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Abstract – In this paper the authors propose new heuristics 

for automation of software partitioning and mapping onto 

heterogeneous multiprocessor System-on-Chip (MPSoC) 

platform – Longest Parallel Path mapping algorithm (LPP). 

In contrast with traditional approach to solving this NP-

complete problem – the Integer Linear Programming (ILP), 

our method uses a modified version of Critical Path Method 

with additional heuristics that rely on greedy approach. The 

algorithm performs one-to-many mapping of application to 

platform with minimizing the overall execution time of the 

application as the main objective. Our experiments with 

generic application model and several different platform 

layouts show that the proposed algorithm provides an 

efficient mapping scheme enabling significant execution 

speedup. In addition, the comparison with another greedy 

mapping algorithm shows that LPP algorithm exploits 

available task level parallelism better.   

Keywords: Design Space Exploration, Software 

partitioning and mapping, Task scheduling, Critical Path 

Method  

I. INTRODUCTION 

Modern embedded systems are above all ubiquitous: 

they are found everywhere - from simple electronic 

products, communication and entertainment devices to 

expensive and complex systems (car, plane). They are 

getting more and more complex, and have to be able to 

perform advanced computation and meet special 

requirements: real-time response, maximum performance, 

minimum size and weight, low power consumption. This 

leads to development of new generation of embedded 

systems – MPSoCs which must often be very 

heterogeneous to meet all requirements with minimal 

cost.  

Designing this type of systems is a challenging and 

time consuming task. Automation of design process 

would significantly lower cost and time-to-market. 

However, because of MPSoC versatility and 

heterogeneity, this is easier said than done. Many 

different approaches exist and many algorithms have 

been developed but this issue is far from being solved yet. 

Scheduling and mapping software to hardware on 

heterogeneous platforms is NP – complete problem, and 

finding near optimal solution in reasonable amount of 

time is challenging [8].  

Traditionally this problem is solved using Linear 

Programming model [4], but high complexity of this 

approach and extremely high computational requirements 

significantly increase design time. There have been 

several attempts to solve this problem, including greedy 

deterministic [7][6] and evolutionary non-deterministic 

approaches [11]. Greedy approach is the most common 

approach and delivers the final mapping solution much 

faster than evolutionary approach but always gives a 

suboptimal solution. 

The Longest Parallel Path Mapping Algorithm (LPP), 

proposed in this paper, aims to present another possible 

approach to solving task mapping problem on 

heterogeneous MPSoC architectures. 

II. DESIGN SPACE EXPLORATION 

Design Space Exploration (DSE) is a process to find 

out near-optimal system architectures for a given 

application, considering the design constraints and 

objectives. It involves task partitioning and mapping, 

architecture and processing element selection, and 

performance estimation before a hardware prototype is 

built [2]. The process starts with application specified 

using a model of computation, description of architecture 

instance and a set of constraints for the overall system. 

Those inputs are fed to mapping engine which performs 

partitioning and mapping of software to hardware. 

Finally, a performance analysis is conducted to determine 

whether the output design meets given constraints. If the 

result is positive the production phase begins, if not 

modifications to application and/or architecture are made 

 

Figure 1.  Design Space Exploration Flow 
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and the whole process is repeated. It is also possible to 

alter the mapping strategy and check if it produces better 

outcome. Figure 1 illustrates the described DSE flow. 

A. Related Work 

There is no commercial tool available to automate the 

whole DSE process. However, a tool is regarded as a 

DSE tool if it enables the system designer to alter the 

target architecture and task mapping easily, and it 

provides the estimated performance. Several tools exist 

that provide a general modelling and mapping framework 

to allow DSE [2]. Most prominent is a commercial 

solution - CoFluent Studio from CoFluent Design, a 

SystemC-based system-level design tool that supports 

DSE through Y-chart modelling. The designer specifies 

separate models for the application and the platform and 

combines them at the mapping stage. Then, the resultant 

design is evaluated by simulating the transactional 

SystemC code that is automatically generated. VisualSim 

from Mirabilis Design is a system-level design tool that 

supports diverse simulation capabilities in a single 

framework. Both algorithm simulation and architecture 

simulation can be performed at various abstraction levels. 

By changing the mapping information and architecture 

parameters, the user can explore the design space 

efficiently.  However, in each of these tools task mapping 

must be performed manually. 

Most prominent non commercial DSE tools include 

The Modular Performance Analysis (MPA) toolbox from 

ETH Zurich, which is a performance analysis tool based 

on real-time calculus, and Daedalus framework from 

University of Amsterdam, which has the capability of 

automatic mapping but the process takes several hours to 

finish [13]. However, much effort is put into further 

research and development of these tools and it is 

reasonable to expect that future improvement will resolve 

current issues. 

B.  Task partitioning and mapping 

The key step in design space exploration process is 

partitioning application software into separate tasks and 

deciding where to allocate each task on the target 

platform. Due to heterogeneity of both application and 

platform this problem requires an NP-complete class 

algorithm to find the optimal solution. This means that 

the solution cannot be reached in polynomial amount of 

time. A faster alternative is using some form of 

specialized heuristics based on greedy strategy. This way 

a suboptimal solution is obtained much faster, but 

heuristics are usually rather specialized and are applicable 

to a smaller set of problems. 

III. PROBLEM DEFINTION 

The main problem can be summarized as: finding the 

near optimal solution to mapping of a generic type of 

embedded application to a heterogeneous multiprocessor 

platform in a reasonable amount of time.  

The rest of this chapter gives a more detailed problem 

specification. 

A. Application Model 

Due to versatility of embedded systems, embedded 

applications come in a wide variety of forms. For the 

purpose of evaluation of the proposed algorithm a generic 

application model is constructed with certain assumptions 

and constraints in mind. 

First, it is assumed that application has a flow from a 

single point of entry to a single point of exit and inside 

the application flow there are no cycles at all. However, 

the application as a whole can be cyclic, meaning that 

after exit point it starts all over again from start. Second, 

some level of functional parallelism in application is 

implied because otherwise the discussion about mapping 

parts of application to different processors is pointless, 

unless a certain task requires a certain type of special HW 

accelerator.  

The application is modelled using a parallel model of 

computation and represented as a Directed Acyclic Graph 

(DAG), ),( ETG  . For each vertex Tt  which 

represents one task, we define set of edges EEt   

connected to t that represent communication between 

tasks. Figure 2 depicts an example application graph.  

Vertex weight, given by a weight function:  

 Twt : ℝ (1) 

stands for the number of operations executed in the 

process (in Mops) and the edge weight, given by a weight 

function:  

 Ewe :  ℝ (2) 

is the amount of data transacted (in KB), both as reported 

by a profiler.  

B. Architecture Model 

The MPSoC hardware platform is also modelled as a 

directed graph ),( FPH  , each vertex Pp represents 

a processing element. Vertex weight is the computation 

 

Figure 2.  Application representation 

 

 

Figure 3.  MPSoC platform representation 
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speed in Mops/s and is given by a weight function: 

 Pu p : ℝ (3) 

Each edge represents connection between PEs and 

weight is the throughput in kBps given by a function: 

 Fu f :  ℝ (4) 

Figure 3 depicts an example platform graph with three 

different processing units.  

In this model, processing elements differ from each 

other strictly by raw computational power, i.e. it is 

assumed that each PE is capable of performing all types 

of operations equally efficient. 

It is also assumed that each processing element has its 

own private memory and communicate via interconnect 

network.  

C. Mapping Problem 

Given the application and architecture models, the 

mapping problem can be defined as assigning application 

components - tasks to architecture components in a way 

that the overall execution time required to execute the 

application is minimized. The final solution has to be 

found under the constraints that all the tasks are assigned 

a PE and one task is assigned only to one PE. 

For n tasks (n=|T|) and m processing elements (m=|P|), 

where mn  , the cost of mapping of task i := ti  to 

processing element k := pk can be defined as the time 

required to complete all of required computation and 

communication.  

 commcomp TTT        (5) 

Computation time is calculated as:  
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Communication time is the sum of duration of 

communication between task i and all predecessor tasks 

mapped to a processing element different that k 

(communication cost between two tasks on the same PE 

is zero). The cost of communication between two tasks i 

and j mapped to processors k and l respectively is 

expressed in (7). 
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In order for a task to begin execution, all its 

predecessors must finish execution. After the predecessor 

j finishes execution, it would take Tcomm (i,j) time before 

the task i can use the results. This has to be calculated for 

all predecessors of task i and the maximum such value is 

the time when task i can start execution. The time the task 

i takes to execute Tcomp (i) depends on the PE it is 

assigned to.  

IV. LONGEST PARALLEL PATH MAPPING ALGORITHM 

In order to solve this resource allocation problem, a 

static scheduling algorithm [14] has been developed 

based on Critical Path Method [5] with additional 

modifications to develop fast and efficient heuristics. 

This algorithm’s objective is to minimize the overall 

execution time of the application. 

For each task the earliest and the latest possible start 

time governed by data dependencies can be defined. If 

both times for a certain process are equal that process is a 

critical process. A set of critical nodes (processes) and 

edges between them from source to finish form a critical 

path.  

The mapping process, as shown on Figure 4, consists 

of four stages. In the first stage, first of all processing 

elements are sorted descending by their computation 

speed. Afterwards, using a modified version of Dijkstra 

algorithm [12], the longest path is identified and mapped 

to the fastest processor. As long as there are free PEs, the 

algorithm identifies the second critical path, the third etc. 

and maps all tasks in the path to the fastest free PE. Thus, 

communication costs between tasks on the same path are 

minimized.  

Next, a preliminary schedule is made for mapped 

tasks, which enables the search for free gaps in PE task 

list where unmapped tasks will be mapped in stage 3.  

Stage 3 comes in two versions. In the first one, 

mapping of remaining tasks starts with PEs sorted 

ascending by computation speed. For each unmapped 

task a time frame is calculated - it begins when all of 

task’s mapped predecessors have finished and ends 

before the first mapped successor has to start. Starting 

with the slowest PE, mapper checks if it is free during 

time frame and fast enough to compute the task in time; if 

 

Figure 4.  Longest Parallel Path algortihm flow 

 

1266 MIPRO 2014/CTS



it is not, the overflow for that task and that PE (expressed 

as time) is stored for later evaluation.  

In the second version, PEs are sorted descending by 

computation speed thus search for candidate PE starts 

with fastest processor. 

When the fit PE is found the task is mapped to that PE 

– a perfect fit, and in case when there is no perfect fit the 

task is mapped to PE with least overflow.  

The rationale behind the first version of Stage 3 

mapping is that it is hardest to find a task that can be 

mapped to slowest PEs without disrupting entire 

schedule. On the other hand, mapping one task to slow 

PE usually means that it will consume the most of the 

available time frame and leave little chunks of free 

processor time that are not big enough for any other task 

to fit in. On the contrary, fast processors require much 

less time to finish the computation and it is probable that 

when a task is assigned in a free time frame, enough 

room will be left for at least one more task to be fitted in 

the same time frame. 

The final schedule is calculated in the last stage of the 

mapping process.  

Based on the algorithm discussed above, Automatic 

Mapping Tool has been developed in Java programming 

language and preliminary results of conducted 

simulations are discussed in the next chapter.  

V. EXPERIMENTAL RESULTS & FUTURE WORK 

In this chapter we present the results of performance 

testing of LPP algorithm, make comparison with results 

obtained by using another greedy algorithm – LPT [7] 

and propose directions for future development. 

A. Case Study 

The performance of proposed mapping algorithm, in 

terms of total execution time estimation, was examined 

on nine different platform configurations for two generic 

applications.  The configuration for each test case is 

described in Table 1. The numbers represent PE speed in 

Mops, and in each case communication costs between 

two processes on different PEs are the same.  

1) The LPP algorithm was tested for both versions of 

Stage 3 (ascending and descending order). The execution 

times estimation of mapping generic application, 

represented by a DAG on Figure 2, are shown on chart 

on Figure 5. In the same figure we compare to the results 

obtained using LPT algorithm. LPP – ascending version 

results 

In all nine test cases LPP outperforms LPT by up to 

130 percent. It is also important to note that LPP 

algorithm, in case of platform with two fast PEs (both 

150 Mops), reaches optimal solution: total duration is 

equal to critical path duration, and LPT can never reach 

that situation. In that case LPP algorithm provides 

speedup of 1.56 times compared to a sequential solution. 

Even more interesting is that in Configuration 3, when 

two fast PEs (both 150Mops) are replaced by a set of PEs 

by a third and a half slower (‘3PE’ in Table 1) the 

speedup is still high - 1.5 times compared to sequential 

solution.  

It is also important to note that time complexity of 

LPP algorithm is )log()( nnOnT  which is a significant 

improvement compared to complexity of LPT algorithm 

which is )()( 3nOnT   [7]. 

2) LPP – descending version results 

 The results for the second version of LPP (Stage 3 PE 

search  in descending order) are exactly the same as in the 

previous case. A possible explanation for this is that other 

features of the algorithm govern task scheduling in later 

stages. For example, the first stage of the algorithm works 

in a way that it puts most load to fastest processors which 

later have little room to host additional tasks. On the 

other hand slower processors are left with much more idle 

time after the preliminary scheduling and have a higher 

TABLE I.  PLATFORM CONFIGURATIONS FOR TEST CASES 

 1PE [Mops] 2PE [Mops] 3PE [Mops] 

Configuration 1 150 150, 150 150, 150, 150 

Configuration 2 100 150, 100 150, 100, 100 

Configuration 3 75 150, 75 150, 100, 75 

  

 

 

Figure 5.  Total execution time comparison 
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possibility to contain a gap in scheduling that is big 

enough to fit a new task without overflow. Another 

possible reason for this,  in case when all processors are 

left “crowded” after the preliminary scheduling, and 

overflow is almost iminent, is that faster processors will 

have less overflow (can compute the task faster) and will 

be filled with new incoming tasks first,  regardless of the 

order of processor list traversal. 

B. Future development 

In future research, the LPP algorithm should be 

improved so it could tackle the following two issues: 

support for application with loops and recursions, and 

support for MPSoC platforms that have a more 

specialised type of components which are more suitable 

for a certain type of operation (e.g. floating point 

operations) – mapping affinity problem. 

Another direction of development could address DSE 

from another point – giving recommendation for the 

platform architecture by selecting the most suitable 

configuration from a set of available components.  

VI. CONCLUSION 

In this paper we have given a short overview of 

Design Space Exploration, as a vital concept for modern 

heterogeneous multiprocessor embedded system, and 

related work. Further, we have addressed the issue of lack 

of quality mapping algorithms – crucial for automation of 

the entire DSE process by presenting new greedy strategy 

based on critical path method.  

The presented LPP algorithm provides efficient 

automatic mapping strategy which exploits available task 

level parallelism in the given application. Conducted case 

study shows that the algorithm is able to schedule tasks 

on heterogeneous platforms with variable processor 

performance and achieve speedup very close to optimal 

solution in polynomial amount of time. In comparison to 

another acknowledged greedy strategy, LPP algorithm 

shows significant performance improvement – up to 130 

percent. However, some issues concerning exploiting 

data level parallelism available in application and higher 

level of “platform awareness” remain and will be dealt in 

future research.  
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