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In 2001. Sir Michael Atiyah, inspired by physics (Berry—Robbins problem related to spin statistics theorem of quantum mechanics) associated a remarkable
determinant to any n distinct points in Euclidean 3—space, via elementary construction.

More generally, let (21, 22, ..., 2,) be n distinct points inside the ball of radius R in Euclidean 3-space. Let the oriented line z;x; meet the boundary 2-sphere in
a point u;; regarded as a point of the complex Riemann sphere (CU{oo}). Form a complex polynomial p; of degree n — 1 whose roots are u;; this is determined
up to a scalar factor.

The Atiyah’s conjecture C reads as follows

Conjecture (). For all (z1, s, ..., z,) the n polynomials p; are linearly independent.

Conjecture C; < nonvanishing of the determinant D of the matrix of coefficients of the polynomials p;.
, &) which is SL(2, C)—invariant (using the ball model or

There is a way to normalize this determinant so that D becomes a continuous function of (1, xs, ...
upper half space model of hyperbolic 3—space).

The more refined conjectures of Atiyah and Sutcliffe C5 and Cj5 relate D to products of 2 and n — 1-subsequences of points zq, xs, . . ., T,.

The conjecture C is proved for n = 3,4 and for general n only for some special configurations (M.F. Atiyah, M. Eastwood and P. Norbury, D. Dokovi¢). In
a lengthy preprint [5] we have verified the conjectures Cy and C5 for parallelograms, cyclic quadrilaterals and some infinite families of tetrahedra. Also we
proved Cy for Dokovié’s dihedral configurations. In [8] a proof of Cy is given for convex planar quadrilaterals. We have also proposed a strengthening of the
conjecture C3 for configurations of four points (Four Points Conjectures, stronger then some new conjectures in [8]) and a number of conjectures for almost
collinear configurations, and proved them for n up to 10.

In [3] Eastwood and Norbury found an intrinsic formula for the four point Atiyah determinant (a polynomial of sixth degree in six distances having several
hundreds of terms) and gave a proof of Cj.

The present author found a new geometric fact for arbitrary tetrahedra which leads to a proof of C5 and Cf for arbitrary four points in the euclidean three
space (and also a proof of stronger Four Points Conjecture of Svrtan and Urbiha). Later we obtain another intrinsic polynomial formula a la Eastwood and
Norbury for four points (and for five ”planar” points — having one hundred thousand terms) and have an existence proof of a polynomial formula for all planar
configurations what was conjectured in [3].

This approach produces also trigonometric formulas for four points Atiyah determinants (not involving so called Crelle angles which are used in [8]). Some work
is done in the hyperbolic case by finding a hyperbolic analogue of the Eastwood and Norbury formula (in the planar case- spacial case is quite a challenge!).
We also introduced Atiyah type energies associated to any graph and can prove that Conjecture C} is true , for arbitrary n, for some of these energies (work in
progress).

3 points inside circle

e Three points 1, o, x3 inside disk (|z| < R)

e Three point-pairs on circle

L& (U12)(U13)

L) (Uzl)(U23)

o (Usl)(usz)

e Point—pair w19, u13 define quadratic with these roots
b1 = (Z - U12)(Z - U13)

e 3 point—pairs — 3 quadratics

o PPy, Py — {p1,p2,p3}

e Theorem (Atiyah 2001.) For any triple x1, xs, z3 of
distinct points inside the disk the three quadratics
{p1,p2,p3} are linearly independent.

e Remark: Atiyah’s proof, which is synthetic, does not
generalize to more than three points.
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Normalized determinant D3

1 —uip — w3 ujpugs
Theorem 1. 3-by-3 determinant of the coefficient matrix: |Ms| =| 1 —u9 — ugg u2uas |# 0,
1 —ugy —us

Da — |M3]
3 (u12—u21)(u13—u31)(u23—us32)

U31U32
D3 =1 only for collinear points.

Theorem 2. Ds > 1.

Theorem 2. < Theorem 1.

Points on the "circle at oo are directions on a plane.

Theorem 1. and Theorem 2. are also true for R = oo.

Explicit formulas for Ds

(U21 - USl)(Ul?) - U23)(U12 - U32)
(Ulz - U21)(U13 - U31)(U23 - U32)

Extrinsic formula: D3 =1+

1 1
Intrinsic formula for hyperbolic triangles (0 < A+ B+ C < 7): D3 = §(cos2(A/2) + cos?(B/2) + cos*(C/2)) — ZCD, where

9 A+B+C —-A+B+C A—-B+C A+B-C
®“ =4 cos B w— COS — 5 CcoSs — CcoS —

) = —1 + cos?(A) + cos*(B) + cos*(C) + 2 cos(A) cos(B) cos(C)

More intrinsic formulas for Ds

Intrinsic formula involving side lengths a,b,¢,p = (a+b+¢)/2,p, =p —a,py —p —b,pc. =p — ¢

_, sinh(p,) sinh(py) sinh(p.) | 4+ e~(etmrtpo) (ePr — e7Pa)(ePr — e Pb)(ePe — e P°) (e2Pe — 1) (2P — 1)(e2e — 1)
— e a (&

D3:1+€

(epatps — @_(Pa+Pb))(@pa+Pc — e—(pa+pc))(epb+pc — e—(pb+pc)) -

sinh(a) sinh(b) sinh(c)

a

t1
Lemma. For 0 < a < b the function f(z) = eb (0 < x < 00) is strictly increasing and lim f(x) =

ex 1 T—00

Sl s

By using this lemma the recent monotonicity conjecture of Atiyah (in case n = 3) follows immediately (if a is replaced by a/R etc... in previous formulas).

e~Pe~Po=Pe ginh(p, ) sinh(py) sinh(p,.)
sinh(p, + py) sinh(p, + p.) sinh(p, + pe)

(cosh(pa + Py + pe) — sinh(p, + py + pe)) sinh(p,) sinh(p,) sinh(p,)
sinh(p, + pp) sinh(p, + pe) sinh(py + pe)

p 8ih(pa) sinh(py) sinh(pe)
sinh(a) sinh(b) sinh(c)

(1 — tanh(p,))(1 — tanh(py))(1 — tanh(p.)) tanh(p,) tanh(p,) tanh(p,)
(tanh(p,) + tanh(py))(tanh(p,) + tanh(p.))(tanh(py) + tanh(p.))

Dy =1+¢e" =1+

=1+

4 points inside a circle

Four points x1, s, z3, x4 in a ball (|z| < R)

4 point-triples on the boundary 2—sphere

Py (Ulz)(um)(um); Py (U21)(U23)(U24); Py (U31)(U32)(U34); Py (U41)(U42)(U43)

point-triple u;g, 413, u14 defines a cubic (polynomial)

o P =(z—up)(z—ws)(z —u) =1- 23— (w19 + Uz + 1014)2’2 + (u12U13 + UroU14 + U3UIL)Z — UpoUy3UIL

4 point—triples — 4 cubics

Py, Py, Ps, Py — {p1,p2,03,pa}

Normalized 4-point Atiyah’s determinant Dy

Determinant of the coefficient matrix of polynomials:

1 —wpo —wys — wig wppU13 + Upplg + Uizlis  —U1aU13U14
My = 1 —Ug1 — Ug3 — U4  U1Uoz + U21lUog + UozlUzg —U21U23U24 D, = | M|
—U3z] — U3z — U34 U3 U32 + U3 U4 + U3aU3s —U31UI2US34 (w19 — w9y )(urs — usy) (urg — ugr)(Ugg — Usse) (Uog — Ugo)(Usy — Ugg)
1 —ugy — wgo — gz UgnUao + Ug1Ug3 + Ugollyz  —Ug1 UgaUy3
Conjectures:
Cy (Atiyah): Dy #0 (< pi1,p2,ps,ps lin. indep.)
Cy (Atiyah—Sutcliffe): Dy > 1

Cy (Atiyah-Sutcliffe):  |Dy|2 > D3(1,2,3) - D3(1,2,4) - D3(1,3,4) - D3(2,3,4)

New proof of the Eastwood—Norbury formula

The four points x; = (z;,7;), 2z, € C, r; € R
Rij = Tij +r; — T’j, Zij =Z; — Zj

RijRji = ri; — (ri —1)% = |25 = —252;i

po=(z+52) (24 50) (24 2 o
P2 = <z+%> (z—l—%’;) (z—l—%)

P3 = <z+}%> <z+%> <z+%>

pi=(z+) (24 22) (24 52)

(62(pa+pb) — 1)(62(pa+pc) — 1)(62(pb+pc) — 1)

Z12 Z13 Z14
Ry Ri3 Ri1g
Z21 223 224
‘ . 1 Ro1 + Ra3 + Roy ‘221
Matrix of coefficients of {p1, pa, p3,pa} : My = 1 . E Zn o Zu u 2w 12
R31 R32 R31 R3q R32 R3q
1 Za1 Zap Zas 1241742243
Ry1 Rao Ry3
Normalized Atiyah determinant:
201221 | Z91%23 221294 231231232232 231231232234 232232232234
Dy = det(My) - 201 - 231232 241242243 = E 1. ( + + + RiyRo4 R34
~—— ~ Roy Ros Ry R31 R Rs1 R34 R3o Ry

antisym_ antisym.

= 2(312324 + 291294) (R13Ro3 R3g + Ri3 230234 + Ro3 231 234) R14 + +(R13 R4 R34 291203 + R13Roy R3 221234 + Roy 291223231 Z34) R14
~ ~ —— ~—— ~— —_—

(where summations are over all permutations of indices). By writing 2,z = C[i, j,k,l] + V=153, j, k, 1] and using a Lagrange identity (involving the dot
product of two cross products; a fact mentioned by N. Wildberger to the author) Si, j, k,1]S[p, q, 7, s| = Cli, 5, p,q|C[k,l,r,s] — Cli, j,r, s|C[k, L, p,q] (we have
discovered this identity independently) and using the following formula

Cli, j, k1] = Re(zi2m) = 5llzal® + lzjl* = |zinl® = [2l?] = 50rf + v — i — 73] —

= (ri—ry)(rg —m)

we obtain our derivation of the Eastwood—Norbury formula.

By this new method we obtained a polynomial formula for the planar configurations of 5 points (by Ss—symmetrization of a ”one page” expression) and a
rational formula for the spatial 5 point configuration (this last formula has almost 100000 terms). This settles one of the Eastwood-Norbury conjectures. We
do not yet have definite geometric interpretations for the "nonplanar” part of the formula involving heights r;, i = 1,...,5.

Our trigonometric (euclidean) Eastwood-Norbury formula (where ¢; ji := cos(ij, ik) and ¢;; 4 := cos(ij, kl)):

16Re(Dy) = (1 + 302+ co34) (L 4+ 100 + ca3) + (14 o3 + c304) (L + can2 + c134) + (L + 302 + ¢c1.34) (1 + co1a + ca03) + (1 + c103 + c3.104) (1 + o34 + C410)+

+ (14 coa3 + c104) (1 4+ 304 + Ca93) + (L4 ¢103 + Co14) (1 + €304 + c413) + +2(C14.93C13.24 — C14.23C12.34 + C13.24C12.34) + 72(normalized Volume)z.

Open problems: Hyperbolic (euclidean) version for n > 4 (n > 5) points in terms of distances, or in terms of angles.

Positive parametrization of distances between 4 points

Key Lemma. (Shear coordinates of a tetrahedron) In any
tetrahedron (degenerate or not) one has the following type of
nonnegative splitting of edge lengths:

rig =10t +u+v-+ity,ri3 =1 +v+t3,re3 =12 +u-+ts,

T =11+ U+, =l +V+14,734 =13+ u+v+14

if and only if riy + 734 = max{ris + ra4, r13 + o4, 714 + 723}
Proof. The form of the solution:

T3+ T4 =T34, T3+ T2 — T34

713 + 723 — 712
tl - 7t2 -

3

2 2 ’ 2 ’
T4+ T24 — T12 712 + 734 — (713 + T24) 1
t4 = U = )
2 2
r T34 — (17 r
v = 22 t 73 2( 14+ 723) proves the Lemma immediately.

Verification of the Atiyah—Sutcliffe four—point conjectures

Let us recall the original Eastwood—Norbury formula for the real part of the Atiyah’s determinat D, of a tetrahedron: Dy := prod — 4d3(ria734, 713724, T23714) +
Ay +vols;

ds(a,b,c) == (—a+b+c)la—b+c)(a+b—c);

Ay = (r1a((raa 4+ 7r34)* — r35) + r24((r1a + 734)> — 1713) + 734((r2a 4+ 714)* — 17,))ds (712, 713, 723)+
+(r13((rog 4+ 734)% — 134) + ro3((113 + 734)% — 734) + 134 ((r2s + 713) — r75))d3(r12, 714, 724) +
+(r12((rog 4+ 724)? — 134) + ro3((112 + 124)* — 734) + 124 ((r2s + 712)® — r75))d3(r13, 714, 734) +
+(r12((r1s + 7114)? — 134) + r13((r12 + 114)% — 1734) + 114((r13 + 712)% — r35))d3 (793, 724, 734);

prod := 64r127r13723714724734;

e (2 22 (02 02 02 2 2 2 2.2 ( .2 1.2 1.2 .2 .2 | 2 2.2 (2 .2 .2 .2 .2 .2 2,2 ,.2 2.2 ,.2 2.2 .2 2,2 ,2).
vols := 2<T12T34(7’13+T14+T23+T24_7"12_7’34)+7”137"24(_7"13+7‘14+7’23_7”24"‘7"12"‘7"34)"‘7"147”23(7”13_7"14_T23+7"24+7’12+7”34)_7"127”137"23_7”127"147”24_7"137”147’34_7”237’247"34)7

(vols = 288volume?) Normalized Atiyah determinant of face triangles:

_ 1d3(7’23,7"24,7"34) 1.6y = 1d3(7“13,7‘14,7"34) 1.6, = 1d3(7’1277’14,7‘24) 1.6, = 1d3(7’12,7“1377’23)

8 723724734 8 713714734 8 12714724 8

51: —|—1

T127137°23
We first prove a stronger four—point conjecture of Svrtan — Urbiha (arXiv:math0609174v1 (Conjecture 2.1 (weak version)) which implies (c.f. Proposition 2.2
in loc.cit) all three four—point conjectures C, Cy, C5 of Atiyah — Sutcliffe).

The substitution from the Key Lemma Sub := {ris =t +u+v+1ty, 113 =t1 +v+t3,703 =to+u—+1t3,rqg =ty +u+ty,rog =to +v 414,734 =tg +u+v+ty4};

1 D, — 4vol 62 + 03+ 02 + 52
in the Maple code DifferSU := {coeffs (expand <subs (Sub, anumer ( 1 50 s _ it Z 3t 4)))) } ;
pro

gives the output DifferSU = {2,3,4,...,5328,5564,6036} which proves the conjecture coefficientwise.

1 Dy — 4vols\*
The Maple code for the strongest Atiyah — Sutcliffe conjecture DifferAS := {coeffs (expand (subs (Sub, 6—4numer ((ZLPT;}OS) — (515253(54> ) )) } ;

gives the output DifferAS = {64, 128,192, ...,233472,246720, 261888} (coefficients of a 4512 terms inequality of degree 12 in 6 distances).

Remark 1. Similarly to DifferSU one can check the upper estimate with the additional coefficient equal to 37/27.

Remark 2. Atiyah — Sutcliffe conjecture Cy follows directly from the following formulas:

D, =064 H rij + 8ds(r12734, T13724, T14723) + 4vols + 32Ry,

1<i<j<4
where
Ry = 6u*v?w? + 14u*v*wmy + 3uv(w? + 16uv)my; + 3uvwmay + 2(u + w) (v + w)wmyyy
+8(u? + v* + w?)mayi1 + w(8Mmar11 + Magr) + 4maort + u(s13P54 + S24P%3) + V(S14P33 + S23DP74)
tuv(v + w)(s13p13 + S2ap2s) + uv(u 4+ w)(S14p14 + S23p23) + wv(vw + u? 4+ v*) (P13 + paa) + wv(uw + u? + v?)(pra + p23)
T2 + T34 —T13 — T24 T2 + 734 — T14 — 723
U = 5 , U= 5 , W=1u-+v,
T3+ 714 —7T T93 +To4 — T T3 + 793 — T T4 +To4 — T
g = 113 ;4 34’ py = 28 ;4 34’ gy = 3T 12’ fy = 14 ;4 12’ s = b+ 15, py = Lil,
my =ty +ty +tg+ty, mi =tita + -, Mgy =ty o0 My = titats o,
myi1 = titatsty, Mory = titatsty + -+, Mooy = ttats + -+, Mooy = t3t3tsty + - - -

Mixed Atiyah determinants

We further generalize Atiyah normalized determinant D(zy,...,x,) to DY (zy,...,x,), where I is any (simple) graph with the vertex set {z1,...,z,}.
Definition. We start with the normalized Atiyah determinant D viewed as a function of all directions w;; (1 <4 # j < n). Then we define D' by simultaneously
switching the roles of directions (i.e. replacing u;; by w;; and also replacing w;; by u;;) for each pair ij such that z;z; is an edge of I'.

For n = 3 we obtain eight mixed Atiyah’s determinants (mixed energies) which we can label by binary sequences Dy = D D ... DI for which we also
have simple explicit trigonometric formulas, which can be obtained from the original Atiyah determinant by suitable sign changes of the lengths of the sides of
a triangle.

Observe that D3 = DY DIt =1+ e? []sinh(p,)/sinh(a) are both > 1 and all other mixed determinants are between 0 and 1
(eg. DY =1 — ePe sinh(p) sinh(p,) sinh(p,)/ [] sinh(a)) .

Now we state our

Main Theorem. We have > . D' = n!, where the summation extends over all simple graphs on n vertices.

The proof is obtained by our method of computing Atiyah’s determinants.

Corollary. For any configuration of points in a 3-space at least one of the mixed Atiyah determinants is nonzero.

Proof of the Main Theorem. In coordinates B;; = u;; — uj; (antisymmetric) and A;; = u;; + uj; (symmetric) 1 < i # j < n, D' differs from D in changing
signs of B;;’s for each edge ij € I'. Let us first observe that each nonconstant term in D (and in each D') is a square free Laurent monomial w.r.t. all variables
Bi;’s, hence in the sum over I' its contribution is zero.

Therefore, we have to compute the constant term (C.T.) of D (which is the same in all D'). Since D is a symmetrization over S, of its main diagonal term,
L (—ugn + -+ )((=usi)(—us2) + -+ ) - - [(=tna) (=tna) -+ (—tnn—1)]
(Ulz - U21)(U13 - U31)(U23 - U32) s (Ul,n - Un,l) s (Un—l,n - Un,n—l)

we have C.T.(D) = n!C.T.(diagonal term). But diagonal term of D is equal to

Gpfpfs... nl r
so C.T.(diag.term) = C.T. = and C.T.(D) = — and C.T. D" | =nl m
(diag term) BiaBisBas - o(3) D)= EF:

New developments

e In 2011. M.Mazur and B.V.Petrenko restated the original Eastwood Norbury formula in trigonometric form which besides face angles of a tetrahedron uses
also angles of so called Crelle triangle (associated to the tetrahedron). Our formula in [5] does not involve Crelles angles, but uses "skew” angles.

e (), proved for convex (planar) quadrilaterals
e (3 proved for cyclic quadrilaterals (we have it proved already in [5])
e Three conjectures stated which are consequences of some of or conjectures in [5]. (Hence we have a proof of all three.)

e In a recent paper M.B.Khuzam and M.J.Johnson (arXiv:1401.2787v1) gave a verification (by linear programming) of both Cy and Cj5 four—point conjectures
of Atiyah and Sutcliffe, by using symmetric functions of degree 12 in 12 variables t;; = 7; + 7 — 7k, {0, 7, k, 1} = {1,2,3,4} (which are linearly dependent),
so for Cy (resp. C3) they use 64 (resp. 114) huge monomial symmetric functions.
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