be link- and SRLG-disjoint
or satisfy certain limit of path length.

To illustrate link- and SRLG-disjointness, we turn our
attention to network shown in Figure 2 which offers four
possible paths between nodes 1 and 8. Out of those four we
need to pick one for working path and one for spare path.
One option would be to route two paths as 1− 2− 3− 8
and 1− 4− 5− 8. We can see that links 1− 2 and 1− 4,
and also 3− 8 and 5− 8 each have a common SRLG, see
these two paths despite being link-disjoint share two SRLGs.
If instead of 1− 2− 3− 8 one picks 1− 6− 2− 3− 8 as
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Figure 2. Example network used to illustrate the concepts of link- and SRLG-
disjointness.

working path and spare path remains unchanged, only one
common SRLG remains between two paths. Finally, paths
1−6−2−3−8 and 1−4−5−7−8 are both link- and SRLG-
disjoint. Despite the fact that they are longer, the requirement
to avoid simultaneous failure of working and spare path is
quite often more significant than increase in path length.

RWA problem in presence of shared risk link groups can
generally be written as an integer linear program, and software
solvers can be applied [17]. However, due to NP-completeness
of RWA problem, relaxation techniques and heuristics are
commonly used. The maximum SRLG-disjoint path algorithm
we utilize and optimize in this work is similar to algorithm
proposed by Shao et. al. [16]. The algorithm is as follows:

1) Route the working path using Dijkstra shortest path
algorithm. Let the set of links used by working path
be Lw, and let S(Lw) be a set of all links that contain at
least one common SRLG with a link in Lw.

2) To route the spare path, remove from graph links in Lw
(links used by working path) and also remove links in
S(Lw) (links with commons SRLG with working path).
If possible route the spare path using Dijkstra shortest
path algorithm and exit with success.

3) Let s = |S(Lw)|. Then there are
(s

r

)
r-subsets of links in

S(Lw), and 2s subsets total. Let i = 1,2, . . . ,s. In i− th
step do the following:

a) Select next (s− i)-subset of links in S(Lw). If all
(s− i)-subsets have been tried, increment i and
continue.

b) Remove from graph links in Lw and s− i links
selected in subset. If possible route the spare path
using Dijkstra shortest path algorithm and exit with
success.

It is reasonable to route the working path as shortest path
since it is used most of the time. It is easy to see that
algorithm ends either upon finding a maximum SRLG-disjoint
and completely link-disjoint spare path or concluding no link-
disjoint path exists.

Note also that it would be trivial to extend the algorithm
to find maximum link-disjoint path in addition to maximum
SRLG-disjoint path if there is such requirement. Combining
link- and SRLG-disjointness with particular weight or coeffi-
cient assigned to each is also a possibility.

B. Simulation Models

We used PWNS, an extension of ns-3 network simulator
intended for availability study of optical telecommunication
network. Models for optical network components such as
demultiplexers and multiplexers, fiber, edge devices, optical
cross connects, path computation element and control plane
are included [18], as well as models for network cables
and SRLGs [5]. Component failure and repair events can be
simulated; component uptime and downtime are tracked and
used for availability estimation.

We extended path computation element available in PWNS
with support for CUDA-based Dijkstra shortest path finding,
which is used in maximum disjoint path algorithm.

IV. MAXIMUM DISJOINT PATH ALGORITHM
PARALLELIZATION APPROACH

Graphics processors began as general-purpose computing
processors with programmable shaders on NVIDIA GeForce
FX and AMD Radeon series of graphics cards in 2003
[19]. Three programming languages were used: NVIDA Cg,
OpenGL Shading Language (GLSL), and High-level shading
language (HLSL), part of Microsoft DirectX suite. Regardless
of the requirement to significantly alter algorithms to fit them
for the GPU, usage of GPUs for non-graphics computations
started to grow and NVIDIA saw the potential in it. GeForce 8
series introduced an application programming interface (API)
called Compute Unified Device Architecture (CUDA) intened
for general purpose computing on the GPU [7].

A. Compute Unified Device Architecture

GPUs are very different from commonly used CPUs. GPUs
are essentially single instruction, multiple data (SIMD) parallel
processors, meaning they have many processing elements
able to do the same operation on multiple data elements
simultaneously. As we have seen in examples mentioned in
SectionII, gains from using GPUs vary a lot depending on
amount of data-level parallelism present in algorithm one is
aiming to accelerate.

Roughly a year after the introduction of CUDA an open
standard called OpenCL (short for Open Compute Language)
appeared. OpenCL is very similar to CUDA both in application
domain and syntax, but has not so far gained market share
comparable to CUDA. In addition to the fact that CUDA
appeared first, relative unpopularity of OpenCL is also due to
lesser amount of literature and advanced programming tools
compared to CUDA. While both standards are very similar,
they are not compatible [20].

We picked CUDA for this work, and from now on we
focus solely on it. CUDA is as an extension of programming
languages C/C++ and Fortran. CUDA Application Programing
Interface (API) enables programmer to use threads, grouped
in blocks of threads. Threads can share memory if required,
and thread synchronization mechanism is provided. On the
other hand, blocks do not have these features, and execute
independently of each other. CUDA programming model is



particularly suited for multidimensional arrays. Functions writ-
ten in CUDA intended for GPU execution are called kernels.
When a kernel is called from the code, the number of blocks
and threads used for execution is specified. This allows writing
kernels once for data arrays of different shapes and sizes.

B. Algorithm Parallelization Approach

Due to many academic and open source efforts utilizing
CUDA, a number of libraries with highly optimized versions
of commonly used algorithms (such as reduction, transfor-
mation, and sorting) have appeared. However, due to our
particular needs we describe below, we implemented our work
in pure CUDA C/C++ without using any additional libraries.

To fit our problem into data-parallel framework, we opted
for parallelizing the Dijkstra algorithm in maximum disjoint
spare path routing stage. Algorithm described in Section III
remains unchanged in stages 1 and 2. Stage 3 is done on the
GPU in way that:
• CPU generates 2s subset of links and stores them in an

array, which is copied to GPU.
• GPU kernel is called in 2s

512 blocks with 512 threads in
each block.1

– Each thread takes its subset from the array of subsets
stored in GPU memory, and stores a copy of the
graph in statically allocated array contained in per-
thread local memory.

– Each thread does Dijkstra shortest path algorithm
on graph stored in per-thread local memory. If the
shortest path is found, it is stored in global memory.

• Array of paths that were found is copied back from GPU.
To simplify the implementation, we also convert link

weights to integer. To contain decimals, prior to conversion
we multiply the weights by 1000. In our test networks links
weights (lengths) are in order of magnitude of 100 (i.e.
kilometers), and sum of lengths of all links is in order of
magnitude of 1000. Multiplied by 1000, this gives numbers
in order of magnitude 106 which is way below 109 order of
magnitude of 32-bit integer maximum value.

One might possibly be concerned here by the amount
of memory used for graph copies. However, used memory
consistently remained under 1 GB for all scenarios we tested.
Since modern entry level domain GeForce GPUs come with
over 1 GB of video memory, we did not consider this a big
issue. However, GPU memory usage can be reduced further
by utilizing dynamic instead of static memory allocation for
storing per-thread arrays representing graphs.

V. PERFORMANCE MEASUREMENTS

Our testing and benchmarking system consists of AMD
FX-6100 6-core CPU and NVIDIA GeForce GTX 480 GPU.
Since we work only with integers, neither 64-bit floating

1Early GeForce and Tesla cards support a maximum of 512 threads per
block. Later cards allow 1024 threads per block; regardless, we opted for
512 threads per block to gain wider compatibility, since we had no particular
requirement to increase number of threads per block.
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Figure 3. Test network topology containing 20 nodes and 40 links.

point precision nor extremely large amounts of GPU memory
are required for our implementation. Therefore, consumer
grade GeForce GPUs work just as well as more expensive
professional grade Teslas and Quadros.

For the performance benchmarking we use three networks:
20 nodes and 40 links (Figure 3), 25 nodes and 50 links
(Figure 4), and 30 nodes and 60 links (Figure 5). All three
networks were first used by Grover et al. [21], [22].

We evaluate performance using the scenario where bidirec-
tional connections are established between all pairs of nodes.
For the the test networks, 20, 25 and 30 nodes implies 190, 300
and 435 bidirectional connections established. We benchmark
using scenarios with 20, 40 and 80 SRLGs existing in the
network. We assume each SRLG contains two cables.

Program execution time of CPU and GPU versions of the
algorithm for 20 node 40 link network is shown in Figure 6.
We can see that even GPU performance is consistently better,
despite large variance in magnitude of difference. If we
compare 80 SRLG scenario, GPU computation time is only 3
seconds, which is 7 times better than CPU computation time
of 21 seconds. However, in case of 100 SRLGs, GPU takes
39 seconds and CPU takes 72 seconds, so the difference isn’t
nowhere as large.

Program execution time of the algorithm for 25 node 50 link
network is shown in Figure 7. Here we can see that speed is
much more consistent, and ends up at nearly 10 times in 100
SRLG case with CPU execution taking 107 and GPU taking
only 11 seconds.

Finally, we take a look at 30 node 60 link network results in
Figure 8. Up to 80 SRLGs GPU is consistently faster, coming
again up to 10 times in scenarios 60 and 80 SRLGs. However,
for 100 SRLGs scenario this is not the case, and speedup is
around 1.5 times.



1

2

3

4

5

6
7

8

910

1112

13
14

15

16
17

18
19

20

21

22

23

24

25
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Figure 5. Test network topology containing 30 nodes and 60 links.

VI. CONCLUSION, DISCUSSION AND FUTURE WORK

We presented an approach to optimization of maximum
shared risk link group-disjoint path algorithm by offloading
a part of algorithm to GPU for execution. We believe this
approach to be future-proof, considering the increasing het-
erogeneity of compute components inside computer systems
over time, each chip suited for different kind of work. We
found the optimization approach we took improving perfor-
mance very significantly, and decreasing simulation runtime.
Increasing number of SRLGs has shown an expected impact on
performance; on average, more SRLGs increases the number
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Figure 6. Performance measurements for 20 node 40 link topology.
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of subsetss the algorithm has to process. However, to give
definitive performance assessment and select code "hotspots"
for optimization further study will be required. Specifically, we
are interested in evaluating larger scenarios with more nodes
and links in the network.

Our future work will be focused on further optimizing
the implementation by increasing amount of parallelism and
decreasing memory usage. Dynamic parallelism available on
NVIDIA Kepler and subsequent chips, which we have not
utilized so far to ensure broader compatibility, is potentially
useful for increasing amount of parallelism.

With GPUs making their way into embedded hardware
such as NVIDIA Tegra and Adapteva Parallella, it could
be possible to use GPUs also for routing in control plane
of the optical telecommunication network. Considering the
performance and energy efficiency of the GPUs, usage of them
in real world optical network control plane is an interesting
research direction for the future.
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