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Abstract – Frequency table computation is a key step in 

decision tree learning algorithms. In this paper we present a 

novel implementation targeted for dataflow architecture 

implemented on field programmable gate array (FPGA). 

Consistent with dataflow model of computation, the kernel 

views input dataset as synchronous streams of attributes 

and class values. The kernel was benchmarked using key 

functions from C4.5 program for decision tree learning. For 

large datasets with many attributes – over 100,000 items, 

and over 60 attributes – the realized kernel, clocked at 

333 MHz, outperforms the software implementation 

running on CPU clocked at 3.2 GHz. 

Keywords – frequency table, dataflow, field programmable 

gate arrays, decision tree learning 

I. INTRODUCTION 

Histogram computation is one of the fundamental 
procedures used in many data mining algorithms. Its two-
dimensional extension – frequency table computation – is 
a key part of the attribute selection step in decision tree 
learning algorithms [1]. Decision tree learning algorithms, 
as well as all other tools used in data mining, are faced 
with ever-growing size of analyzed datasets. This drives 
efforts to parallelize existing algorithms, develop new 
algorithms targeted for parallel and distributed computer 
systems, and develop new hardware platforms that 
provide high computational power [2]. 

One platform that is now gaining more ground in 
computing applications is field programmable gate array 
(FPGA). FPGAs are digital integrated circuits designed to 
be user-configured after manufacturing [3], [4]. An FPGA 
comprises an array of configurable logic blocks, memory 
blocks, configurable interconnect, input/output (I/O) 
blocks, and various specialized arithmetic and 
communication blocks. These elements together allow 
implementation of custom computational architectures 
that can be reconfigured on demand. The computational 
model that FPGA is most suitable for is the dataflow 
model. 

Majority of computer systems implement a control-
flow model of computation. In control-flow, the 
computation is defined by a sequence of operations that 
are executed in specified order. In dataflow model, 
computation is defined by a chain of transformations 
applied to a stream of data [5]. The dataflow is described 
spatially in form of dataflow graph. Each operation is 

represented by a node, and data flow between nodes is 
represented by edges. Dataflow graph naturally maps to 
hardware implementation. Operations are translated into 
hardware blocks that work concurrently, and edges are 
translated into data links. By dividing the graph into stages 
separated by registers, it is transformed into a pipelined 
structure suitable for implementing on FPGAs. 

In this paper we present a novel implementation of 
frequency table computation targeted for dataflow 
architecture realized on FPGA. The kernel is developed 
for integration in C4.5 decision tree learning program [6], 
[7]. Frequency table computation is a key step in decision 
tree learning algorithms. Its result is used to calculate 
dataset split quality, usually Gini impurity or an entropy 
based measure such as information gain, which is then 
used for attribute test selection [1].  

II. RELATED WORK 

Frequency table computation on FPGA has been 
previously published as a part of efforts in implementing 
decision tree learning algorithms. FPGAs have been 
proven to be suitable of implementing data mining 
algorithms, though so far little attention has been directed 
to decision tree learning algorithms. Only a few attempts 
of using FPGAs to accelerate execution of decision tree 
learning have been reported [8], [9]. 

Chrysos et al. [9] implement frequency table 
computation on FPGA as part of HC-CART system for 
learning decision trees. Frequency table computation is 
implemented in Frequency Counting module. The module 
receives attribute-class label pairs. The pairs are used to 
generate addresses for frequency table locations which 
contents are then incremented by one. The contents of the 
frequency table are then copied over to other two auxiliary 
memories, and used to generate item frequencies for 
computing Gini impurity. In their implementation, all 
attribute-class labels received by the kernel have to be 
prepared by program running on CPU, and then preloaded 
to memory attached to FPGA. Input data is transferred 
from CPU to FPGA memory many times in the course of 
program execution. In our work, the data is transferred to 
FPGA memory (LMem) only once, at the beginning of the 
program. The kernel reads the data only from FPGA 
memory, and the only data transfer between kernel and 
CPU is sending the computed frequency tables to the 
CPU. 
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III. DATAFLOW ENGINE ARCHITECTURE 

The Data Flow Engine (DFE) is programmed with one 
or more kernels and a manager. Kernel implements 
computation. It defines the computational architecture 
with scalar and stream inputs and outputs. Manager 
organizes data movement within the DFE. In managers, 
the kernels are instantiated and links to off-chip RAM 
(LMem), CPU or other DFEs are defined. 

A. Maxeler Vectis-Lite FPGA platform 

Maxeler platform is designed for implementing 
compute engines using the dataflow model of 
computation. The platform comprises an FPGA board, 
drivers, development tools, and API. Dataflow engine is 
described in Java, using API which provides objects and 
methods that can be compiled into hardware structures. 
The compilers translate the input Java code into VHDL 
code and create functions that implement interface for 
CPU code [10]. 

Maxeler Vectis-Lite board was used for realization of 
the DFE on FPGA. The board is a PCIe expansion board 
which houses an FPGA, and SDRAM. Basic information 
on the board is shown in Table I. 

B. Kernel architecture 

Architecture of the ComputeFreq kernel is shown in 

Fig. 1. The kernel has two scalar inputs for parameters: 
stream length (strmLen), and number of items (items). 
Stream length is the number of elements read from 
LMem, which requires all memory accesses to be made in 
96 byte blocks. Number of items is the actual number of 
items of interest in the stream. 

The kernel receives two 32 bit unsigned integer 
streams as input – one for attribute values (att) and the 
other for class values (attClass) of the items. The inputs 
are sliced so that the low NA bits are taken from attribute 
and NC bits from class value. The sliced inputs are 
concatenated to form the frequency table index, with. 

Frequency table is stored in block RAM (BRAM). The 
BRAM is addressed by the frequency table index formed 
from attribute and class values. The value output from the 
BRAM is incremented by one and written back to the 
same location. The BRAM is configured as a single port 
RAM with read-first synchronization. The compiler tool 
automatically inserts registers in appropriate locations, 
which leads to latency inside the loop. To accommodate 
this latency, kernel’s input streams are throttled to allow 
input of one element every m clocks, where m is the 
length of loop latency. 

After all elements of interest are streamed in, contents 
of the BRAM are streamed out to the CPU through stream 
output s and at the same time reset to zero. This is 
achieved by using multiplexers to switch BRAM address 
port from table index to values generated by a counter. In 
the same manner the BRAM write data port is switched 
from incremented-by-one value to constant zero. Since 
there are no loop dependencies in this instance, the output 
stream is not throttled. One element is output every single 
clock. At the same time, any remaining elements in the 
input streams are read un-throttled (one per clock) and 
ignored. They are all read to ensure proper functioning of 
the DFE. 

C. Manager 

A single ComputeFreq kernel is instantiated in 
manager. Stream inputs att and attClass are linked to 
LMem, and use linear memory access pattern. Stream 
output s is linked to CPU. Scalar inputs items and srtmLen 
are also linked to CPU. The kernel parameters were set for 
up to 64 unique attribute and class values (NA = 6, NC = 6). 
The manager clock frequency was set at 100 MHz, while 
kernel clock frequency was set at 333 MHz. 

DFE interface defines inputs for source addresses of 
data for input streams att and attClass, values for scalar 
inputs items and srtmLen, and destination address for 
output stream s. 

With given parameters, frequency table stores 4096 
32-bit words. Loop latency of the synthesized design is 5 

TABLE I.  BASIC INFORMATION ON MAXELER VECTIS-LITE FPGA 
BOARD 

FPGA Xilinx Virtex-6 XCVSX475T 

Off-chip RAM (LMem) 6 GiB (6×1 GiB) DDR2-800 SDRAM 

On-chip RAM (FMem) ~ 4 MiB Block RAM 

CPU ↔ FPGA bandwidth 2 GB/s 

LMem ↔ FPGA bandwidth 38.4 GB/s max. 

 
Figure 1.  ComputeFreq kernel architecture for up to 64 unique 

attribute and class values (NA = 6, NC = 6). 

TABLE II.  FPGA RESOURCE USAGE BY THE DFE 

Resource Used Total available Utilization 

LUTs 30053 297600 10.10 % 

Flip-flops 43416 297600 14.59 % 

DSP blocks 0 2016 0.00 % 

Block RAM 105 2128 4.93 % 
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clocks, which means that the DFE can process up to 
66.6×106 items per second. FPGA resource usage by the 
DFE is given in Table II. 

IV. EXPERIMENTAL RESULTS 

A. Benchmarks and test environment 

Kernel was benchmarked by using code from C4.5 
Release 8 decision tree learning program [11]. The normal 
tree building features from the original program were 
disabled. Only parts required for loading datasets and 
computing the frequency table were left operational. A 
function was added for transforming dataset into format 
appropriate for DFE and writing it to LMem. Time 
measurement was added to ComputeFrequencies function. 
For execution on DFE, the ComputeFrequencies function 
was modified to use function calls to the DFE, and copy 
the received result into the original frequency table data 
structure. From measured execution time, the function’s 
throughput was computed by: 
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t
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T

,
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where a is number of attributes, i is number of items, ta,i is 
measured execution time, and Ta,i is throughput for dataset 
with a attributes and i items. 

A set of 84 datasets was generated for the benchmark. 
All datasets have only nominal attributes with 63 unique 
attribute values (values from 1 to 63), and 64 unique class 
values (from 0 to 63). Number of items vary exponentially 
from 2×210 to 4×220 (211 – 222) items, while number of 
attributes varies exponentially from 1 to 64 (20 – 26). 
Attribute and class values are generated randomly using 
uniform distribution. 

Benchmark program was compiled using gcc compiler 
version 4.4.7. Benchmarks were run on workstation with 
Intel Xeon E5-1650 CPU running at 3.2 GHz, 16 GiB 
DDR3-1600 RAM, under Centos 6.5 Linux OS. The 
workstation is equipped with Maxeler Vectis-Lite FPGA 
acceleration board. 

B. ComputeFrequencies CPU benchmark results 

Execution times on CPU are given in Table III, and are 
shown in Fig. 2. For input datasets larger than 64×210 
items, execution time scales approximately linearly with 
number of items. There is a sharper increase in execution 
time visible for datasets with 8 or more attributes, in 
ranges for 128×210 – 256×210 items for 8 attributes, to 
32×210 – 64×210 items for 64 attributes. Function 
throughput, shown in Fig. 3, more visibly illustrates this 
decline in performance. Throughput rises with number of 
items until a peak is reached at 16×210 to 128×210 items, 
depending on number of attributes. After this point it 
declines and quickly stabilizes to a constant value. 
Constant throughput corresponds to linear scaling of 
execution time with number of items. The largest constant 
throughput is 173×106 items per second for dataset with 1 
attribute, and the lowest is 35.4×106 items per second for 
dataset with 64 attributes. 

This decline in performance is most likely an effect of 

 
Figure 2.  Execution time on CPU as function of number of items, 

measured for datasets with 1 to 64 attributes 

TABLE III.  MEASURED EXECUTION TIMES ON CPU 

Number 

of items 

Number of attributes / Execution time 

1 2 4 8 16 32 64 

2048 39.62 
µs 

78.74 
µs 

156.1 
µs 

316.6 
µs 

651.2 
µs 

1.339 
ms 

2.859 
ms 

4096 48.97 
µs 

97.27 
µs 

194.7 
µs 

392.2 
µs 

841.7 
µs 

1.766 
ms 

3.807 
ms 

8192 68.39 
µs 

136.1 
µs 

273.6 
µs 

551.0 
µs 

1.202 
ms 

2.582 
ms 

6.065 
ms 

16384 104.5 
µs 

214.7 
µs 

428.3 
µs 

866.7 
µs 

1.945 
ms 

4.420 
ms 

10.94 
ms 

32768 180.1 
µs 

364.4 
µs 

735.0 
µs 

1.505 
ms 

3.556 
ms 

8.116 
ms 

25.95 
ms 

65536 341.7 
µs 

705.5 
µs 

1.372 
ms 

2.841 
ms 

6.663 
ms 

20.45 
ms 

108.1 
ms 

131072 654.0 
µs 

1.319 
ms 

2.632 
ms 

5.561 
ms 

16.97 
ms 

55.01 
ms 

235.7 
ms 

262144 1.427 
ms 

2.885 
ms 

5.858 
ms 

13.78 
ms 

36.63 
ms 

109.4 
ms 

473.5 
ms 

524288 3.056 
ms 

6.161 
ms 

13.11 
ms 

28.14 
ms 

72.70 
ms 

216.4 
ms 

947.4 
ms 

1048576 6.080 
ms 

12.19 
ms 

24.57 
ms 

55.80 
ms 

144.7 
ms 

428.8 
ms 

1.889 
s 

2097152 12.10 
ms 

24.49 
ms 

48.83 
ms 

110.1 
ms 

288.7 
ms 

855.6 
ms 

3.800 
s 

4194304 24.30 
ms 

48.82 
ms 

97.81 
ms 

220.5 
ms 

574.6 
ms 

1.707 
s 

7.575 
s 

 
Figure 3.  Throughput on CPU as function of number of items, 

measured for datasets with 1 to 64 attributes 
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CPU’s cache system. Smaller sets are less affected by 
cache misses than larger sets. In addition, the dataset is 
stored in attribute major order. Since ComputeFrequencies 
function works by accessing the same attribute over 
different items, this leads to consecutive accesses to non-
consecutive memory locations, which are more likely to 
result in cache misses. 

C. ComputeFrequencies DFE benchmark results 

Measured execution times on DFE are given in 
Table IV, and shown in Fig 4. Execution time scales 
linearly for datasets with more than 128×210 items. While 
scaling is not linear for datasets with fewer items, there is 
no performance drop like the one present when executing 
on CPU. From throughput results, shown in Fig 5, it is 
visible that there is little difference in throughput between 
datasets with different number of attributes, and that the 
main factor is number of items. With 256×210 and more 
items, throughput is fairly constant at 62.4×106 items per 
second, which is close to the theoretical maximum of 

66.6×106 items per second. Lower performance with 
smaller datasets is a consequence of overheads of control 
and communication with the DFE. This overhead is 
independent from number of items in the dataset, but 
scales linearly with number of attributes, since the same 
set of function calls has to be made to process each 
attribute. 

D. Comparison of the results 

To compare the results, ratio of execution time on 
CPU and time on DFE was calculated. The ratio is shown 
in Fig 6. Execution on DFE is in most cases significantly 
slower than on CPU. This is expected since the DFE runs 
on 333 MHz and works with DDR2 SDRAM clocked at 
333 MHz, while CPU runs on 3.2 GHz and works with 
DDR3 SDRAM clocked at 800 MHz. 

For small datasets DFE is at worst 20× slower than 
CPU. However, DFE’s performance comes closer to the 
CPU’s as number of attributes and items increases. For 
largest datasets (over 1×220 items), DFE is at worst 2.6× 
slower than CPU. For datasets with 64 attributes, DFE 
outperforms CPU when number of items is larger than 
64×210. Best performance – 1.80× faster than CPU – is 
reached when number of items is larger than 256×210. 

 
Figure 4.  Execution time on DFE as function of number of items, 

measured for datasets with 1 to 64 attributes 

 
Figure 5.  Throughput on DFE as function of number of items, 

measured for datasets with 1 to 64 attributes 

TABLE IV.  MEASURED EXECUTION TIMES ON DFE 

Number 

of items 

Number of attributes / Execution time 

1 2 4 8 16 32 64 

2048 771,8 
µs 

1,428 
ms 

2,675 
ms 

5,017 
ms 

8,904 
ms 

17,06 
ms 

33,70 
ms 

4096 802,7 
µs 

1,507 
ms 

2,771 
ms 

5,041 
ms 

9,456 
ms 

17,74 
ms 

35,69 
ms 

8192 855,6 
µs 

1,549 
ms 

2,904 
ms 

5,414 
ms 

10,04 
ms 

19,37 
ms 

39,20 
ms 

16384 912,8 
µs 

1,730 
ms 

3,481 
ms 

6,489 
ms 

12,18 
ms 

23,96 
ms 

46,55 
ms 

32768 1,176 
ms 

2,266 
ms 

4,372 
ms 

8,542 
ms 

16,16 
ms 

32,56 
ms 

64,36 
ms 

65536 1,695 
ms 

3,356 
ms 

6,573 
ms 

12,76 
ms 

24,80 
ms 

49,13 
ms 

96,60 
ms 

131072 2,661 
ms 

5,376 
ms 

10,66 
ms 

20,53 
ms 

41,12 
ms 

81,87 
ms 

168,6 
ms 

262144 4,680 
ms 

9,435 
ms 

18,47 
ms 

37,05 
ms 

73,81 
ms 

148,9 
ms 

295,7 
ms 

524288 8,598 
ms 

17,29 
ms 

34,88 
ms 

69,08 
ms 

138,3 
ms 

273,5 
ms 

551,4 
ms 

1048576 16,45 
ms 

33,10 
ms 

66,27 
ms 

132,3 
ms 

264,6 
ms 

527,5 
ms 

1,056 
s 

2097152 32,30 
ms 

64,39 
ms 

129,2 
ms 

258,2 
ms 

517,5 
ms 

1,034 
s 

2,067 
s 

4194304 63,75 
ms 

127,2 
ms 

254,9 
ms 

510,3 
ms 

1,020 
s 

2,040 
s 

4,082 
s 

 
Figure 6.  Ratio of execution times on CPU and DFE as function of 

number of items, measured for datasets with 1 to 64 attributes 
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V. CONLUSION 

In this paper we have presented a novel 
implementation of frequency table computation on 
dataflow architecture. The architecture was realized on 
FPGA platform. From benchmark results it is clear that a 
single kernel DFE is outperformed by the CPU in most 
circumstances, but it does provide better efficiency when 
their clock rates are accounted for. The CPU runs at 
3.2 GHz. Its best performance is 173×106 items per 
second which gives 18.5 clocks per item. The DFE runs at 
333 MHz and its best performance is at 62.4×106 items 
per second which gives 5.34 clocks per item. Of the 5.34 
clocks per item, 4 are consequence of the BRAM-adder-
multiplexer-BRAM loop latency. 

There are ways to design around the in-loop latency. 
One approach is by replicating the BRAM-adder-
multiplexer structure as many time as needed (in this case 
it’s 5 times), and “demultiplex” the input stream to each 
structure. Once the input streaming is complete, the final 
result is computed by summing the partial results from 
each BRAM. Such design could run with 1.34 clocks per 
items which would give 249×106 items per second. This 
exceeds maximum performance achieved on CPU. 

In future work, a multi-kernel version of DFE will be 
developed which will allow simultaneous processing of 
several attributes. The kernel will be modified to lower the 
in-loop latency. This DFE is planned to be integrated with 
the C4.5 program as accelerator unit for processing 
nominal attributes. Given presented results, it is expected 
that the FPGA design that exploits parallelism will 
outperform conventional CPU. 
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