
Frequency Table Computation on Dataflow
Architecture

P. Škoda*, V. Sruk**, and B. Medved Rogina*
* Ruđer Bošković Institute, Zagreb, Croatia

** Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
pskoda@irb.hr

Abstract – Frequency table computation is a key step in

decision tree learning algorithms. In this paper we present a

novel implementation targeted for dataflow architecture

implemented on field programmable gate array (FPGA).

Consistent with dataflow model of computation, the kernel

views input dataset as synchronous streams of attributes

and class values. The kernel was benchmarked using key

functions from C4.5 program for decision tree learning. For

large datasets with many attributes – over 100,000 items,

and over 60 attributes – the realized kernel, clocked at

333 MHz, outperforms the software implementation

running on CPU clocked at 3.2 GHz.

Keywords – frequency table, dataflow, field programmable

gate arrays, decision tree learning

I. INTRODUCTION

Histogram computation is one of the fundamental
procedures used in many data mining algorithms. Its two-
dimensional extension – frequency table computation – is
a key part of the attribute selection step in decision tree
learning algorithms [1]. Decision tree learning algorithms,
as well as all other tools used in data mining, are faced
with ever-growing size of analyzed datasets. This drives
efforts to parallelize existing algorithms, develop new
algorithms targeted for parallel and distributed computer
systems, and develop new hardware platforms that
provide high computational power [2].

One platform that is now gaining more ground in
computing applications is field programmable gate array
(FPGA). FPGAs are digital integrated circuits designed to
be user-configured after manufacturing [3], [4]. An FPGA
comprises an array of configurable logic blocks, memory
blocks, configurable interconnect, input/output (I/O)
blocks, and various specialized arithmetic and
communication blocks. These elements together allow
implementation of custom computational architectures
that can be reconfigured on demand. The computational
model that FPGA is most suitable for is the dataflow
model.

Majority of computer systems implement a control-
flow model of computation. In control-flow, the
computation is defined by a sequence of operations that
are executed in specified order. In dataflow model,
computation is defined by a chain of transformations
applied to a stream of data [5]. The dataflow is described
spatially in form of dataflow graph. Each operation is

represented by a node, and data flow between nodes is
represented by edges. Dataflow graph naturally maps to
hardware implementation. Operations are translated into
hardware blocks that work concurrently, and edges are
translated into data links. By dividing the graph into stages
separated by registers, it is transformed into a pipelined
structure suitable for implementing on FPGAs.

In this paper we present a novel implementation of
frequency table computation targeted for dataflow
architecture realized on FPGA. The kernel is developed
for integration in C4.5 decision tree learning program [6],
[7]. Frequency table computation is a key step in decision
tree learning algorithms. Its result is used to calculate
dataset split quality, usually Gini impurity or an entropy
based measure such as information gain, which is then
used for attribute test selection [1].

II. RELATED WORK

Frequency table computation on FPGA has been
previously published as a part of efforts in implementing
decision tree learning algorithms. FPGAs have been
proven to be suitable of implementing data mining
algorithms, though so far little attention has been directed
to decision tree learning algorithms. Only a few attempts
of using FPGAs to accelerate execution of decision tree
learning have been reported [8], [9].

Chrysos et al. [9] implement frequency table
computation on FPGA as part of HC-CART system for
learning decision trees. Frequency table computation is
implemented in Frequency Counting module. The module
receives attribute-class label pairs. The pairs are used to
generate addresses for frequency table locations which
contents are then incremented by one. The contents of the
frequency table are then copied over to other two auxiliary
memories, and used to generate item frequencies for
computing Gini impurity. In their implementation, all
attribute-class labels received by the kernel have to be
prepared by program running on CPU, and then preloaded
to memory attached to FPGA. Input data is transferred
from CPU to FPGA memory many times in the course of
program execution. In our work, the data is transferred to
FPGA memory (LMem) only once, at the beginning of the
program. The kernel reads the data only from FPGA
memory, and the only data transfer between kernel and
CPU is sending the computed frequency tables to the
CPU.

MIPRO 2014/DC-VIS 357

III. DATAFLOW ENGINE ARCHITECTURE

The Data Flow Engine (DFE) is programmed with one
or more kernels and a manager. Kernel implements
computation. It defines the computational architecture
with scalar and stream inputs and outputs. Manager
organizes data movement within the DFE. In managers,
the kernels are instantiated and links to off-chip RAM
(LMem), CPU or other DFEs are defined.

A. Maxeler Vectis-Lite FPGA platform

Maxeler platform is designed for implementing
compute engines using the dataflow model of
computation. The platform comprises an FPGA board,
drivers, development tools, and API. Dataflow engine is
described in Java, using API which provides objects and
methods that can be compiled into hardware structures.
The compilers translate the input Java code into VHDL
code and create functions that implement interface for
CPU code [10].

Maxeler Vectis-Lite board was used for realization of
the DFE on FPGA. The board is a PCIe expansion board
which houses an FPGA, and SDRAM. Basic information
on the board is shown in Table I.

B. Kernel architecture

Architecture of the ComputeFreq kernel is shown in

Fig. 1. The kernel has two scalar inputs for parameters:
stream length (strmLen), and number of items (items).
Stream length is the number of elements read from
LMem, which requires all memory accesses to be made in
96 byte blocks. Number of items is the actual number of
items of interest in the stream.

The kernel receives two 32 bit unsigned integer
streams as input – one for attribute values (att) and the
other for class values (attClass) of the items. The inputs
are sliced so that the low NA bits are taken from attribute
and NC bits from class value. The sliced inputs are
concatenated to form the frequency table index, with.

Frequency table is stored in block RAM (BRAM). The
BRAM is addressed by the frequency table index formed
from attribute and class values. The value output from the
BRAM is incremented by one and written back to the
same location. The BRAM is configured as a single port
RAM with read-first synchronization. The compiler tool
automatically inserts registers in appropriate locations,
which leads to latency inside the loop. To accommodate
this latency, kernel’s input streams are throttled to allow
input of one element every m clocks, where m is the
length of loop latency.

After all elements of interest are streamed in, contents
of the BRAM are streamed out to the CPU through stream
output s and at the same time reset to zero. This is
achieved by using multiplexers to switch BRAM address
port from table index to values generated by a counter. In
the same manner the BRAM write data port is switched
from incremented-by-one value to constant zero. Since
there are no loop dependencies in this instance, the output
stream is not throttled. One element is output every single
clock. At the same time, any remaining elements in the
input streams are read un-throttled (one per clock) and
ignored. They are all read to ensure proper functioning of
the DFE.

C. Manager

A single ComputeFreq kernel is instantiated in
manager. Stream inputs att and attClass are linked to
LMem, and use linear memory access pattern. Stream
output s is linked to CPU. Scalar inputs items and srtmLen
are also linked to CPU. The kernel parameters were set for
up to 64 unique attribute and class values (NA = 6, NC = 6).
The manager clock frequency was set at 100 MHz, while
kernel clock frequency was set at 333 MHz.

DFE interface defines inputs for source addresses of
data for input streams att and attClass, values for scalar
inputs items and srtmLen, and destination address for
output stream s.

With given parameters, frequency table stores 4096
32-bit words. Loop latency of the synthesized design is 5

TABLE I. BASIC INFORMATION ON MAXELER VECTIS-LITE FPGA
BOARD

FPGA Xilinx Virtex-6 XCVSX475T

Off-chip RAM (LMem) 6 GiB (6×1 GiB) DDR2-800 SDRAM

On-chip RAM (FMem) ~ 4 MiB Block RAM

CPU ↔ FPGA bandwidth 2 GB/s

LMem ↔ FPGA bandwidth 38.4 GB/s max.

Figure 1. ComputeFreq kernel architecture for up to 64 unique

attribute and class values (NA = 6, NC = 6).

TABLE II. FPGA RESOURCE USAGE BY THE DFE

Resource Used Total available Utilization

LUTs 30053 297600 10.10 %

Flip-flops 43416 297600 14.59 %

DSP blocks 0 2016 0.00 %

Block RAM 105 2128 4.93 %

358 MIPRO 2014/DC-VIS

clocks, which means that the DFE can process up to
66.6×106 items per second. FPGA resource usage by the
DFE is given in Table II.

IV. EXPERIMENTAL RESULTS

A. Benchmarks and test environment

Kernel was benchmarked by using code from C4.5
Release 8 decision tree learning program [11]. The normal
tree building features from the original program were
disabled. Only parts required for loading datasets and
computing the frequency table were left operational. A
function was added for transforming dataset into format
appropriate for DFE and writing it to LMem. Time
measurement was added to ComputeFrequencies function.
For execution on DFE, the ComputeFrequencies function
was modified to use function calls to the DFE, and copy
the received result into the original frequency table data
structure. From measured execution time, the function’s
throughput was computed by:

ia

ia
t

ia
T

,
, = (1)

where a is number of attributes, i is number of items, ta,i is
measured execution time, and Ta,i is throughput for dataset
with a attributes and i items.

A set of 84 datasets was generated for the benchmark.
All datasets have only nominal attributes with 63 unique
attribute values (values from 1 to 63), and 64 unique class
values (from 0 to 63). Number of items vary exponentially
from 2×210 to 4×220 (211 – 222) items, while number of
attributes varies exponentially from 1 to 64 (20 – 26).
Attribute and class values are generated randomly using
uniform distribution.

Benchmark program was compiled using gcc compiler
version 4.4.7. Benchmarks were run on workstation with
Intel Xeon E5-1650 CPU running at 3.2 GHz, 16 GiB
DDR3-1600 RAM, under Centos 6.5 Linux OS. The
workstation is equipped with Maxeler Vectis-Lite FPGA
acceleration board.

B. ComputeFrequencies CPU benchmark results

Execution times on CPU are given in Table III, and are
shown in Fig. 2. For input datasets larger than 64×210
items, execution time scales approximately linearly with
number of items. There is a sharper increase in execution
time visible for datasets with 8 or more attributes, in
ranges for 128×210 – 256×210 items for 8 attributes, to
32×210 – 64×210 items for 64 attributes. Function
throughput, shown in Fig. 3, more visibly illustrates this
decline in performance. Throughput rises with number of
items until a peak is reached at 16×210 to 128×210 items,
depending on number of attributes. After this point it
declines and quickly stabilizes to a constant value.
Constant throughput corresponds to linear scaling of
execution time with number of items. The largest constant
throughput is 173×106 items per second for dataset with 1
attribute, and the lowest is 35.4×106 items per second for
dataset with 64 attributes.

This decline in performance is most likely an effect of

Figure 2. Execution time on CPU as function of number of items,

measured for datasets with 1 to 64 attributes

TABLE III. MEASURED EXECUTION TIMES ON CPU

Number

of items

Number of attributes / Execution time

1 2 4 8 16 32 64

2048 39.62
µs

78.74
µs

156.1
µs

316.6
µs

651.2
µs

1.339
ms

2.859
ms

4096 48.97
µs

97.27
µs

194.7
µs

392.2
µs

841.7
µs

1.766
ms

3.807
ms

8192 68.39
µs

136.1
µs

273.6
µs

551.0
µs

1.202
ms

2.582
ms

6.065
ms

16384 104.5
µs

214.7
µs

428.3
µs

866.7
µs

1.945
ms

4.420
ms

10.94
ms

32768 180.1
µs

364.4
µs

735.0
µs

1.505
ms

3.556
ms

8.116
ms

25.95
ms

65536 341.7
µs

705.5
µs

1.372
ms

2.841
ms

6.663
ms

20.45
ms

108.1
ms

131072 654.0
µs

1.319
ms

2.632
ms

5.561
ms

16.97
ms

55.01
ms

235.7
ms

262144 1.427
ms

2.885
ms

5.858
ms

13.78
ms

36.63
ms

109.4
ms

473.5
ms

524288 3.056
ms

6.161
ms

13.11
ms

28.14
ms

72.70
ms

216.4
ms

947.4
ms

1048576 6.080
ms

12.19
ms

24.57
ms

55.80
ms

144.7
ms

428.8
ms

1.889
s

2097152 12.10
ms

24.49
ms

48.83
ms

110.1
ms

288.7
ms

855.6
ms

3.800
s

4194304 24.30
ms

48.82
ms

97.81
ms

220.5
ms

574.6
ms

1.707
s

7.575
s

Figure 3. Throughput on CPU as function of number of items,

measured for datasets with 1 to 64 attributes

MIPRO 2014/DC-VIS 359

CPU’s cache system. Smaller sets are less affected by
cache misses than larger sets. In addition, the dataset is
stored in attribute major order. Since ComputeFrequencies
function works by accessing the same attribute over
different items, this leads to consecutive accesses to non-
consecutive memory locations, which are more likely to
result in cache misses.

C. ComputeFrequencies DFE benchmark results

Measured execution times on DFE are given in
Table IV, and shown in Fig 4. Execution time scales
linearly for datasets with more than 128×210 items. While
scaling is not linear for datasets with fewer items, there is
no performance drop like the one present when executing
on CPU. From throughput results, shown in Fig 5, it is
visible that there is little difference in throughput between
datasets with different number of attributes, and that the
main factor is number of items. With 256×210 and more
items, throughput is fairly constant at 62.4×106 items per
second, which is close to the theoretical maximum of

66.6×106 items per second. Lower performance with
smaller datasets is a consequence of overheads of control
and communication with the DFE. This overhead is
independent from number of items in the dataset, but
scales linearly with number of attributes, since the same
set of function calls has to be made to process each
attribute.

D. Comparison of the results

To compare the results, ratio of execution time on
CPU and time on DFE was calculated. The ratio is shown
in Fig 6. Execution on DFE is in most cases significantly
slower than on CPU. This is expected since the DFE runs
on 333 MHz and works with DDR2 SDRAM clocked at
333 MHz, while CPU runs on 3.2 GHz and works with
DDR3 SDRAM clocked at 800 MHz.

For small datasets DFE is at worst 20× slower than
CPU. However, DFE’s performance comes closer to the
CPU’s as number of attributes and items increases. For
largest datasets (over 1×220 items), DFE is at worst 2.6×
slower than CPU. For datasets with 64 attributes, DFE
outperforms CPU when number of items is larger than
64×210. Best performance – 1.80× faster than CPU – is
reached when number of items is larger than 256×210.

Figure 4. Execution time on DFE as function of number of items,

measured for datasets with 1 to 64 attributes

Figure 5. Throughput on DFE as function of number of items,

measured for datasets with 1 to 64 attributes

TABLE IV. MEASURED EXECUTION TIMES ON DFE

Number

of items

Number of attributes / Execution time

1 2 4 8 16 32 64

2048 771,8
µs

1,428
ms

2,675
ms

5,017
ms

8,904
ms

17,06
ms

33,70
ms

4096 802,7
µs

1,507
ms

2,771
ms

5,041
ms

9,456
ms

17,74
ms

35,69
ms

8192 855,6
µs

1,549
ms

2,904
ms

5,414
ms

10,04
ms

19,37
ms

39,20
ms

16384 912,8
µs

1,730
ms

3,481
ms

6,489
ms

12,18
ms

23,96
ms

46,55
ms

32768 1,176
ms

2,266
ms

4,372
ms

8,542
ms

16,16
ms

32,56
ms

64,36
ms

65536 1,695
ms

3,356
ms

6,573
ms

12,76
ms

24,80
ms

49,13
ms

96,60
ms

131072 2,661
ms

5,376
ms

10,66
ms

20,53
ms

41,12
ms

81,87
ms

168,6
ms

262144 4,680
ms

9,435
ms

18,47
ms

37,05
ms

73,81
ms

148,9
ms

295,7
ms

524288 8,598
ms

17,29
ms

34,88
ms

69,08
ms

138,3
ms

273,5
ms

551,4
ms

1048576 16,45
ms

33,10
ms

66,27
ms

132,3
ms

264,6
ms

527,5
ms

1,056
s

2097152 32,30
ms

64,39
ms

129,2
ms

258,2
ms

517,5
ms

1,034
s

2,067
s

4194304 63,75
ms

127,2
ms

254,9
ms

510,3
ms

1,020
s

2,040
s

4,082
s

Figure 6. Ratio of execution times on CPU and DFE as function of

number of items, measured for datasets with 1 to 64 attributes

360 MIPRO 2014/DC-VIS

V. CONLUSION

In this paper we have presented a novel
implementation of frequency table computation on
dataflow architecture. The architecture was realized on
FPGA platform. From benchmark results it is clear that a
single kernel DFE is outperformed by the CPU in most
circumstances, but it does provide better efficiency when
their clock rates are accounted for. The CPU runs at
3.2 GHz. Its best performance is 173×106 items per
second which gives 18.5 clocks per item. The DFE runs at
333 MHz and its best performance is at 62.4×106 items
per second which gives 5.34 clocks per item. Of the 5.34
clocks per item, 4 are consequence of the BRAM-adder-
multiplexer-BRAM loop latency.

There are ways to design around the in-loop latency.
One approach is by replicating the BRAM-adder-
multiplexer structure as many time as needed (in this case
it’s 5 times), and “demultiplex” the input stream to each
structure. Once the input streaming is complete, the final
result is computed by summing the partial results from
each BRAM. Such design could run with 1.34 clocks per
items which would give 249×106 items per second. This
exceeds maximum performance achieved on CPU.

In future work, a multi-kernel version of DFE will be
developed which will allow simultaneous processing of
several attributes. The kernel will be modified to lower the
in-loop latency. This DFE is planned to be integrated with
the C4.5 program as accelerator unit for processing
nominal attributes. Given presented results, it is expected
that the FPGA design that exploits parallelism will
outperform conventional CPU.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the European Union’s Seventh Framework
Programme (FP7), under grant agreement no. 317882 –

E2LP Embedded Computer Engineering Learning
Platform.

REFERENCES
[1] L. Rokach and O. Maimon, Data Mining with Decision Trees:

Theroy and Applications. River Edge, NJ, USA: World Scientific
Publishing, 2008.

[2] A. N. Choudhary, D. Honbo, P. Kumar, B. Ozisikyilmaz, S. Misra,
and G. Memik, “Accelerating data mining workloads: current
approaches and future challenges in system architecture design,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 1, no. 1,
pp. 41–54, Jan. 2011.

[3] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture,” Found.
Trends Electron. Des. Autom., vol. 2, no. 2, pp. 153–253, 2008.

[4] Mark L. Chang, “Device Architecture,” in Reconfigurable

Computing: The Theory and Practice of FPGA-based

Computation, S. Hauck and A. DeHon, Eds. Morgan Kaufmann,
2008, pp. 3–27.

[5] J. B. Dennis, “Data Flow Supercomputers,” Computer, vol. 13, no.
11, pp. 48–56, Nov. 1980.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo:
Morgan Kaufmann, 1993, p. 302.

[7] S. Ruggieri, “Efficient C4.5,” IEEE Trans. Knowl. Data Eng., vol.
14, no. 2, pp. 438–444, 2002.

[8] P. Škoda, B. Medved Rogina, and V. Sruk, “FPGA
implementations of data mining algorithms,” in MIPRO, 2012

Proceedings of the 35th International Convention, 2012, pp. 362–
367.

[9] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “HC-
CART: A parallel system implementation of data mining
classification and regression tree (CART) algorithm on a multi-
FPGA system,” ACM Trans. Archit. Code Optim., vol. 9, no. 4,
pp. 1–25, Jan. 2013.

[10] O. Pell and V. Averbukh, “Maximum Performance Computing
with Dataflow Engines,” Comput. Sci. Eng., vol. 14, no. 4, pp. 98–
103, Jul. 2012.

[11] J. R. Quinlan, “C4.5 Release 8,” 1993. [Online]. Available:
http://rulequest.com/Personal/c4.5r8.tar.gz. [Accessed: 23-Jun-
2013].

MIPRO 2014/DC-VIS 361

