
Deciphering Big Data Stacks: An Overview of Big
Data Tools

Tomislav Lipic1, Karolj Skala1, Enis Afgan*1,2

1Centre for Informatics and Computing

Rudjer Boskovic Institute, RBI
Zagreb, Croatia

{tlipic, skala}@irb.hr

2Department of Biology

Johns Hopkins University
Baltimore, MD, USA
enis.afgan@jhu.edu

Abstract— With its ability to ingest, process, and decipher an
abundance of incoming data, the Big Data is considered by many
a cornerstone of future research and development. However, the
large number of available tools and the overlap between those are
impeding their technological potential. In this paper, we present
a systematic grouping of the available tools and present a
network of dependencies among those with the aim of composing
individual tools into functional software stacks required to
perform Big Data analyses.

Keywords—Big Data; distributed systems; Cloud computing;
data processing platform trends; interdependency

I. INTRODUCTION
With the multi-V model [1] used to categorize Big Data,

the task of effectively addressing Big Data analysis needs to
balance a combination of intricate issues, including data
curation, management and privacy, as well as resource
provisioning and management. Further complicating the
situation is that each Big Data analysis project requires a
unique yet composite environment driven by the project's
goals. One increasingly complicated facet of the environment
is the required software stack - deploying the appropriate stack
is progressively becoming a technologically challenging
undertaking.

Simultaneous to the development of the Big Data software
stack challenge, the availability of Cloud computing platforms
has spread beyond specialized commercial offerings into
widespread installations at universities, institutes, and the
industry [2]. This adoption was fueled by the demonstrated
increase in available infrastructure flexibility, functionality,
and service scalability. That alone, however, was not sufficient
to sustain the wide-adoption of the Cloud; in addition, a well-
defined programmatic access (i.e., API) and clear term-of-
service (i.e., pricing/allocation) were a key that helped
transform otherwise abstract technical terms (e.g., virtual
machines, volumes, objects) into accessible functionality (e.g.,
scalable web applications), enabling the cloud-transformation.

Conceptually, the Cloud provides many features suitable
for deploying Big Data stacks and has been demonstrated as a
viable platform for deploying certain Big Data solutions [3].
The Cloud allows information integration from Big Data
sources by offering capacity to store and process the data,
enabling actionable insights to be derived. However, the

process of utilizing Big Data solutions is still complex and
time consuming, mostly left in the hands of adept data
scientists and engineers [4]. Namely, in order to take
advantage of the benefits that Big Data solutions offer,
applications need to be (re)designed and (re)developed using
appropriate concepts and technologies, making them Big
Data-aware. Combined with the required computing
infrastructure, Big Data requires a significant commitment on
behalf of an organization, a group, or an individual.

To ease this transition, this paper sheds light on the tools
used to deliver a software stack required to perform Big Data
analysis. It does so by providing a systematic characterization
of the current tools in form of a tool catalog, describing tools’
capabilities and offering a functional comparison among
those. It then presents a network of deployment dependencies
among the described tools. By providing a concise description
of the components used to deliver Big Data analysis platforms,
we believe the paper can contribute towards enabling a
BigData-transformation, comparable to the cloud-
transformation, and support adoption of the available
technologies. In future work, we will leverage this information
to enable automated composition and deployment of the
available technologies into full-featured stacks to deliver
functional Big Data analysis platforms in the Cloud.

II. TECHNOLOGIES FOR BIG DATA CHALLENGES
The field of Big Data is focusing on the challenges that the

available data is imposing and aims to produce actionable
results based on the data. Inspired by the diversity of inputs
and the multiplicity of conceivable outcomes, the number of
technological options covering the Big Data space has
exploded. One way to navigate through this space is to follow
a trajectory of the developed technologies as they address
different Big Data challenges. Four such trajectories have
emerged and can be identified as recognizable trends: (1)
batch processing, (2) query processing, (3) low-latency query
processing, and (4) continuous processing. These trends
represent a grouping of technologies, embodied by tools with
similar purpose.

A. Batch Processing
Batch processing can be seen as the 'traditional' Big Data -

it revolves around the MapReduce paradigm [5] where an
input file is split into a number of smaller input files (the map

step), an algorithm is executed in parallel batch mode on each
of the input files across possibly many commodity computers,
and the outputs from each step are then combined into a single
output (the reduce step). The Apache Hadoop project
implements this paradigm; this open source implementation
has been adopted and modified to a various degree by a
number of derivative distributions, most notably Cloudera
CDH, Hortonworks Data Platform (HDP), MapR M series,
and Amazon Elastic MapReduce (EMR). Utilizing the Hadoop
framework requires an application to be developed using the
MapReduce paradigm and is typically recommended when the
input data is large (terabytes or larger) and diverse. Hadoop is
accompanied with its own file system, Hadoop Distributed
File System (HDFS) [6], which provides storage and data
redundancy on top of commodity hardware. HDFS is not a
POSIX compliant file system and any data being operated on
via Hadoop is required to be imported into HDFS. Upon
completion of the data analysis, the data is exported onto a
POSIX file system to be accessed by other tools.

B. Query Processing
MapReduce provides key features for addressing the

analysis and storage challenges of large volumes of data.
However, it requires programmatic access to the data. By
providing higher-level interfaces instead, access to data would
be democratized, allowing users not versed in programming
could access the data directly. As a first step in this direction,
a query language was devised and implemented as part of
Apache Pig [7], which translates high-level custom queries
into MapReduce jobs. Additionally, Apache Hive [8] was
developed that takes SQL-like queries and translates those into
MapReduce jobs. Unlike adopting the raw MapReduce
approach that requires significant adoption effort, these
solutions allow the existing investment in SQL to be leveraged
in the Big Data context.

The usage of NoSQL databases is another approach for
storing and querying Big Data. Instead of just storing the data
directly in HDFS and retrieving it via MapReduce jobs, the
data is stored in a database and retrieved via high-level queries
[9]. These databases provide non-relational, distributed, and
horizontally scalable storage solutions while hiding away the
details of replicas and table sharding otherwise necessary
when storing data at large scale. At the same time, they
provide direct access to the data in form of simpler, query-
based interfaces. NoSQL databases are roughly categorized
into the following four classes [10], [11]: document stores,
key-value stores, columnar, and graph databases. Tools such
as CouchDB (document), Riak (key-value), HBase (column),
and Neo4j (graph) provide this horizontal storage scalability
and implement the query interface yielding the Big Data stores
more accessible (see Han et al. [12] for a comprehensive
survey and http://nosql-database.org/ for an up-to-date list of
NoSQL databases).

C. Low-latency Query Processing
For certain use cases (e.g., interactive visual analytics), it

may be desirable to analyze data in near real-time (i.e., where
processing lasts from seconds up to a minute). Batch
processing is simply too slow for this type of data analysis and
modified query engines have been devised that allow the

computation time to be reduced up to 100 times [13]. The
improved responsiveness is achieved by performing
computation in memory [14] or by mapping SQL-like queries
onto columnar data layout through multi-level execution trees
without translating them into MapReduce jobs [15]. Although
conceptually similar, the low-latency querying is not intended
to replace batch and query processing within the Hadoop
framework but to complement it by being used to analyze the
outputs of a traditional Hadoop job or to prototype
computations. Tools such as Cloudera Impala [16] and Apache
Drill [17] implement these paradigms and are themselves
based on Google's internal Dremel system [15]. Apache Drill
also supports data sources other than HDFS, namely NoSQL
databases while Impala can query data stored in HBase.

D. Continuous Processing
Complementing the real-time capabilities of the low-

latency queries is continuous data processing, or processing
data streams. For applications such as online machine learning
or real-time applications there is a need to process unbound
streams of data and convert it into desired form. Projects such
as Apache Storm [18], Apache S4 [19], and Apache Samza
[20], or managed platform solutions such as AWS Kinesis
[21], address this challenge by providing programmable
interfaces for operating on countless tuples, or events, of
incoming data. These applications allow one to define
operations on tuples that transform incoming data as needed
(e.g., transform raw sensor data into a precursor for
emergency situations or stock market data into trading trends).
Individual transformations can be composed into a topology,
which becomes an execution workflow capable of addressing
arbitrarily complex transformations. It is worth noting that
unlike MapReduce jobs and queries that have a start and an
end, data streams processing runs continuously. Underlying
the data streams analysis layer is an effective data delivery
system. Projects such as Apache Kafka [22] or Apache Flume
[23] act as messengers that provide a robust and scalable
mechanism for the data to be published and consumed by a
data stream processing framework.

E. Crossing the Trends
In addition to the projects that function in the context of

any single trend, there are efforts that sit at a cross-section of
multiple trends. Apache Spark [24] is an example of such
project; it supports low-latency queries as well as processing
data streams. The project implements a distributed memory
abstraction, called Resilient Distributed Datasets, that allows
computations to be performed in memory on large clusters in a
fault-tolerant manner [14]. Similarly, the Stratosphere project
[25] builds on the work brought about by Spark by also
implementing an in-memory alternative to the traditional
MapReduce. Unlike Spark with its Resilient Distributed
Datasets implementation, Stratosphere implements a
programming model called Parallel Contracts as part of its
execution engine Nephele [26]. This is realized by extending
the MapReduce paradigm by adding additional data
processing operators, for example join, union, and iterate. In
combination with the map and reduce operators, Stratosphere
allows complex data-flow graphs to be composed as more
comprehensive data workflows.

TABLE I. FUNCTIONAL CLASSIFICATION OF EXISTING HIGHER-LEVEL BIG DATA APPLICATIONS AND LIBRARIES

Functional
classification Existing Big Data technologies Function / Description

High-level
programming
abstractions

Apache Pig, Apache DataFu, Cascading Lingual,
Cascalog

Provide higher-level interface, for example SQL, for
composing Hadoop data analysis jobs.

Shark (for Spark), Trident (for Storm), Meteor,
Sopremo and PonIC (for Stratosphere)

Facilitate easier and more efficient programming of complex
data processing and analysis tasks in batch, iterative, and real-

time manner.

Big Data-aware
machine-learning
toolkits

Apache Mahout (for Hadoop), MLlib (for Spark),
Cascading Pattern, GraphLab framework, Yahoo

SAMOA

Allow machine learning algorithms to be more easily utilized in
the context of the MapReduce paradigm, individually tailored

for different types of input data and/or processing type.

Graph processing
systems

Apache Giraph (for Hadoop), Bagel (for Spark),
Stratosphere Spargel, GraphX (for Spark),

Pegasus, Aurelius Faunus, GraphLab PowerGraph

A range of tools covering generic graph based computations,
complex networks, and interactive graph computations.

Stinger, Neo4j, Aurelius Titan Storage facilities for graph-based tools and data structures.

Data ingestion
and scheduling
systems

Apache Sqoop, Apache Chukwa, Apache Flume Act as orchestrator frameworks by facilitating bulk data
transfers between Hadoop and structured data stores, log

collection, or data streams into central data stores.

Apache Falcon, Apache Oozie Handle data processing and management and workflow
scheduling, including data discovery, process orchestration and

lifecycle management.

Systems
management
solutions

Apache Hue Web user interface providing browsers for HDFS files,
MapReduce jobs, and a range of higher-level applications (e.g.,

HBase, Hive, Pig, Sqoop).

Apache Ambari, Apache Helix, Apache Whirr,
Cask Coopr

Cluster managers used for provisioning, managing, and
monitoring applications, services, and cloud resources.

Benchmarking
and testing
applications

Berkeley Big Data benchmark, BigBench,
BigDataBench,, Big Data Top 100, Apache Bigtop

Used for statistical workload collection and generation or
testing Hadoop-related projects.

Tools described above that perform data processing require
and rely on resources provisioned and managed by cluster
resource managers, such as Apache YARN [27] or Apache
Mesos [28]. These resource managers are able to dynamically
allocate necessary resources for a specific tool via resource
isolation, which allows for Hadoop, MPI, and other
environments to readily utilize the same infrastructure. This
increases infrastructure flexibility because the same set of
physical resources is easily repurposed based on need.

F. Domain-specific Applications and Libraries
The described trends identify a layer of data processing

infrastructure. Alone, this layer acts as a set of processing
engines suitable for handling different types of stored data. On
top of these engines are domain-specific libraries and
applications that provide higher-level interfaces for interacting
with the engines. This layered structure is visualized in Fig. 1.
while Table 1 provides a reasonably comprehensive coverage
of the currently available applications and libraries, grouped
by their function and intended here as a user reference.

III. STACK DEPLOYMENT DEPENDENCY GRAPH
To make them useful for complex analyses, the available

technologies often need to be assembled into composite
software stacks. The schematic provided in Fig. 1. depicts an
abstract stack, mapping the technologies discussed thus far
onto the appropriate stack layers. The Cloud offers an
opportunistic platform for quickly and flexibly composing the
available technologies into the required stack with exact tools.
Doing so, however, requires detailed understanding of the
tools' functions and deployment requirements.

The previous section provides descriptions of the tools'
function while this section provides insight regarding the tools'
deployment requirements. Discovering tool deployment
requirements is, unfortunately, not a clear-cut task. Fig. 2.
demonstrates the complexity of this effort by depicting a tool
deployment interdependency graph for Big Data tools. This
graph has been constructed by manually examining the
available Big Data tools and technologies and identifying
explicit links between them. Constructing such a graph for an
even more comprehensive set of tools in an automatic or semi-
automatic manner would itself be a Big Data analysis
problem.

The interdependency graph represents an ordering
mechanism among the tools when deploying them. For
example, if one wants to use Pig Latin language, they would
need Pig runtime environment, which would in turn require
Hadoop, which would in turn require either YARN and
consequently HDFS or HBase and HDFS. Along with the
absolute requirements on dependent tools, some tools also
have optional dependencies (indicated by faint arrows).
Optional dependencies either enhance or modify functionality
of the tool to make it suitable for more tasks. Pig can, for
example, utilize Oozie as a workflow scheduling engine to
enhance execution of workflows run via Pig.

In addition to providing an effective overview of the
current Big Data tools' dependencies, the network provides

insights into the correlation of the available tools. Inspecting
the network, several locus points are visible (indicated by the
size of a node). The size of the nodes is proportional to the
number of incoming dependencies a node (i.e., tool) has and
thus the largest nodes correspond to a set of core tools
required most often for functional Big Data stacks. Most
notably, this is HDFS and cluster resource managers (e.g.,
YARN) that act as common denominators in the stack. Color-
based locus points (e.g., Hadoop, Spark, Stratosphere)
represent alternative technologies with comparable
functionality. The choice of technology in this case is based on
usage and is rooted in the type of input data being processed.
The leaf nodes in the network represent unique or niche tools
that fill a specific roll.

Also visible from the graph is that the majority of tools
favor YARN as a central resource manager. Building on top of
YARN are either tools that provide user-facing functions (i.e.,
leaf nodes) or a class of tools that act as higher-level interfaces
to the resources for other tools (e.g., Spark, Hadoop). Tools

Fig. 1. The Big Data tools and technologies graph with the links indicating functional deployment interdependencies. Dark lines imply an absolute
requirement while faint lines imply an optional requirement. Whether to fill the optional requirement is influenced by a desired functionality of the final
stack so if the functionality is desired, the dependency needs to be filled. Colors of nodes indicate functional similarity of the tools and the size of the
nodes indicate the degree of dependence other tools have on the given tool.

Batch
processing

Query
processing

Low-
latency

processing

Continuous
processing

Benchmarks

Machine
learning and

graph
toolkits System

managers

Schedulers

Programming
abstractions

(Re)Structured
data

Cl
ou

d
re

so
ur

ce
s

Pr
oc

es
sin

g
en

gi
ne

s
Ap

pl
ica

tio
ns

Da
ta

 a
na

lys
is

Silos DBMS Systems Streams

Cluster resource management and HDFS

Fig. 1. A layered view of an abstract Big Data analysis stack. Shaded areas
indicate functional overlap between the processing trends.

linking to those tools form groups that cover a range of
domains (e.g., Spark-based tools covering a number of
domains and are all linked to Spark). This is in contrast to
thinking that those tools would focus only on a single problem
domain. Hence we used color throughout the graph to indicate
notion of similar problem domain for the tools. For example,
Giraph and GraphX are alternative tools for solving similar
problems.

IV. CONCLUSIONS
Instigated only a few years ago by a novel algorithm

parallelization model, MapReduce, and an open source
implementation of the same, Hadoop, the Big Data field was
born. The field has quickly evolved into one of the major
movements driving today’s research and economy. Fueled by
the many-V's of data, the Big Data field has exploded with a
myriad of options ranging from technical solutions,
commercial offerings, to conceptual best practices. Trying to
adopt or leverage the field of Big Data feels like walking
through a minefield of terms, unclear or even conflicting
statements, and implicitly defined requirements.
Simultaneously, the influx of data is mandating use of
available technologies in a wide spectrum of analyses: from
financial stock exchanges to monitoring consumer sentiment,
to analyzing state of running systems.

In response to this turbulent state of the Big Data
landscape, in this paper, we summarized the current
technological state in the space of Big Data. We have done
this by compiling a catalog of the most recognized and notable
Big Data tools and technologies and then grouped them based
on their function. Next, based on this classification of the real-
world state, we have devised a graph of their deployment
interdependencies. This graph allows different layers of the
Big Data stack to be defined, which in turn enables
dependencies between individual tools to be identified.
Having the ability to identify the layers and the dependencies
between individual tools demystifies much of the Big Data
landscape and enables functional systems composed of
multiple tools to be more easily built.

We believe that the focus of future work in the space of
Big Data should be on democratizing access to the available
tools by offering functional solutions rather than independent
technologies. This will foster development of tuned workflows
and pipelines, and thus tangible value, instead of mere
capacity. As part of ongoing work (e.g., [4]), we will be
leveraging the information available in the devised graph to
enable custom and autonomous deployment of Big Data stacks
on Cloud resources.

ACKNOWLEDGMENT	
This work was supported in part by FP7-PEOPLE

programme grant 277144 (AIS-DC).

REFERENCES	
[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R.

Buyya, “Big data computing and clouds: Trends and future directions,”
J. Parallel Distrib. Comput., Aug. 2014.

[2] S. Pandey and S. Nepal, “Cloud Computing and Scientific Applications
— Big Data, Scalable Analytics, and Beyond,” Futur. Gener. Comput.
Syst., vol. 29, no. 7, pp. 1774–1776, 2013.

[3] D. Talia, “Clouds for Scalable Big Data Analytics,” Computer (Long.
Beach. Calif)., vol. 46, no. 5, pp. 98–101, May 2013.

[4] L. Forer, T. Lipic, S. Schonherr, H. Weisensteiner, D. Davidovic, F.
Kronenberg, and E. Afgan, “Delivering bioinformatics MapReduce
applications in the cloud,” in 2014 37th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2014, pp. 373–377.

[5] J. Dean and S. Ghemawat, “MapReduce  : Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 1–13, 2008.

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST2010, 2010.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-so-foreign Language for Data Processing,” in Proceedings
of the 2008 ACM SIGMOD International Conference on Management of
Data, 2008, pp. 1099–1110.

[8] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Antony, H. Liu, and R. Murthy, “Hive - a petabyte scale data warehouse
using Hadoop,” in 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), 2010, pp. 996–1005.

[9] C. Fay, D. Jeffrey, G. Sanjay, C. H. Wilson, A. W. Deborah, B. Mike, C.
Tushar, F. Andrew, and E. G. Robert, “Bigtable: A Distributed Storage
System for Structured Data,” OSDI, 2006.

[10] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD
Record, vol. 39, no. 4. p. 12, 2011.

[11] S. Weber and C. Strauch, “NoSQL Databases,” Lect. Notes Stuttgart
Media, pp. 1–8, 2010.

[12] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in
Proceedings - 2011 6th International Conference on Pervasive
Computing and Applications, ICPCA 2011, 2011, pp. 363–366.

[13] S. Shenker, I. Stoica, M. Zaharia, and R. Xin, “Shark: SQL and Rich
Analytics at Scale,” Proc. 2013 ACM SIGMOD Int. Conf. Manag. Data,
pp. 13–24, 2013.

[14] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
NSDI’12 Proc. 9th USENIX Conf. Networked Syst. Des. Implement., pp.
2–2, 2012.

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel  : Interactive Analysis of Web-Scale
Datasets,” Proc. VLDB Endow. 3, vol. 1–2, pp. 330–339, 2010.

[16] “Cloudera Impala.” [Online]. Available:
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html.

[17] M. Hausenblas and J. Nadeau, “Apache Drill: Interactive Ad-Hoc
Analysis at Scale,” Jun. 2013.

[18] “Storm: Distributed and fault-tolerant realtime computation.” [Online].
Available: http://storm.incubator.apache.org/.

[19] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” 2010 IEEE Int. Conf. Data Min. Work.,
pp. 170–177, 2010.

[20] “Apache Samza.” [Online]. Available:
http://samza.incubator.apache.org/.

[21] “Amazon Kinesis.” [Online]. Available: http://aws.amazon.com/kinesis/.
[22] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging

system for log processing,” Proc. NetDB, 2011.
[23] “Apache Flume.” [Online]. Available: http://flume.apache.org/.
[24] “Spark.” [Online]. Available: https://spark.incubator.apache.org/.
[25] “Stratosphere Project.” [Online]. Available: http://stratosphere.eu/.
[26] A. Alexandrov, M. Heimel, V. Markl, D. Battré, F. Hueske, E. Nijkamp,

S. Ewen, O. Kao, and D. Warneke, “Massively parallel data analysis
with PACTs on Nephele,” Proc. VLDB Endow., vol. 3, no. 1–2, pp.
1625–1628, Sep. 2010.

[27] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwali, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O.
O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN  : Yet Another Resource Negotiator,” in ACM Symposium on
Cloud Computing, 2013, p. 16.

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R.
Katz, S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained
resource sharing in the data center,” Proc. 8th USENIX Conf. Networked
Syst. Des. Implement., p. 22, 2011.

