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Abstract— With its ability to ingest, process, and decipher an 
abundance of incoming data, the Big Data is considered by many 
a cornerstone of future research and development. However, the 
large number of available tools and the overlap between those are 
impeding their technological potential. In this paper, we present 
a systematic grouping of the available tools and present a 
network of dependencies among those with the aim of composing 
individual tools into functional software stacks required to 
perform Big Data analyses. 
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I.  INTRODUCTION 
With the multi-V model [1] used to categorize Big Data, 

the task of effectively addressing Big Data analysis needs to 
balance a combination of intricate issues, including data 
curation, management and privacy, as well as resource 
provisioning and management. Further complicating the 
situation is that each Big Data analysis project requires a 
unique yet composite environment driven by the project's 
goals. One increasingly complicated facet of the environment 
is the required software stack - deploying the appropriate stack 
is progressively becoming a technologically challenging 
undertaking. 

Simultaneous to the development of the Big Data software 
stack challenge, the availability of Cloud computing platforms 
has spread beyond specialized commercial offerings into 
widespread installations at universities, institutes, and the 
industry [2]. This adoption was fueled by the demonstrated 
increase in available infrastructure flexibility, functionality, 
and service scalability. That alone, however, was not sufficient 
to sustain the wide-adoption of the Cloud; in addition, a well-
defined programmatic access (i.e., API) and clear term-of-
service (i.e., pricing/allocation) were a key that helped 
transform otherwise abstract technical terms (e.g., virtual 
machines, volumes, objects) into accessible functionality (e.g., 
scalable web applications), enabling the cloud-transformation.  

Conceptually, the Cloud provides many features suitable 
for deploying Big Data stacks and has been demonstrated as a 
viable platform for deploying certain Big Data solutions [3]. 
The Cloud allows information integration from Big Data 
sources by offering capacity to store and process the data, 
enabling actionable insights to be derived. However, the 

process of utilizing Big Data solutions is still complex and 
time consuming, mostly left in the hands of adept data 
scientists and engineers [4]. Namely, in order to take 
advantage of the benefits that Big Data solutions offer, 
applications need to be (re)designed and (re)developed using 
appropriate concepts and technologies, making them Big 
Data-aware. Combined with the required computing 
infrastructure, Big Data requires a significant commitment on 
behalf of an organization, a group, or an individual. 

To ease this transition, this paper sheds light on the tools 
used to deliver a software stack required to perform Big Data 
analysis. It does so by providing a systematic characterization 
of the current tools in form of a tool catalog, describing tools’ 
capabilities and offering a functional comparison among 
those. It then presents a network of deployment dependencies 
among the described tools. By providing a concise description 
of the components used to deliver Big Data analysis platforms, 
we believe the paper can contribute towards enabling a 
BigData-transformation, comparable to the cloud-
transformation, and support adoption of the available 
technologies. In future work, we will leverage this information 
to enable automated composition and deployment of the 
available technologies into full-featured stacks to deliver 
functional Big Data analysis platforms in the Cloud. 

II. TECHNOLOGIES FOR BIG DATA CHALLENGES 
The field of Big Data is focusing on the challenges that the 

available data is imposing and aims to produce actionable 
results based on the data. Inspired by the diversity of inputs 
and the multiplicity of conceivable outcomes, the number of 
technological options covering the Big Data space has 
exploded. One way to navigate through this space is to follow 
a trajectory of the developed technologies as they address 
different Big Data challenges. Four such trajectories have 
emerged and can be identified as recognizable trends: (1) 
batch processing, (2) query processing, (3) low-latency query 
processing, and (4) continuous processing. These trends 
represent a grouping of technologies, embodied by tools with 
similar purpose. 

A. Batch Processing 
Batch processing can be seen as the 'traditional' Big Data - 

it revolves around the MapReduce paradigm [5] where an 
input file is split into a number of smaller input files (the map 



step), an algorithm is executed in parallel batch mode on each 
of the input files across possibly many commodity computers, 
and the outputs from each step are then combined into a single 
output (the reduce step). The Apache Hadoop project 
implements this paradigm; this open source implementation 
has been adopted and modified to a various degree by a 
number of derivative distributions, most notably Cloudera 
CDH, Hortonworks Data Platform (HDP), MapR M series, 
and Amazon Elastic MapReduce (EMR). Utilizing the Hadoop 
framework requires an application to be developed using the 
MapReduce paradigm and is typically recommended when the 
input data is large (terabytes or larger) and diverse. Hadoop is 
accompanied with its own file system, Hadoop Distributed 
File System (HDFS) [6], which provides storage and data 
redundancy on top of commodity hardware. HDFS is not a 
POSIX compliant file system and any data being operated on 
via Hadoop is required to be imported into HDFS. Upon 
completion of the data analysis, the data is exported onto a 
POSIX file system to be accessed by other tools. 

B. Query Processing 
MapReduce provides key features for addressing the 

analysis and storage challenges of large volumes of data. 
However, it requires programmatic access to the data. By 
providing higher-level interfaces instead, access to data would 
be democratized, allowing users not versed in programming 
could access the data directly. As a first step in this direction, 
a query language was devised and implemented as part of 
Apache Pig [7], which translates high-level custom queries 
into MapReduce jobs. Additionally, Apache Hive [8] was 
developed that takes SQL-like queries and translates those into 
MapReduce jobs. Unlike adopting the raw MapReduce 
approach that requires significant adoption effort, these 
solutions allow the existing investment in SQL to be leveraged 
in the Big Data context.  

The usage of NoSQL databases is another approach for 
storing and querying Big Data. Instead of just storing the data 
directly in HDFS and retrieving it via MapReduce jobs, the 
data is stored in a database and retrieved via high-level queries 
[9]. These databases provide non-relational, distributed, and 
horizontally scalable storage solutions while hiding away the 
details of replicas and table sharding otherwise necessary 
when storing data at large scale. At the same time, they 
provide direct access to the data in form of simpler, query-
based interfaces. NoSQL databases are roughly categorized 
into the following four classes [10], [11]: document stores, 
key-value stores, columnar, and graph databases. Tools such 
as CouchDB (document), Riak (key-value), HBase (column), 
and Neo4j (graph) provide this horizontal storage scalability 
and implement the query interface yielding the Big Data stores 
more accessible (see Han et al. [12] for a comprehensive 
survey and http://nosql-database.org/ for an up-to-date list of 
NoSQL databases). 

C. Low-latency Query Processing 
For certain use cases (e.g., interactive visual analytics), it 

may be desirable to analyze data in near real-time (i.e., where 
processing lasts from seconds up to a minute). Batch 
processing is simply too slow for this type of data analysis and 
modified query engines have been devised that allow the 

computation time to be reduced up to 100 times [13]. The 
improved responsiveness is achieved by performing 
computation in memory [14] or by mapping SQL-like queries 
onto columnar data layout through multi-level execution trees 
without translating them into MapReduce jobs [15]. Although 
conceptually similar, the low-latency querying is not intended 
to replace batch and query processing within the Hadoop 
framework but to complement it by being used to analyze the 
outputs of a traditional Hadoop job or to prototype 
computations. Tools such as Cloudera Impala [16] and Apache 
Drill [17] implement these paradigms and are themselves  
based on Google's internal Dremel system [15]. Apache Drill 
also supports data sources other than HDFS, namely NoSQL 
databases while Impala can query data stored in HBase. 

D. Continuous Processing 
Complementing the real-time capabilities of the low-

latency queries is continuous data processing, or processing 
data streams. For applications such as online machine learning 
or real-time applications there is a need to process unbound 
streams of data and convert it into desired form. Projects such 
as Apache Storm [18], Apache S4 [19], and Apache Samza 
[20], or managed platform solutions such as AWS Kinesis 
[21], address this challenge by providing programmable 
interfaces for operating on countless tuples, or events, of 
incoming data. These applications allow one to define 
operations on tuples that transform incoming data as needed 
(e.g., transform raw sensor data into a precursor for 
emergency situations or stock market data into trading trends). 
Individual transformations can be composed into a topology, 
which becomes an execution workflow capable of addressing 
arbitrarily complex transformations. It is worth noting that 
unlike MapReduce jobs and queries that have a start and an 
end, data streams processing runs continuously. Underlying 
the data streams analysis layer is an effective data delivery 
system. Projects such as Apache Kafka [22] or Apache Flume 
[23] act as messengers that provide a robust and scalable 
mechanism for the data to be published and consumed by a 
data stream processing framework. 

E. Crossing the Trends 
In addition to the projects that function in the context of 

any single trend, there are efforts that sit at a cross-section of 
multiple trends. Apache Spark [24] is an example of such 
project; it supports low-latency queries as well as processing 
data streams. The project implements a distributed memory 
abstraction, called Resilient Distributed Datasets, that allows 
computations to be performed in memory on large clusters in a 
fault-tolerant manner [14]. Similarly, the Stratosphere project 
[25] builds on the work brought about by Spark by also 
implementing an in-memory alternative to the traditional 
MapReduce. Unlike Spark with its Resilient Distributed 
Datasets implementation, Stratosphere implements a 
programming model called Parallel Contracts as part of its 
execution engine Nephele [26]. This is realized by extending 
the MapReduce paradigm by adding additional data 
processing operators, for example join, union, and iterate. In 
combination with the map and reduce operators, Stratosphere 
allows complex data-flow graphs to be composed as more 
comprehensive data workflows.  



TABLE I. FUNCTIONAL CLASSIFICATION OF EXISTING HIGHER-LEVEL BIG DATA APPLICATIONS AND LIBRARIES 

Functional 
classification Existing Big Data technologies Function / Description 

High-level 
programming 
abstractions 

Apache Pig, Apache DataFu, Cascading Lingual, 
Cascalog 

Provide higher-level interface, for example SQL, for 
composing Hadoop data analysis jobs. 

Shark (for Spark), Trident (for Storm), Meteor, 
Sopremo and PonIC (for Stratosphere) 

Facilitate easier and more efficient programming of complex 
data processing and analysis tasks in batch, iterative, and real-

time manner. 

Big Data-aware 
machine-learning 
toolkits 

Apache Mahout (for Hadoop), MLlib (for Spark), 
Cascading Pattern, GraphLab framework, Yahoo 

SAMOA 

Allow machine learning algorithms to be more easily utilized in 
the context of the MapReduce paradigm, individually tailored 

for different types of input data and/or processing type. 

Graph processing 
systems 

Apache Giraph (for Hadoop), Bagel (for Spark), 
Stratosphere Spargel, GraphX (for Spark), 

Pegasus, Aurelius Faunus, GraphLab PowerGraph 

A range of tools covering generic graph based computations, 
complex networks, and interactive graph computations. 

Stinger, Neo4j, Aurelius Titan Storage facilities for graph-based tools and data structures. 

Data ingestion 
and scheduling 
systems 

Apache Sqoop, Apache Chukwa, Apache Flume Act as orchestrator frameworks by facilitating bulk data 
transfers between Hadoop and structured data stores, log 

collection, or data streams into central data stores.  

Apache Falcon, Apache Oozie Handle data processing and management and workflow 
scheduling, including data discovery, process orchestration and 

lifecycle management. 

Systems 
management 
solutions 

Apache Hue Web user interface providing browsers for HDFS files, 
MapReduce jobs, and a range of higher-level applications (e.g., 

HBase, Hive, Pig, Sqoop). 

Apache Ambari, Apache Helix, Apache Whirr, 
Cask Coopr 

Cluster managers used for provisioning, managing, and 
monitoring applications, services, and cloud resources. 

Benchmarking 
and testing 
applications 

Berkeley Big Data benchmark, BigBench, 
BigDataBench,, Big Data Top 100, Apache Bigtop 

Used for statistical workload collection and generation or 
testing Hadoop-related projects. 

 

Tools described above that perform data processing require 
and rely on resources provisioned and managed by cluster 
resource managers, such as Apache YARN [27] or Apache 
Mesos [28]. These resource managers are able to dynamically 
allocate necessary resources for a specific tool via resource 
isolation, which allows for Hadoop, MPI, and other 
environments to readily utilize the same infrastructure. This 
increases infrastructure flexibility because the same set of 
physical resources is easily repurposed based on need. 

F. Domain-specific Applications and Libraries 
The described trends identify a layer of data processing 

infrastructure. Alone, this layer acts as a set of processing 
engines suitable for handling different types of stored data. On 
top of these engines are domain-specific libraries and 
applications that provide higher-level interfaces for interacting 
with the engines. This layered structure is visualized in Fig. 1. 
while Table 1 provides a reasonably comprehensive coverage 
of the currently available applications and libraries, grouped 
by their function and intended here as a user reference.  



III. STACK DEPLOYMENT DEPENDENCY GRAPH 
To make them useful for complex analyses, the available 

technologies often need to be assembled into composite 
software stacks. The schematic provided in Fig. 1. depicts an 
abstract stack, mapping the technologies discussed thus far 
onto the appropriate stack layers. The Cloud offers an 
opportunistic platform for quickly and flexibly composing the 
available technologies into the required stack with exact tools. 
Doing so, however, requires detailed understanding of the 
tools' functions and deployment requirements. 

The previous section provides descriptions of the tools' 
function while this section provides insight regarding the tools' 
deployment requirements. Discovering tool deployment 
requirements is, unfortunately, not a clear-cut task. Fig. 2. 
demonstrates the complexity of this effort by depicting a tool 
deployment interdependency graph for Big Data tools. This 
graph has been constructed by manually examining the 
available Big Data tools and technologies and identifying 
explicit links between them. Constructing such a graph for an 
even more comprehensive set of tools in an automatic or semi-
automatic manner would itself be a Big Data analysis 
problem. 

The interdependency graph represents an ordering 
mechanism among the tools when deploying them. For 
example, if one wants to use Pig Latin language, they would 
need Pig runtime environment, which would in turn require 
Hadoop, which would in turn require either YARN and 
consequently HDFS or HBase and HDFS. Along with the 
absolute requirements on dependent tools, some tools also 
have optional dependencies (indicated by faint arrows). 
Optional dependencies either enhance or modify functionality 
of the tool to make it suitable for more tasks. Pig can, for 
example, utilize Oozie as a workflow scheduling engine to 
enhance execution of workflows run via Pig. 

In addition to providing an effective overview of the 
current Big Data tools' dependencies, the network provides 

insights into the correlation of the available tools. Inspecting 
the network, several locus points are visible (indicated by the 
size of a node). The size of the nodes is proportional to the 
number of incoming dependencies a node (i.e., tool) has and 
thus the largest nodes correspond to a set of core tools 
required most often for functional Big Data stacks. Most  
notably, this is HDFS and cluster resource managers (e.g., 
YARN) that act as common denominators in the stack. Color-
based locus points (e.g., Hadoop, Spark, Stratosphere) 
represent alternative technologies with comparable 
functionality. The choice of technology in this case is based on 
usage and is rooted in the type of input data being processed. 
The leaf nodes in the network represent unique or niche tools 
that fill a specific roll. 

Also visible from the graph is that the majority of tools 
favor YARN as a central resource manager. Building on top of 
YARN are either tools that provide user-facing functions (i.e., 
leaf nodes) or a class of tools that act as higher-level interfaces 
to the resources for other tools (e.g., Spark, Hadoop). Tools 

Fig. 1. The Big Data tools and technologies graph with the links indicating functional deployment interdependencies. Dark lines imply an absolute 
requirement while faint lines imply an optional requirement. Whether to fill the optional requirement is influenced by a desired functionality of the final 
stack so if the functionality is desired, the dependency needs to be filled. Colors of nodes indicate functional similarity of the tools and the size of the 
nodes indicate the degree of dependence other tools have on the given tool. 
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Fig.  1. A layered view of an abstract Big Data analysis stack. Shaded areas 
indicate functional overlap between the processing trends. 



linking to those tools form groups that cover a range of 
domains (e.g., Spark-based tools covering a number of 
domains and are all linked to Spark). This is in contrast to 
thinking that those tools would focus only on a single problem 
domain. Hence we used color throughout the graph to indicate 
notion of similar problem domain for the tools. For example, 
Giraph and GraphX are alternative tools for solving similar 
problems. 

IV. CONCLUSIONS 
Instigated only a few years ago by a novel algorithm 

parallelization model, MapReduce, and an open source 
implementation of the same, Hadoop, the Big Data field was 
born. The field has quickly evolved into one of the major 
movements driving today’s research and economy. Fueled by 
the many-V's of data, the Big Data field has exploded with a 
myriad of options ranging from technical solutions, 
commercial offerings, to conceptual best practices. Trying to 
adopt or leverage the field of Big Data feels like walking 
through a minefield of terms, unclear or even conflicting 
statements, and implicitly defined requirements. 
Simultaneously, the influx of data is mandating use of 
available technologies in a wide spectrum of analyses: from 
financial stock exchanges to monitoring consumer sentiment, 
to analyzing state of running systems. 

In response to this turbulent state of the Big Data 
landscape, in this paper, we summarized the current 
technological state in the space of Big Data. We have done 
this by compiling a catalog of the most recognized and notable 
Big Data tools and technologies and then grouped them based 
on their function. Next, based on this classification of the real-
world state, we have devised a graph of their deployment 
interdependencies. This graph allows different layers of the 
Big Data stack to be defined, which in turn enables 
dependencies between individual tools to be identified. 
Having the ability to identify the layers and the dependencies 
between individual tools demystifies much of the Big Data 
landscape and enables functional systems composed of 
multiple tools to be more easily built. 

We believe that the focus of future work in the space of 
Big Data should be on democratizing access to the available 
tools by offering functional solutions rather than independent 
technologies. This will foster development of tuned workflows 
and pipelines, and thus tangible value, instead of mere 
capacity. As part of ongoing work (e.g., [4]), we will be 
leveraging the information available in the devised graph to 
enable custom and autonomous deployment of Big Data stacks 
on Cloud resources. 

ACKNOWLEDGMENT	  
This work was supported in part by FP7-PEOPLE 

programme grant 277144 (AIS-DC). 

REFERENCES	  
[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R. 

Buyya, “Big data computing and clouds: Trends and future directions,” 
J. Parallel Distrib. Comput., Aug. 2014. 

[2] S. Pandey and S. Nepal, “Cloud Computing and Scientific Applications 
— Big Data, Scalable Analytics, and Beyond,” Futur. Gener. Comput. 
Syst., vol. 29, no. 7, pp. 1774–1776, 2013. 

[3] D. Talia, “Clouds for Scalable Big Data Analytics,” Computer (Long. 
Beach. Calif)., vol. 46, no. 5, pp. 98–101, May 2013. 

[4] L. Forer, T. Lipic, S. Schonherr, H. Weisensteiner, D. Davidovic, F. 
Kronenberg, and E. Afgan, “Delivering bioinformatics MapReduce 
applications in the cloud,” in 2014 37th International Convention on 
Information and Communication Technology, Electronics and 
Microelectronics (MIPRO), 2014, pp. 373–377. 

[5] J. Dean and S. Ghemawat, “MapReduce  : Simplified Data Processing on 
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 1–13, 2008. 

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop 
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage 
Systems and Technologies, MSST2010, 2010. 

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig 
Latin: A Not-so-foreign Language for Data Processing,” in Proceedings 
of the 2008 ACM SIGMOD International Conference on Management of 
Data, 2008, pp. 1099–1110. 

[8] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. 
Antony, H. Liu, and R. Murthy, “Hive - a petabyte scale data warehouse 
using Hadoop,” in 2010 IEEE 26th International Conference on Data 
Engineering (ICDE 2010), 2010, pp. 996–1005. 

[9] C. Fay, D. Jeffrey, G. Sanjay, C. H. Wilson, A. W. Deborah, B. Mike, C. 
Tushar, F. Andrew, and E. G. Robert, “Bigtable: A Distributed Storage 
System for Structured Data,” OSDI, 2006. 

[10] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD 
Record, vol. 39, no. 4. p. 12, 2011. 

[11] S. Weber and C. Strauch, “NoSQL Databases,” Lect. Notes Stuttgart 
Media, pp. 1–8, 2010. 

[12] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in 
Proceedings - 2011 6th International Conference on Pervasive 
Computing and Applications, ICPCA 2011, 2011, pp. 363–366. 

[13] S. Shenker, I. Stoica, M. Zaharia, and R. Xin, “Shark: SQL and Rich 
Analytics at Scale,” Proc. 2013 ACM SIGMOD Int. Conf. Manag. Data, 
pp. 13–24, 2013. 

[14] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient distributed 
datasets: A fault-tolerant abstraction for in-memory cluster computing,” 
NSDI’12 Proc. 9th USENIX Conf. Networked Syst. Des. Implement., pp. 
2–2, 2012. 

[15] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, 
and T. Vassilakis, “Dremel  : Interactive Analysis of Web-Scale 
Datasets,” Proc. VLDB Endow. 3, vol. 1–2, pp. 330–339, 2010. 

[16] “Cloudera Impala.” [Online]. Available: 
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html. 

[17] M. Hausenblas and J. Nadeau, “Apache Drill: Interactive Ad-Hoc 
Analysis at Scale,” Jun. 2013. 

[18] “Storm: Distributed and fault-tolerant realtime computation.” [Online]. 
Available: http://storm.incubator.apache.org/. 

[19] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed 
Stream Computing Platform,” 2010 IEEE Int. Conf. Data Min. Work., 
pp. 170–177, 2010. 

[20] “Apache Samza.” [Online]. Available: 
http://samza.incubator.apache.org/. 

[21] “Amazon Kinesis.” [Online]. Available: http://aws.amazon.com/kinesis/. 
[22] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging 

system for log processing,” Proc. NetDB, 2011. 
[23] “Apache Flume.” [Online]. Available: http://flume.apache.org/. 
[24] “Spark.” [Online]. Available: https://spark.incubator.apache.org/. 
[25] “Stratosphere Project.” [Online]. Available: http://stratosphere.eu/. 
[26] A. Alexandrov, M. Heimel, V. Markl, D. Battré, F. Hueske, E. Nijkamp, 

S. Ewen, O. Kao, and D. Warneke, “Massively parallel data analysis 
with PACTs on Nephele,” Proc. VLDB Endow., vol. 3, no. 1–2, pp. 
1625–1628, Sep. 2010. 

[27] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwali, M. Konar, R. 
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. 
O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop 
YARN  : Yet Another Resource Negotiator,” in ACM Symposium on 
Cloud Computing, 2013, p. 16. 

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. 
Katz, S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained 
resource sharing in the data center,” Proc. 8th USENIX Conf. Networked 
Syst. Des. Implement., p. 22, 2011.  


