
Improving thread scheduling by thread grouping
in heavily loaded many-core processor systems

Luka Milić* and Leonardo Jelenković**
* University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia

**University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
luka.milic@foi.hr, leonardo.jelenkovic@fer.hr

Abstract – Basic scheduling techniques currently employed
in operating systems usually don’t account for hierarchy of
processors cores and caches resulting in suboptimal system
efficiency, especially on heavy loaded systems. In this paper
we explore possible improvements in scheduling for such
heavy loaded many-core systems. Basic idea is to group
threads of the same process as close as possible, preferably
even on the same processor. We expect that doing so may
improve efficiency of processor’s cache usage, resulting in
better overall performance. The idea is tested by adapting
the Linux's simplest scheduler (in code) – a round-robin
scheduler. Achieved results are presented in this paper.

I. INTRODUCTION
Today's operating systems schedulers mostly do not

differentiate multiprocessor system where every processor
is simple (one core) from many core system where many
cores are coupled on single processor sharing its caches
and connections to system busses. Virtual cores (hyper-
threading) are also usually treated the same (as regular
processor). That is not really a problem until there are not
many cores/processors in the system. In the future that is
very likely going to change as most computers working
non-trivial jobs will have many cores [1].

Architectures of multi and many core systems are
various. Most personal computer systems (and some smart
phones and tablets) have a single multi core processor.
Workstations and servers that require more computing
power may have several multi core processors. In the
future multi core processors (up to 8 cores) will probably
be replaced by many core processors (from 8 cores and
up). Computing power of many core processor systems is
not relaying only on raw processor’s core capabilities and
number of cores but also on data acquisition. Cores in
many core processor are usually arranged in local groups
that share local cache memory. Although any core can
fetch data from anywhere (local cache, non-local cache,
main memory), delay such fetch operation request will be
lesser if data is closer.

Thread scheduling algorithm should take thread’s
properties and inter-thread interactions into account for
achieving more efficient use of processor’s cache and thus
improve overall system performance [2][3]. Usually,
threads of the same process operate on shared data and
have high level of interactions. We will call such threads
as connected threads (co-threads). Although threads from
different processes can also be connected (i.e. use same
shared resources), that is rarely, more exception than a
rule.

Scheduling algorithm should be aware of connected
threads as well as processor’s core architecture where
those threads are to be placed.

In systems in which the average number of ready
threads is not much greater than the number of processor
cores, scheduling procedures should keep connected
threads as close as possible, on cores that share same
caches (L2/L3).

In heavier loaded systems (at least twice as much
threads than cores) different way of scheduling may be
appropriate. Considering that it is more difficult to achieve
a synchronous work of interconnected threads on multiple
cores, which may be the optimal scheduling for those jobs
(and maybe generally), the alternative could be to collect
such threads on the same core. The advantage of this
approach is in efficient use of the cache of such cores
because it is expected that such interconnected threads
will use the shared data probably already present in cache.
In this way we will lose potential for parallel execution,
but on heavy loaded system probability for such
parallelism might be very small, and efficient use of cache
could prove more beneficial.

Since schedulers don’t differentiate simple single core
processor from one core of multi/many processor, when
describing existing schedulers we use term processor as
synonym for both. In same context, term multiprocessor is
used for describing systems that have more processor
cores, standalone ones or in multi core package.

For testing such hypothesis a rather simple scheduler
SCHED_RR from the Linux operating system is used and
adapted. Primary reason for choosing SCHED_RR even if
its real-time scheduler over SCHED_OTHER default
scheduler for general thread is in source code simplicity.
SCHED_OTHER that implements Completely Fair
Scheduling algorithm is far more complex and hard to
adapt. If proposed adaptation don’t give positive results
for SCHED_RR (using threads with same priority, which de
facto turns off any real-time properties of scheduler) there
is no reason for going into adapting SCHED_OTHER.

In section II we first describe scheduler SCHED_RR.
Section III describes our modification of SCHED_RR
scheduler, and section IV presents simulation environment
and achieved results.

MIPRO 2014/CTS 1243

II. LINUX SCHED_RR SCHEDULER
Linux, like most operating systems use different

scheduling policies for different types of threads,
particularly differentiate normal from real time threads.

A. Linux scheduling policies
Currently, for normal threads Linux supports

scheduling policies SCHED_OTHER, SCHED_BATCH and
SCHED_IDLE. Those scheduling policies are based on a
completely fair distribution of the virtual processor time.
This virtual time is a rather complex function of the fair
thread priority, real time and the processor consumption
by fair threads [4].

Real time scheduling policies SCHED_FIFO and
SCHED_RR are priority based schedulers. Thread with
highest priority is always scheduled first. Difference
between SCHED_FIFO and SCHED_RR policies are in
scheduling of more than one highest priority threads.

For example if we have ready threads A and B with
same highest priority, SCHED_FIFO will pick one that
become ready first and execute it until it finished or block
itself voluntarily. SCHED_RR will alternate threads A and
B on processor, giving each a time interval before
switching to next. On multiprocessor system (or
multi/many core) both threads will be running in parallel,
each thread on its processor.

On multiprocessors, real time thread scheduling is
based on a system-wide strict priority scheduling. Since
we use this mechanism to adapt scheduling, system-wide
strict priority scheduling is detailed in next subsection.

B. Push-pull algorithm
Strict priority scheduling in a multiprocessor system

with N processors must ensure that N highest priority
threads are always chosen as active on those processors
(one thread per processor) [5].

The priorities of real time threads are in range from 1
to 99, where higher number represent higher priority. For
each processor there is separate data structure containing
99 thread queues, one thread queue per priority. Every
ready real time thread is placed into one thread queue, one
that matches thread’s priority. Active thread for each
processor is chosen from its ready queues (thread from
highest non-empty queue), and then removed from that
queue and marked as active.

System-wide strict real-time priority scheduling is
implemented by using push-pull algorithm on overloaded
thread queues. A real time thread queue is considered to
be overloaded if it holds at least one another thread
(besides currently active) which could be migrated to
another processor according to that thread’s processor
affinity mask.

Push part of the algorithm is performed on processor
which uses overloaded thread queues. Its purpose is to
push overloaded threads to other processors that will
immediately execute them. Such processors must be
acceptable by such threads (they must be in thread affinity
mask) and currently running lesser priority threads.

More precisely, push algorithm is activated on
particular processors only after events:

1. active real time thread is changed (replaced with
higher priority thread or its priority is lowered);

2. a new real time thread is created on current
processor;

3. a real time thread is waked on current processor.

The push algorithm splits into three algorithms:
pushing, finding and searching.

The pushing algorithm is activated when a queue on a
given (current) processor is overloaded. Highest-priority
thread from overloaded queue is then passed to finding
algorithm which might find a processor where migrate
such thread.

The finding algorithm use search algorithm to find a
processor on which the thread will be migrated. Algorithm
is repeat up to three times because of scheduling data
structures locking semantics [6].

The searching algorithm looks processors that are in
observed thread’s processor affinity map. From that set of
processors algorithm search for a lowest priority subset of
processors, i.e. processors that currently run threads with
currently lowest priority in system. If there are more
processors in this subset, choose processor on which
thread was run last time. If there is not such processor in
subset, then choose one of the closest to processor on
which thread was run last time (by scheduling domains).

Similarly to push algorithm, pull algorithm is activated
when a thread on single processor is finished or blocked
or its priority is lowered. Pull algorithm looks at ready
queues of other processors (overloaded queues) and if it
finds a real time thread with higher priority than the
highest priority thread in his queues, it pulls such thread to
this processor where such thread will immediately become
active. Only threads that can be migrated to current
processor are observed. If there are more such threads,
only one with highest priority is chosen and pulled.

III. ADAPTING SCHED_RR
The goal of adaptations was to try to group threads of

the same process (here called co-threads). The solution
was implemented by four ideas, i.e. changes, for push-pull
algorithm.

Push algorithm, i.e. its searching algorithm is modified
as follows.

1. First try to find a processor on which are threads
that belong to the same process (co-threads) but
only if there are none on current processor. If
such processor is found push thread to its thread
queue.

2. If processor where thread was last executed is in
thread’s available processor subset push thread
there.

3. Search for processor closest (by scheduling
domains) to processor with co-threads (processor

1244 MIPRO 2014/CTS

that is not thread’s available processor subset). If
one is found push thread there.

4. Search for processor closest (by scheduling
domains) to processor where thread was last
executed.

5. Return any processor from thread’s available
processor subset.

In the pull algorithm, pull is additionally performed in
situations when remote thread has the same priority as top
priority local one if this remote thread has co-threads here
and not on remote processor.

The scheduling of real-time threads is not actually
changed with this adaptations – system-wide strict real-
time priority scheduling is preserved.

Adaptations in Linux source code was done by adding
a new scheduling policy SCHED_RR2 based on SCHED_RR.
Since changes to SCHED_RR are minimal, adaptations
(additions) are preformed in same code.

Files included in adaptations (modified files) are:

• include/linux/sched.h

• kernel/sched/sched.h

• kernel/sched/core.c

• kernel/sched/cpupri.c

• kernel/sched/rt.c.

In kernel code, modifications regarding SCHED_RR2
scheduling (in respect to vanilla SCHED_RR) are protected
with a macro. To use SCHED_RR2 macro must be set.
Otherwise, when macro is not set vanilla SCHED_RR is
used (all modifications for SCHED_RR2 are not compiled).
Experiments were performed on both kernel: one
compiled with defined macro (using proposed
modifications, i.e. SCHED_RR2 scheduler) and one without
macro (vanilla SCHED_RR scheduler).

IV. EXPERIMENTAL RESULTS
The processor on which experiments are performed

has Intel’s processor of Sandy Bridge architecture, namely
the model i7-2670QM. This processor has four hyper-
threaded cores (8 logical cores) from which every physical
core has 32 kB L1 cache and 256 kB L2 cache. All cores
share 6144 kB L3 cache. The processor itself runs on a
frequency of 2.2 GHz. The kernel version used in
experiments was Linux 3.3.0-rc7 [7].

Test program constructed for evaluation of adapted
scheduler try to mimic general multithreaded program
whose threads usually operate on shared data. Program
first spawns given number of processes. Each spawned
process further creates given number of threads producing
large number of threads that simulate heavy loaded
system. Since our test system has only four physical cores,
size of shared data is kept small to amplify cache
utilization in achieved improvements.

Test program was executed on unmodified version of
kernel using SCHED_RR policy, and on modified kernel

using adapted SCHED_RR2 policy. Each run was timed to
10 seconds when progress was printed (number of
predefined operations on shared data). Tests are
performed many times and average results are presented
in Table I.

Results are surprisingly good. Of course, this is
synthetic test and maybe not a real measure for real
application, but improvements of 10% and more are
encouraging. As expected, when there are small number
of threads (test no. 1) our adaptation didn’t change
performance (0.37% may be counted as statistical error).
But when the number of threads is significantly greater
than number of processors (all other tests) expected
improvements did happen and surpass our expectations.
Those improvements are greater with more threads and
smaller shared data. As shared data grows, less cache
utilization is achieved, lesser improvement is obtained.

Once again we must say that used scheduler is
adaptation of real time scheduler and we compare
obtained results by original real time scheduler. Real time
scheduler is not concerned with fairness and maximal
resource utilization. Therefore, we expect that if same
ideas of grouping were implemented in scheduler for
normal threads (policy SCHED_OTHER), improvements, if
any, will be much lower since that scheduler uses more
sophisticated load balancing algorithms. However, on
heavily loaded many core systems we still expect that
improvements in efficiency with proposed thread
grouping should grow as number of cores grows.

V. CONLUSION
This paper presents an idea to improve scheduler for

many core systems when such systems are heavy loaded
with lots threads. Idea is to group threads of same
processes on same processor and improve efficiency of
processor’s local caches. In simulated environment
adaptation to simple round robin scheduler (using
SCHED_RR on Linux) show significant improvements up
to 15%, which encourage further research in this direction.
Further research should be oriented to adapting more
complex schedulers, e.g. ones that are used for scheduling
of normal threads. Furthermore, test program could also
be improved to better mimic variety of real multithreaded
applications.

TABLE I. EXPERIMENTAL RESULTS

Test
No.

Processes per
program

Threads per
process

Shared
data size

Efficiency
Improvement

1 7 1 small 0.37%

2 11 5 small 16.02%

3 9 3 small 14.29%

4 9 3 medium 12.15%

5 9 3 larger 9.93%

MIPRO 2014/CTS 1245

REFERENCES
[1] T. Zangerl, “Operating system scheduling on multi-core

architectures,” University of Innsbruck, Seminary thesis, June
2008.

[2] T. A. Anderson, M. Rajagoplan, B. T. Lewis, “Thread scheduling
for multi-core platforms”, Technical report, Programming Systems
Lab, Intel Corporation, 2007,
http://static.usenix.org/event/hotos07/tech/full_papers/rajagopalan/
rajagopalan.pdf.

[3] A.Fedorova, M. Seltzer and M. D. Smith, “Cache-fair thread
scheduling for multicore processors”, Technical report, Harvard

University, 2006,
http://www.eecs.harvard.edu/~fedorova/papers/cache-fair.pdf.

[4] C. S. Pabla, “Completely Fair Scheduler”, Linux Journal, vol. 184,
August 2009.

[5] A. Garg, “Real-time linux kernel scheduler,” Linux Journal, vol.
184, August 2009.

[6] R. Love, “Kernel locking techniques”, Linux Journal, 2002.
[7] Intel Corporation, “Intel Core i7-2670QM Processor”, Technical

documentation, 2011.

1246 MIPRO 2014/CTS

