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Abstract: Typical scenarios occurring in genomics and proteomics involve small number of samples and large number 

of variables. Thus, variable selection is necessary for creating disease prediction models robust to 

overfitting. We propose an unsupervised variable selection method based on sparseness constrained 

decomposition of a sample. Decomposition is based on nonlinear mixture model comprised of test sample 

and a reference sample representing negative (healthy) class. Geometry of the model enables automatic 

selection of component comprised of disease related variables. Proposed unsupervised variable selection 

method is compared with 3 supervised and 1 unsupervised variable selection methods on two-class 

problems using 3 genomic and 2 proteomic data sets. Obtained results suggest that proposed method could 

perform better than supervised methods on unseen data of the same cancer type. 

1 INTRODUCTION 

Microarray gene expression profiling technology 

(Alon et al., 1999; Shipp et al., 2002; Singh et al., 

2002) and mass spectrometry (Mischak et al., 2009; 

Petricoin et al., 2002a; Petricoin et al., 2002b) are 

key technologies used, respectively, to monitor gene 

and protein expressions. Data from these types of 

experiments present a "large p, small n" problem: a 

very large number of variables (genes or m/z ratios) 

relative to the number of samples (gene or protein 

expressions). Under such circumstances learned 

diagnostic (prediction) models are very likely to 

overfitt; that is not to generalize well to new data 

from the same cancer type even though performance 

on the training  set was good (Statnikov et al., 

2005a; Guyon et al., 2002). To improve diagnostic 

performance of the predictors as well as to gain 

better understanding of the underlying process that 

generated data a variable selection is necessary 

(Guyon et al., 2002; Statnikov et al., 2005a); that is 

to select small number of genes or m/z ratios that 

discriminate well between healthy and cancer 

patients. Thereby, the goal is to select a subset of 

variables that together have good predicting power, 

rather than ranking them according to their 

individual predicting powers. Methods for this 

problem are grouped into wrappers, filters and 

embedded methods (Guyon et al., 2002; Kohavi and 

John, 1997; Lazar et al., 2012). Filters select subset 

of variables as a pre-processing step independently 

of the predictor. Wrappers use chosen learning 

machine to score subsets of variables. Embedded 

methods select variables together with the training of 

predictor. Depending on whether diagnoses 

information (class label) is used we distinguish 

supervised (Peng et al., 2005) and unsupervised 

methods in variable selection. Unsupervised 

approaches are important for discovering novel 

biological mechanisms and analyzing large datasets 

for which little prior knowledge is available. 

Because of no use of diagnoses information it is 

expected that diagnostic models trained on variables 

selected by unsupervised approaches generalize 

better on unseen data from the same cancer type. 

Unsupervised approaches can be further divided 

into: clustering methods (Ben-Dor et al., 1999), 

model-based methods (Lazzeroni and Owen, 2002), 

and projection methods. A disadvantage of 

clustering methods is that genes are partitioned into 

mutually exclusive clusters, whereas in reality a 

gene or experiment may be a part of several 

biological processes. Model-based approaches first 

generate a model that explains interaction among 

biological entities participating in genetic regulatory 

networks and then train the parameters of the model 

on expression datasets. The challenge of model-



based approaches may be the lack of sufficient data 

to train the parameters. Projection methods 

decompose dataset into components that have 

desired property. Since variables in components 

obtained by decomposition are latent or hidden these 

methods are also known under the name latent 

variable analysis. The most often used projection 

methods are: principal component analysis (PCA), 

independent component analysis (ICA), sparse 

component analysis (SCA) and nonnegative matrix 

factorization (NMF). PCA (Alter et al., 2000) 

decomposes experimental data into uncorrelated 

components. In contrast to PCA, ICA decomposes 

input dataset into statistically independent 

components (Hyvärinen et al., 2001). That yields 

biologically relevant components that are 

characterized by the functional annotation of genes 

that are predominant within the component (Lee and 

Batzoglou, 2003). SCA-based decomposition yields 

biologically relevant components that are composed 

of small number of genes (variables), i.e. they are 

sparse (Schachtner et al., 2008; Stadtlthanner et al., 

2008; Gao and Church, 2005; Kim and Park, 2007). 

NMF (Cichocki et al., 2010) decomposes dataset 

into nonnegative components (Brunet et al., 2004) 

that in addition can be sparse (Gao and Church, 

2005; Kim and Park, 2007; Kopriva and Filipovi , 

2011). Unsupervised decomposition methods for 

variable selection, the representatives of which are 

referenced above, have the following limitations: (i) 

they are based on a linear mixture model (Girolami 

and Breitlling, 2004) representing dataset as 

weighted linear superposition of components. The 

exception is (Lee and Batzoglou, 2003) where, in 

addition to linear, nonlinear mixture model is used to 

represent gene expressions and that has been 

motivated by the fact that interactions within gene 

regulatory networks can be nonlinear (Yuh et al., 

1998); (ii) the whole dataset is used for 

decomposition yielding only one component with 

cancer related variables. This component can be 

used for biomarker identification studies but it does 

not suffice to learn diagnostic model.  

Here we propose wrapper-like variable selection 

method. It performs unsupervised variable selection 

by individually decomposing each sample into 

sparse components. Thereby, decomposition is based 

on nonlinear mixture model comprised of considered 

sample and a reference sample representing negative 

(healthy) class. The model is nonlinear 

generalization of the linear mixture model with a 

reference sample presented in (Kopriva and 

Filipovi , 2011). Nonlinear mapping is performed 

across sample dimension yielding possibly linear 

model with preserved number of variables and 

"increased" number of samples. Sparseness 

constrained decomposition is performed in mapped 

space, whereas selection of component with cancer 

related variables is performed automatically (without 

using diagnoses information). Afterwards, variables 

in cancer related components are ranked by their 

variance. This yields index set that is used to access 

true variables in the original input space of samples. 

They are used to learn diagnostic models by cross-

validating two-class support vector machine (SVM) 

classifier (Vapnik, 1998). To make our results 

reproducible Gene Expression Model Selector 

(GEMS) software system has been used for cross-

validation and learning of SVM-based diagnostic 

models. The system is available online at: 

http://www.gems-system.org/.  It uses the LibSVM 

team (Chang and Lin, 2003) based implementation 

of the SVM algorithms. The GEM implements two-

loops based system known as nested stratified cross-

validation (Statnikov et al., 2005a; Statnikov et al.,  

2005b) that avoids overfitting. It has also been found 

that diagnostic models produced by GEMS perform 

well in independent samples and that GEMS-based 

cross-validation performance estimates approximate 

well the error obtained by the independent validation 

(Statnikov et al., 2005b). Hence, it is believed that 

performance estimate of proposed approach to 

variable selection is trustworthy. Proposed approach 

is compared with three state-of-the-art supervised 

(Brown 2009; Aliferis et al., 2010) and one 

unsupervised (Kopriva and Filipovi , 2011) variable 

selection method on three well-known cancer types 

in genomics: colon cancer (Alon et al., 1999), 

diffuse large b-cell lymphomas and follicular 

lymphomas (Shipp et al., 2002) and prostate cancer 

(Singh et al., 2002), and two well-known cancer 

types in proteomics: ovarian cancer (Petricoin et al., 

2002a) and prostate cancer (Petricoin et al., 2002b).  

Proposed method yields comparable accuracy 

with slightly more variables than supervised 

methods and it outperforms its linear counterpart 

(Kopriva and Filipovi , 2011).  

The rest of the paper is organized as follows. 

Proposed approach to variable selection is described 

in section 2. Results of comparative performance 

analysis are presented in section 3. Discussion and 

conclusions are proposed in section 4. 

2 METHODS 

A sample recorded by microarray or mass 

spectrometer contains components imprinted by 



several interfering sources. As an example in 

(Decramer et al., 2008) it is described how different 

organs imprint their substances (components) into a 

urine sample. These substances (components) can be 

generated during disease progression and their 

identification may be beneficial for early diagnoses 

of disease (Mischak et al., 2009). That, however, is 

complicated by the fact that component of interest 

may be "buried" within a sample. Unsupervised 

decomposition methods briefly elaborated 

previously presume most often that sample is linear 

superposition of components. This section presents 

sparseness constrained unsupervised decomposition 

method for variable selection using novel type of 

nonlinear mixture model of a sample. The mixture 

model is comprised of considered sample and a 

reference sample that represents negative (healthy) 

class. The model is nonlinear generalization of the 

linear mixture model with a reference sample that 

was presented in (Kopriva and Filipovi , 2011).  

2.1 Linear Mixture Model 

Let us assume that N samples (gene or protein 

expressions) are stored in rows of data matrix 
N KRX , whereas each sample is further 

comprised of K variables (genes or m/z ratios). We 

also assume that N samples have diagnoses (label): 
1 , 1, 1K

n nR yx , n=1,...,N, where 1 stands for 

positive (cancer) and -1 stands for negative (healthy) 

sample. Matrix factorization methods such as PCA, 

ICA, SCA and/or NMF assume linear mixture 

model. For this purpose data matrix X is modelled as 

a product of two matrices: 
 

X AS  (1)
 

where 0

N MRA , M KRS  and M stands for an 

unknown number of components imprinted in 

samples. Each component is represented by a row 

vector of matrix S, that is: 
1 K

m Rs , m=1,...,M. 

Column vectors of matrix A: 
1N

m Ra , m=1,...,M , 

represent concentration profiles of the corresponding 

components. To infer component comprised of 

disease relevant variables label information is used 

by methods such as (Schachtner et al., 2008; 

Liebermeister, 2002; Lee and Batzoglou, 2003). 

Extracted component is further analyzed by 

clustering to determine biological relevance and 

extract biomarkers but it does not suffice to learn 

diagnostic models. To address this limitation a linear 

mixture model with a reference sample was 

proposed in (Kopriva and Filipovi , 2011): 

1,...,
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where 
2

0

M

n RA  and 
M K

n RS  respectively 

represent sample dependent matrices of 

concentration profiles and components the number 

of which, M, was assumed to be the same for all the 

samples. xref stood for a reference sample that 

represented either positive or negative class. Herein, 

we assume that xref represents negative (healthy) 

class. It can be selected by an expert or, as it was the 

case herein, can be obtained by averaging all the 

samples belonging to negative class. As opposed to 

linear mixture model (1), the linear mixture model 

(2) has greater flexibility because the model is 

sample adaptive. That addresses issue of biological 

diversity, because even samples within the same 

group are different. Geometry of the mixture model 

(2) enables to automatically select component with 

cancer relevant variables. Provided that xref  

represents negative group component with cancer 

relevant variables, scancer, is the one associated with 

the mixing vector that closes the largest angle with 

the axis defined by the xref sample. Component 

comprised of variables related to healthy state, 

shealthy, is the one associated with the mixing vector 

that closes the smallest angle with the axis defined 

by the xref sample. The rest of the M-2 components 

are comprised of differentially not expressed 

(indifferent) variables. That is illustrated in Figure 

1a. 

2.2 Nonlinear Mixture Model 

As pointed out in (Lee and and Batzoglou, 2003; 

Yuh et al., 1998) interactions among components in 

biological samples do not have to be linear only. 

Thus, nonlinear mixture model would be more 

general description. Nonlinear generalization of the 

linear model (2) is given with:  
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where 
2: nM

nf R R  is an unknown sample 

dependent nonlinear function that maps Mn-

dimensional vector of variables 
1

;
nM

k n Rs  to 2-

dimensional observation vector. Thereby, first 

element of the observation vector belongs to the 

reference sample and second element to the test 

sample. Herein, we assume that reference sample 

represents negative (healthy) class. It can be selected 

by an expert or, as it was the case herein, can be 



obtained by averaging all the samples belonging to 

negative class. Note that unlike the linear 

counterpart (2) the nonlinear model (3) assumes that 

number of components contained in the sample, Mn, 

is also sample dependent. We map (3) explicitly: 
 

,

; 1,...,
ref k

n k n

nk

x
k K

x
A s  (4)

 

where
 0

nD M

n RA , 
1

;
nM

k n Rs  and 
2: DR R  is 

nonlinear mapping that increases original number of 

samples from 2 to D>2.  
 

 

Figure 1: Geometry of the mixture model with a reference 

sample: a) linear model (2); b) nonlinear model (4). 

The algebraic structure of the mapping is of the 

form: 
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where d is order of the mapping. Coefficients are 

mapping dependent. We prefer mappings that induce 

reproducible kernel Hilbert space (RKHS) of 

functions and are, therefore, associated with the 

kernel function through kernel trick:, where 

,
H

x y denotes the inner product in RKHS 

H induced by kernel . It enables us to construct 

explicit mapping   by factorizing the kernel 

function. We have chosen the Gaussian kernel: 
2 2, exp /x y x y  for which 

factorization yields: 
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such that 2

0N , 1 2 , 1 2! ! !
 

and 

1 2

,nk ref k nkx xx . d is an order of approximation that is 

data dependent and has to be determined by cross-

validation. Regarding   we have found that when 

data are scaled to [-1, 1] interval,  can be 

approximately set to 1. Dimension D of mapping 

induced space depends on order of the mapping d 

through: D=(d+2)(d+1)/2. We can write (5) as: 
 

,
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where 
D

j Re , j=1,...,D, are unit vectors that form 

the orthonormal basis in 
DR . Thus, cosines of the 

angles that column vectors ; 0

D

m n Ra  , m=1, ..., Mn, 

in model (4), close with the axis defined by a 

reference sample xref  in mapped space are obtained 

as: 
 

; ; 2 ;
cos , ,

m n ref m n m n
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where ,  stands for inner product. When sample 

xref  represents healthy class component comprised of 

cancer relevant variables is associated with the 

column vector that closes maximal angle with 

respect to axis defined by a reference sample, that is: 
 

; ;arg min cos ,cancer n m n ref
m

s a x  (9)

 

That is illustrated in Figure 1b. When each sample is 

decomposed according to (4) components comprised 

of cancer relevant variables (9) are stored row-wise 

in a matrix N K

cancer RS . Variables (columns of 

cancerS ) are then ranked by their variance across the 

sample dimension yielding ranked N K

cancer RS . Let us 

denote by I a corresponding index set. Variables 

ranked in the original space of samples are obtained 

by indexing each sample by I, that is: ranked

n nx x (I), 

n=1,..., N. Samples with ranked variables form rows 

of the matrix 
ranked N KRX  that,  when paired with 



the vector of labels y , is used to learn SVM-based 

diagnostic models. 

2.3 Sparse Component Analysis 

Decomposition of the linear mixture model (4) is 

performed enforcing sparseness of the components 

;m ns , m=1, .., Mn. Sparseness constraint is in 

microarray data analysis justified by biological 

reasons (Stadtlthanner et al., 2008, Gao and Church, 

2005). That is, sparse components are comprised of 

few dominantly expressed variables and that can be 

good indicator of a disease. In relation to a mixture 

model with a reference sample (3)/(4) sparseness 

constraint implies that variable is dominantly 

expressed in: (i) cancer related component and few 

components comprised of differentially not 

expressed  variables; (ii) few components comprised 

of differentially not expressed variables; or (iii) few 

components comprised of differentially not 

expressed variables and healthy class related 

component. 

Method used to solve, in principle, 

underdetermined blind source separation problem 

(4) estimates mixing matrix nA  first by using the 

algorithm (Gillis and Vavanis, 2012) with a 

MATAB code available at: https://sites.google.com/ 

site/nicolasgillis/publications. The important 

characteristic of the method is that there are no free 

parameters to be tuned or defined a priori. The 

unknown number of components Mn is also 

estimated automatically and is limited above by D. 

Thus, by cross-validating d we implicitly cross-

validate Mn as well. After nA  is estimated the nS
 
is 

estimated by minimizing sparseness constrained cost 

function: 
 

2

n 1
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ref
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where the hat sign denotes an estimate of the true 

(but unknown) quantity,  is regularization 

parameter and 
1nS denotes 1 -norm of nS . We 

have used the iterative shrinkage thresholding (IST) 

type of method (Beck and Teboulle, 2009) with a 

MATLAB code at: http://ie.technion.ac.il/ 

Home/Users/ becka.html. A sparsity of the solution 

is controlled by the parameter . There is a maximal 

value of   (denoted by max here) above which the 

solution of the problem (10) is equal to zero. Thus, 

in the experiments reported in section 3 the value of 

 has been selected by cross-validation with respect 

to max. Proposed variable selection algorithm is 

outlined in Table 1. Please note that by setting d=1 

in (5)/(6) and by ignoring the first term we actually 

perform decomposition of a linear mixture model 

proposed in (Kopriva and Filipovi , 2011). 

Table 1: A nonlinear mixture model with a reference-

based algorithm for variable selection. 

Inputs: N KRX data matrix with N rows 

representing samples (gene or protein expressions) and 

K columns representing variables (genes or m/z ratios); 

1
1,1

N

n n
y labels or diagnoses; 

1 K

ref Rx

reference sample representing negative (healthy) group.  

Scale the data matrix X such that -1 xnk 1, n=1,...,N 

and k=1,...,K. 

Nested stratified cross-validation.  

Loop 1: order of nonlinear mapping in (5)/(6): d {1, 2, 

3, 4, 5}; 

Loop 2: regularization constant in (10): {0.05, 0.1, 

0.2, 0.3, 0.4, 0.5} max.  

1. xn=X(n,:), n=1,...,N form a nonlinear mixture 

model according to (2). 

2. Perform variable-wise nonlinear mapping of (2) by 

mapping (6) with =1 with chosen d. 

3. According to (4) use separable NMF algorithm 

(Gillis and Vavanis, 2012) to estimate mixing matrix 

nA and IST algorithm (Beck and Teboulle, 2009) to 

estimate 
nS  with chosen . 

4. According to (9) select cancer related component 

;( ,:)cancer cancer nnS s .  

5. Rank selected variables in 
cancerS by their variance to 

obtain index set I. 

6. Obtain selected variables in the original input space 

as: Xranked=X(:,I).  

7. Use (Xranked, y) to perform cross-validation with 

optimal parameters of the SVM classifier with 

polynomial and Gaussian kernels. Use normalization of 

variables to [0, 1] interval. 

End of loop 2. 

End of loop 1. 

8. Select diagnostic model with the highest accuracy.    



3 RESULTS 

Proposed approach is compared against state-of-the-

art supervised variable selection methods: maximum 

mutual information minimal redundancy (MIMR) 

method (Brown, 2009) and HITTON_PC and 

HITTON_MB (Aliferis et al., 2010) methods. We 

also report results for linear counterpart of proposed 

method (Kopriva and Filipovi , 2011). Gene 

Expression Model Selector (GEMS) software system 

(Statnikov et al., 2005b), has been used for cross-

validation and learning of SVM-based diagnostic 

models with polynomial and Gaussian kernels the 

parameters of which were optimized in cross-

validation loop as well. The system is available 

online at: http://www.gems-system.org/. HITON_PC 

and HITON_MB algorithms are implemented in 

GEMS software system while implementation of the 

MIMR algorithm is available at MATLAB File 

Exchange. Methods were compared on three cancer 

types in genomics: colon cancer (Alon et al., 1999), 

diffuse large b-cell lymphoma and follicular 

lymphomas (DLBCL/FL) (Shipp et al., 2002) and 

prostate cancer (Singh et al., 2002) and two cancer 

types in proteomics: ovarian cancer (Petricoin et al., 

2002a) and prostate cancer (Petricoin et al., 2002b). 

The five datasets are described in Table 2. For each 

dataset we report the best result achieved by one of 

these supervised methods. The results obtained by 

10-fold cross-validation are reported in Table 3. Due 

to the lack of space we do not report details on 

parameters of the SVM classifiers. For each of five 

datasets proposed method achieves result that is 

worse than but comparable with the result of state-

of-the-art supervised algorithm and much better than 

its linear unsupervised counterpart. Since reported 

results are achieved with small number of variables 

the probability of overfitting is reduced. Thus, it is 

reasonable to expect that performance on unseen 

data of the same cancer type by proposed 

unsupervised method will be better than the one 

achieved with supervised algorithms. 

Colon cancer data are available at: http://genomic-

pubs.princeton.edu/oncology/affydata/index.html. 

Prostate cancer and DLBCL/FL genomic data are 

available at: http://www.gems-system.org/. Ovarian 

and prostate cancer proteomic data (mass spectra) 

are available at: http://home.ccr.cancer.gov/ 

ncifdaproteomics/ppatterns.asp. To comply with 

principle of reproducible research software that 

implements steps 1 to 6 of the proposed algorithm, 

datasets used and results presented in Table 3 are 

available at: http://www.lair.irb.hr/ikopriva/Data/ 

HRZZ/data/BIOINFORMATICS_2015.zip 

Table 2: Cancer human gene and protein expression 

datasets used in comparative performance analysis. 

Dataset 
Number of samples 

(cancer/normal) 

Number of 

variables 
Reference 

1. Prostate 

cancer 
52 /50 10509 

Singh et al., 

2002 

2. Colon 

cancer 
40/22 2000 

Alon et al., 

1999 

3. DLBCL/FL 58/19 5469 
Shipp et al.,  

2002 

4. Ovarian 

cancer 
100/100 15152 

Petricoin et 

al., 2002a 

5. Prostate 

cancer 
69/63 15154 

Petricoin et 

al., 2002b 

Table 3: Classification accuracy and number of selected 

variables. 

Dataset 
Proposed 

method 

Supervised 

method 

(Kopriva, 

Filipovi , 

2011) 

1. Prostate 

cancer 

91.27% / 38 

genes (d=2, 

=0.4). 

MIMR: 98.09% / 

10 genes. 

94.27% / 477 

genes. 

2. Colon 

cancer 

91.91% / 24 

genes (d=5, 

=0.1). 

HITON_MB: 

93.33% 4 genes. 

90.48% / 30 

genes, =0.05.

3. DLBCL/FL

96.25% / 14 

genes (d=2, 

=0.2). 

HITON_PC: 

100% / 6 genes. 

98.57% / 169 

genes, =0.01.

4. Ovarian 

cancer 

93% / 7 m/z 

lines (d=4, 

[0.4, 0.7]).

HITON_PC: 

99.5% / 7 m/z 

lines. 

82% / 25 m/z 

lines, =0.2. 

5. Prostate 

cancer 

94.06% / 14 

m/z lines 

(d=4, =0.2).

MIMR: 100% / 

10 m/z lines 

94.01% / 85 

m/z 

lines, =0.2. 

 

d denotes order of nonlinear mapping (6) and  

denotes regularization parameter in (10).  

4 CONCLUSIONS 

Because it requires little prior knowledge 

unsupervised decomposition of set of samples into 



additive mixture of components is of particular 

importance in addressing overfitting problem. 

However, contemporary unsupervised 

decomposition methods require label (diagnoses) 

information to select component with cancer 

relevant variables. Such component is useful for 

biomarker identification studies but it does not 

suffice to learn diagnostic model. In addition to that, 

most of existing unsupervised decomposition 

methods assume linear additive mixture model of a 

sample. Herein, we have proposed an approach for 

variable selection by decomposing each sample 

individually into sparse components according to 

nonlinear mixture model of a sample, whereas 

decomposition is performed with respect to a 

reference sample that represents negative (healthy) 

class. This enables to select cancer related 

components automatically and use them for either 

biomarker identification studies or learning 

diagnostic models. It is conjectured that outlined 

properties of proposed approach to variable selection 

enabled competitive diagnostic accuracy with small 

number of variables on cancer related human gene 

and protein expression datasets. While proposed 

approach to variable selection is developed for 

binary (two-class) problems its extension for multi-

category classification problems is aimed for the 

future work. 
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