
Critical Path Method Based Heuristics for

Mapping Application Software onto

Heterogeneous MPSoCs

Nikolina Frid and Vlado Sruk

 University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

nikolina.frid@fer.hr, vlado.sruk@fer.hr

Abstract – In this paper the authors propose new heuristics

for automation of software partitioning and mapping onto

heterogeneous multiprocessor System-on-Chip (MPSoC)

platform – Longest Parallel Path mapping algorithm (LPP).

In contrast with traditional approach to solving this NP-

complete problem – the Integer Linear Programming (ILP),

our method uses a modified version of Critical Path Method

with additional heuristics that rely on greedy approach. The

algorithm performs one-to-many mapping of application to

platform with minimizing the overall execution time of the

application as the main objective. Our experiments with

generic application model and several different platform

layouts show that the proposed algorithm provides an

efficient mapping scheme enabling significant execution

speedup. In addition, the comparison with another greedy

mapping algorithm shows that LPP algorithm exploits

available task level parallelism better.

Keywords: Design Space Exploration, Software

partitioning and mapping, Task scheduling, Critical Path

Method

I. INTRODUCTION

Modern embedded systems are above all ubiquitous:

they are found everywhere - from simple electronic

products, communication and entertainment devices to

expensive and complex systems (car, plane). They are

getting more and more complex, and have to be able to

perform advanced computation and meet special

requirements: real-time response, maximum performance,

minimum size and weight, low power consumption. This

leads to development of new generation of embedded

systems – MPSoCs which must often be very

heterogeneous to meet all requirements with minimal

cost.

Designing this type of systems is a challenging and

time consuming task. Automation of design process

would significantly lower cost and time-to-market.

However, because of MPSoC versatility and

heterogeneity, this is easier said than done. Many

different approaches exist and many algorithms have

been developed but this issue is far from being solved yet.

Scheduling and mapping software to hardware on

heterogeneous platforms is NP – complete problem, and

finding near optimal solution in reasonable amount of

time is challenging [8].

Traditionally this problem is solved using Linear

Programming model [4], but high complexity of this

approach and extremely high computational requirements

significantly increase design time. There have been

several attempts to solve this problem, including greedy

deterministic [7][6] and evolutionary non-deterministic

approaches [11]. Greedy approach is the most common

approach and delivers the final mapping solution much

faster than evolutionary approach but always gives a

suboptimal solution.

The Longest Parallel Path Mapping Algorithm (LPP),

proposed in this paper, aims to present another possible

approach to solving task mapping problem on

heterogeneous MPSoC architectures.

II. DESIGN SPACE EXPLORATION

Design Space Exploration (DSE) is a process to find

out near-optimal system architectures for a given

application, considering the design constraints and

objectives. It involves task partitioning and mapping,

architecture and processing element selection, and

performance estimation before a hardware prototype is

built [2]. The process starts with application specified

using a model of computation, description of architecture

instance and a set of constraints for the overall system.

Those inputs are fed to mapping engine which performs

partitioning and mapping of software to hardware.

Finally, a performance analysis is conducted to determine

whether the output design meets given constraints. If the

result is positive the production phase begins, if not

modifications to application and/or architecture are made

Figure 1. Design Space Exploration Flow

1264 MIPRO 2014/CTS

and the whole process is repeated. It is also possible to

alter the mapping strategy and check if it produces better

outcome. Figure 1 illustrates the described DSE flow.

A. Related Work

There is no commercial tool available to automate the

whole DSE process. However, a tool is regarded as a

DSE tool if it enables the system designer to alter the

target architecture and task mapping easily, and it

provides the estimated performance. Several tools exist

that provide a general modelling and mapping framework

to allow DSE [2]. Most prominent is a commercial

solution - CoFluent Studio from CoFluent Design, a

SystemC-based system-level design tool that supports

DSE through Y-chart modelling. The designer specifies

separate models for the application and the platform and

combines them at the mapping stage. Then, the resultant

design is evaluated by simulating the transactional

SystemC code that is automatically generated. VisualSim

from Mirabilis Design is a system-level design tool that

supports diverse simulation capabilities in a single

framework. Both algorithm simulation and architecture

simulation can be performed at various abstraction levels.

By changing the mapping information and architecture

parameters, the user can explore the design space

efficiently. However, in each of these tools task mapping

must be performed manually.

Most prominent non commercial DSE tools include

The Modular Performance Analysis (MPA) toolbox from

ETH Zurich, which is a performance analysis tool based

on real-time calculus, and Daedalus framework from

University of Amsterdam, which has the capability of

automatic mapping but the process takes several hours to

finish [13]. However, much effort is put into further

research and development of these tools and it is

reasonable to expect that future improvement will resolve

current issues.

B. Task partitioning and mapping

The key step in design space exploration process is

partitioning application software into separate tasks and

deciding where to allocate each task on the target

platform. Due to heterogeneity of both application and

platform this problem requires an NP-complete class

algorithm to find the optimal solution. This means that

the solution cannot be reached in polynomial amount of

time. A faster alternative is using some form of

specialized heuristics based on greedy strategy. This way

a suboptimal solution is obtained much faster, but

heuristics are usually rather specialized and are applicable

to a smaller set of problems.

III. PROBLEM DEFINTION

The main problem can be summarized as: finding the

near optimal solution to mapping of a generic type of

embedded application to a heterogeneous multiprocessor

platform in a reasonable amount of time.

The rest of this chapter gives a more detailed problem

specification.

A. Application Model

Due to versatility of embedded systems, embedded

applications come in a wide variety of forms. For the

purpose of evaluation of the proposed algorithm a generic

application model is constructed with certain assumptions

and constraints in mind.

First, it is assumed that application has a flow from a

single point of entry to a single point of exit and inside

the application flow there are no cycles at all. However,

the application as a whole can be cyclic, meaning that

after exit point it starts all over again from start. Second,

some level of functional parallelism in application is

implied because otherwise the discussion about mapping

parts of application to different processors is pointless,

unless a certain task requires a certain type of special HW

accelerator.

The application is modelled using a parallel model of

computation and represented as a Directed Acyclic Graph

(DAG),),(ETG  . For each vertex Tt which

represents one task, we define set of edges EEt 

connected to t that represent communication between

tasks. Figure 2 depicts an example application graph.

Vertex weight, given by a weight function:

 Twt : ℝ (1)

stands for the number of operations executed in the

process (in Mops) and the edge weight, given by a weight

function:

 Ewe : ℝ (2)

is the amount of data transacted (in KB), both as reported

by a profiler.

B. Architecture Model

The MPSoC hardware platform is also modelled as a

directed graph),(FPH  , each vertex Pp represents

a processing element. Vertex weight is the computation

Figure 2. Application representation

Figure 3. MPSoC platform representation

MIPRO 2014/CTS 1265

speed in Mops/s and is given by a weight function:

 Pu p : ℝ (3)

Each edge represents connection between PEs and

weight is the throughput in kBps given by a function:

 Fu f : ℝ (4)

Figure 3 depicts an example platform graph with three

different processing units.

In this model, processing elements differ from each

other strictly by raw computational power, i.e. it is

assumed that each PE is capable of performing all types

of operations equally efficient.

It is also assumed that each processing element has its

own private memory and communicate via interconnect

network.

C. Mapping Problem

Given the application and architecture models, the

mapping problem can be defined as assigning application

components - tasks to architecture components in a way

that the overall execution time required to execute the

application is minimized. The final solution has to be

found under the constraints that all the tasks are assigned

a PE and one task is assigned only to one PE.

For n tasks (n=|T|) and m processing elements (m=|P|),

where mn  , the cost of mapping of task i := ti to

processing element k := pk can be defined as the time

required to complete all of required computation and

communication.

 commcomp TTT  (5)

Computation time is calculated as:

)(

)(
),(

k

i
comp

pu

tw
kiT  (6)

Communication time is the sum of duration of

communication between task i and all predecessor tasks

mapped to a processing element different that k

(communication cost between two tasks on the same PE

is zero). The cost of communication between two tasks i

and j mapped to processors k and l respectively is

expressed in (7).

),(

),(
),(

lk

ji

comm
ppu

ttw
jiT  (7)

In order for a task to begin execution, all its

predecessors must finish execution. After the predecessor

j finishes execution, it would take Tcomm (i,j) time before

the task i can use the results. This has to be calculated for

all predecessors of task i and the maximum such value is

the time when task i can start execution. The time the task

i takes to execute Tcomp (i) depends on the PE it is

assigned to.

IV. LONGEST PARALLEL PATH MAPPING ALGORITHM

In order to solve this resource allocation problem, a

static scheduling algorithm [14] has been developed

based on Critical Path Method [5] with additional

modifications to develop fast and efficient heuristics.

This algorithm’s objective is to minimize the overall

execution time of the application.

For each task the earliest and the latest possible start

time governed by data dependencies can be defined. If

both times for a certain process are equal that process is a

critical process. A set of critical nodes (processes) and

edges between them from source to finish form a critical

path.

The mapping process, as shown on Figure 4, consists

of four stages. In the first stage, first of all processing

elements are sorted descending by their computation

speed. Afterwards, using a modified version of Dijkstra

algorithm [12], the longest path is identified and mapped

to the fastest processor. As long as there are free PEs, the

algorithm identifies the second critical path, the third etc.

and maps all tasks in the path to the fastest free PE. Thus,

communication costs between tasks on the same path are

minimized.

Next, a preliminary schedule is made for mapped

tasks, which enables the search for free gaps in PE task

list where unmapped tasks will be mapped in stage 3.

Stage 3 comes in two versions. In the first one,

mapping of remaining tasks starts with PEs sorted

ascending by computation speed. For each unmapped

task a time frame is calculated - it begins when all of

task’s mapped predecessors have finished and ends

before the first mapped successor has to start. Starting

with the slowest PE, mapper checks if it is free during

time frame and fast enough to compute the task in time; if

Figure 4. Longest Parallel Path algortihm flow

1266 MIPRO 2014/CTS

it is not, the overflow for that task and that PE (expressed

as time) is stored for later evaluation.

In the second version, PEs are sorted descending by

computation speed thus search for candidate PE starts

with fastest processor.

When the fit PE is found the task is mapped to that PE

– a perfect fit, and in case when there is no perfect fit the

task is mapped to PE with least overflow.

The rationale behind the first version of Stage 3

mapping is that it is hardest to find a task that can be

mapped to slowest PEs without disrupting entire

schedule. On the other hand, mapping one task to slow

PE usually means that it will consume the most of the

available time frame and leave little chunks of free

processor time that are not big enough for any other task

to fit in. On the contrary, fast processors require much

less time to finish the computation and it is probable that

when a task is assigned in a free time frame, enough

room will be left for at least one more task to be fitted in

the same time frame.

The final schedule is calculated in the last stage of the

mapping process.

Based on the algorithm discussed above, Automatic

Mapping Tool has been developed in Java programming

language and preliminary results of conducted

simulations are discussed in the next chapter.

V. EXPERIMENTAL RESULTS & FUTURE WORK

In this chapter we present the results of performance

testing of LPP algorithm, make comparison with results

obtained by using another greedy algorithm – LPT [7]

and propose directions for future development.

A. Case Study

The performance of proposed mapping algorithm, in

terms of total execution time estimation, was examined

on nine different platform configurations for two generic

applications. The configuration for each test case is

described in Table 1. The numbers represent PE speed in

Mops, and in each case communication costs between

two processes on different PEs are the same.

1) The LPP algorithm was tested for both versions of

Stage 3 (ascending and descending order). The execution

times estimation of mapping generic application,

represented by a DAG on Figure 2, are shown on chart

on Figure 5. In the same figure we compare to the results

obtained using LPT algorithm. LPP – ascending version

results

In all nine test cases LPP outperforms LPT by up to

130 percent. It is also important to note that LPP

algorithm, in case of platform with two fast PEs (both

150 Mops), reaches optimal solution: total duration is

equal to critical path duration, and LPT can never reach

that situation. In that case LPP algorithm provides

speedup of 1.56 times compared to a sequential solution.

Even more interesting is that in Configuration 3, when

two fast PEs (both 150Mops) are replaced by a set of PEs

by a third and a half slower (‘3PE’ in Table 1) the

speedup is still high - 1.5 times compared to sequential

solution.

It is also important to note that time complexity of

LPP algorithm is)log()(nnOnT  which is a significant

improvement compared to complexity of LPT algorithm

which is)()(3nOnT  [7].

2) LPP – descending version results

 The results for the second version of LPP (Stage 3 PE

search in descending order) are exactly the same as in the

previous case. A possible explanation for this is that other

features of the algorithm govern task scheduling in later

stages. For example, the first stage of the algorithm works

in a way that it puts most load to fastest processors which

later have little room to host additional tasks. On the

other hand slower processors are left with much more idle

time after the preliminary scheduling and have a higher

TABLE I. PLATFORM CONFIGURATIONS FOR TEST CASES

 1PE [Mops] 2PE [Mops] 3PE [Mops]

Configuration 1 150 150, 150 150, 150, 150

Configuration 2 100 150, 100 150, 100, 100

Configuration 3 75 150, 75 150, 100, 75

Figure 5. Total execution time comparison

MIPRO 2014/CTS 1267

possibility to contain a gap in scheduling that is big

enough to fit a new task without overflow. Another

possible reason for this, in case when all processors are

left “crowded” after the preliminary scheduling, and

overflow is almost iminent, is that faster processors will

have less overflow (can compute the task faster) and will

be filled with new incoming tasks first, regardless of the

order of processor list traversal.

B. Future development

In future research, the LPP algorithm should be

improved so it could tackle the following two issues:

support for application with loops and recursions, and

support for MPSoC platforms that have a more

specialised type of components which are more suitable

for a certain type of operation (e.g. floating point

operations) – mapping affinity problem.

Another direction of development could address DSE

from another point – giving recommendation for the

platform architecture by selecting the most suitable

configuration from a set of available components.

VI. CONCLUSION

In this paper we have given a short overview of

Design Space Exploration, as a vital concept for modern

heterogeneous multiprocessor embedded system, and

related work. Further, we have addressed the issue of lack

of quality mapping algorithms – crucial for automation of

the entire DSE process by presenting new greedy strategy

based on critical path method.

The presented LPP algorithm provides efficient

automatic mapping strategy which exploits available task

level parallelism in the given application. Conducted case

study shows that the algorithm is able to schedule tasks

on heterogeneous platforms with variable processor

performance and achieve speedup very close to optimal

solution in polynomial amount of time. In comparison to

another acknowledged greedy strategy, LPP algorithm

shows significant performance improvement – up to 130

percent. However, some issues concerning exploiting

data level parallelism available in application and higher

level of “platform awareness” remain and will be dealt in

future research.

REFERENCES

[1] D. D. Gajski, S. Abdi, A. Gerstlauer and G. Schirner, Embedded
System Design. Modeling, Synthesis and Verification. Ed. New
York: Springer, 2009.

[2] H. Park, H. Oh and S. Ha, “Multiprocessor SoC Design Methods
and Tools,” IEEE Signal Processing Magazine, vol. 26, pp. 72 –
79, November 2009.

[3] W. Wolf, “Hardware and Software Co-design,” in High-
Performance Embedded Computing. Architecures, Applications
and Methodologies. Ed. San Francisco, CA: Elsevier, 2007.

[4] J. Lin, A. Srivatsay, A. Gerstlauer, and B. L. Evans,
“Heterogeneous multiprocessor mapping for real-time streaming
systems,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Prague,
Czech Republic, 2011, pp. 1605 – 1608.

[5] W.H. Kohler, “A Preliminary Evaluation of the Critical Path
Method for Scheduling Tasks on Multiprocessor Systems,” in
IEEE Transactions on Computers, Vol C-24, pp. 1235 - 1238,
December 1975.

[6] K. Vivekanandarajah, and S. K. Pilakkat, “Task Mapping in
Heterogeneous MPSoCs for System Level Design,” in
Proceedings of 13th IEEE International Conference on
Engineering of Complex Computer Systems, Belfast, UK, 2008,
pp. 56 – 65.

[7] V. Zadrija and V. Sruk, “Mapping algorithms for MPSoC
Synthesis” in Proceedings of MIPRO 2010, 33nd International
Convention, Opatija, Croatia, 2010, pp. 624 - 629.

[8] D. Pierre, Optimization Theory With Applications, ser. Dover
Books on Mathematics Series. Dover Publications, 1986.

[9] R. Garey and D. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, ser. Series of Books in the
Mathematical Sciences. W. H. Freeman, 1979.

[10] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to automata
theory, languages, and computation, ser. Addison-Wesley series
in computer science. Addison-Wesley, 2001.

[11] M. Palesi, T. Girvagis,. “Multi-Objective Design Space
Exploration Using Genetic Algorithms”, Proceedings of the Tenth
International Symposium on Hardware/Software Codesign
(CODES), 2002, pp. 67 – 72.

[12] R. Sedgewick, K. Wayne, Algorithms, 4th Edition,
http://algs4.cs.princeton.edu/home/, December 2013.

[13] M. Thompson, H. Nikolov, T. Stefanov et al., “A Framework for
Rapid System-level Exploration, Synthesis, and Programming of
Multimedia MPSoCs”, Proceedings of the 5th International
Symposium on Hardware/Software Codesign CODES+ISSS’07,
Salzburg, Austria, 2007, pp. 9-14.

[14] N. Frid, V. Sruk. “Longest Parallel Path Mapping Algorithm for
Heterogeneous MPSoCs”, ACM womENcourage Europe
Conference, March 2013, accepted for publication.

1268 MIPRO 2014/CTS

http://algs4.cs.princeton.edu/home/

