Two divisors of $\left(n^{2}+1\right) / 2$ summing up to $\delta n+\varepsilon$, for δ and ε even

Workshop on Number Theory and Algebra, November 26-28, 2014, Zagreb

Sanda Bujačić ${ }^{1}$

${ }^{1}$ Department of Mathematics
University of Rijeka, Croatia

Previous Results

- In [1] Ayad gives sufficient conditions for a polynomial P to be indecomposable ${ }^{1}$ in terms of its critical points and critical values and conjectures the following claim

There do not exist two divisors d_{1}, d_{2} of $\left(p^{2}+1\right) / 2$, greater than 1 such that

${ }^{1}$ Polynomial P is indecomposable if it can be expressed as the composition of two non-constant and non-linear polynomials.

Previous Results

- In [1] Ayad gives sufficient conditions for a polynomial P to be indecomposable ${ }^{1}$ in terms of its critical points and critical values and conjectures the following claim

There do not exist two divisors d_{1}, d_{2} of $\left(p^{2}+1\right) / 2$, greater than 1 such that

$$
d_{1}+d_{2}=p+1
$$

${ }^{1}$ Polynomial P is indecomposable if it can be expressed as the composition of two non-constant and non-linear polynomials.

Previous Results

- In [2], Ayad and Luca have proved that there does not exist an odd integer $n>1$ and two positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that

$$
d_{1}+d_{2}=n+1
$$

and they also proved that the primitive function of

$$
\begin{gathered}
\int\left(x-x_{1}\right)^{\left(p^{2}-1\right) / 2}\left(x-x_{2}\right)^{\left(p^{2}-1\right) / 2} d x \\
p \in \mathbb{P} \backslash\{2\}, \quad x_{1}, x_{2} \in \mathbb{C}, \quad x_{1} \neq x_{2}
\end{gathered}
$$

is indecomposable over \mathbb{C} which was already proved in [1] by a different method

Previous Results

A Diophantine application of the previous claim that is also proved in [2] is

Corollary

Let $a<b, c<d$, e fixed integers and let $p \leq q$ be odd primes. If Diophantine equation

$$
\int_{0}^{x}((t-a)(t-b))^{\left(p^{2}-1\right) / 1} d t-\int_{0}^{y}((s-c)(s-d))^{\left(q^{2}-1\right) / 1} d s=e
$$

has infinitely many solutions (x, y), then

$$
p=q, \quad c-a=d-b=f, \quad e=\int_{0}^{-f}((t-a)(t-b))^{\left(p^{2}-1\right) / 2} d t
$$

Previous Results

In [3], Dujella and Luca have dealt with a more general issue, where $n+1$ was replaced with an arbitrary linear polynomial $\delta n+\varepsilon$, where $\delta>0$ and ε are given integers.

Previous Results

■ Since d_{1}, d_{2} are divisors of a sum of two coprime squares we conclude

$$
d_{1} \equiv d_{2} \equiv 1 \quad(\bmod 4)
$$

and

$$
d_{1}+d_{2}=\delta n+\varepsilon,
$$

then there are two cases: it is either $\delta \equiv \varepsilon \equiv 1(\bmod 2)$, or $\delta \equiv \varepsilon+2 \equiv 0$ or $2(\bmod 4)$.

Previous Results

- Since d_{1}, d_{2} are divisors of a sum of two coprime squares we conclude

$$
d_{1} \equiv d_{2} \equiv 1 \quad(\bmod 4)
$$

and

$$
d_{1}+d_{2}=\delta n+\varepsilon,
$$

then there are two cases: it is either $\delta \equiv \varepsilon \equiv 1(\bmod 2)$, or $\delta \equiv \varepsilon+2 \equiv 0$ or $2(\bmod 4)$.

- In [3] authors have focused on the first case and we deal with the second case.

We completely solve cases when

- $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$,
- $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$,

■ $\varepsilon=0$ and $\delta \equiv 2(\bmod 4)$.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Theorem

If $\varepsilon \equiv 0(\bmod 4)$, then there exist infinitely many positive odd integers n with the property that there exists a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n+\varepsilon$.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

■ Let n be an odd integer, $\varepsilon \equiv 0(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=2 n+\varepsilon .
$$

- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. We can write $d_{1}=g d_{1}^{\prime}, \quad d_{2}=g d_{2}^{\prime}$ $d_{1}^{\prime}, d_{2}^{\prime} \in \mathbb{N}$
- Since d_{1}, d_{2} are divisors of $\left(n^{2}+1\right) / 2$, we can conclude $g d_{1}^{\prime} d_{2}^{\prime}=\operatorname{lcm}\left(d_{1}, d_{2}\right)$ divides $\frac{n^{2}+1}{2}$

■ There exists a positive integer d such that

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

■ Let n be an odd integer, $\varepsilon \equiv 0(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=2 n+\varepsilon .
$$

■ Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. We can write $d_{1}=g d_{1}^{\prime}, \quad d_{2}=g d_{2}^{\prime}, \quad d_{1}^{\prime}, d_{2}^{\prime} \in \mathbb{N}$.

- Since d_{1}, d_{2} are divisors of $\left(n^{2}+1\right) / 2$, we can conclude $g d_{1}^{\prime} d_{2}^{\prime}=\operatorname{Icm}\left(d_{1}, d_{2}\right)$ divides $\frac{n^{2}+1}{2}$
■ There exists a positive integer d such that

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

■ Let n be an odd integer, $\varepsilon \equiv 0(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=2 n+\varepsilon .
$$

- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. We can write $d_{1}=g d_{1}^{\prime}, \quad d_{2}=g d_{2}^{\prime}, \quad d_{1}^{\prime}, d_{2}^{\prime} \in \mathbb{N}$.
- Since d_{1}, d_{2} are divisors of $\left(n^{2}+1\right) / 2$, we can conclude $g d_{1}^{\prime} d_{2}^{\prime}=\operatorname{Icm}\left(d_{1}, d_{2}\right)$ divides $\frac{n^{2}+1}{2}$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

■ Let n be an odd integer, $\varepsilon \equiv 0(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=2 n+\varepsilon .
$$

■ Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. We can write $d_{1}=g d_{1}^{\prime}, \quad d_{2}=g d_{2}^{\prime}, \quad d_{1}^{\prime}, d_{2}^{\prime} \in \mathbb{N}$.

- Since d_{1}, d_{2} are divisors of $\left(n^{2}+1\right) / 2$, we can conclude $g d_{1}^{\prime} d_{2}^{\prime}=\operatorname{lcm}\left(d_{1}, d_{2}\right)$ divides $\frac{n^{2}+1}{2}$
- There exists a positive integer d such that

$$
d_{1} d_{2}=\frac{g\left(n^{2}+1\right)}{2 d} .
$$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2},
$$

we can easily obtain

$$
\begin{gather*}
\quad\left(d_{2}-d_{1}\right)^{2}=(2 n+\varepsilon)^{2}-4 \frac{g\left(n^{2}+1\right)}{2 d}, \\
d(4 d-2 g)\left(d_{2}-d_{1}\right)^{2}=(4 d-2 g)^{2} n^{2}+4(4 d-2 g) d \varepsilon n+4 d^{2} \varepsilon^{2}-8 d g-2 \varepsilon^{2} d g+4 g^{2} . \tag{1}\\
\text { For } X=(4 d-2 g) n+2 d \varepsilon, Y=d_{2}-d_{1} \text {, the equation (1) becomes } \\
\quad X^{2}-d(4 d-2 g) Y^{2}=8 d g+2 \varepsilon^{2} d g-4 g^{2} .
\end{gather*}
$$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

For $g=1$ the previous equation becomes

$$
\begin{equation*}
X^{2}-2 d(2 d-1) Y^{2}=2 d\left(4+\varepsilon^{2}\right)-4 \tag{2}
\end{equation*}
$$

The equation (2) is a Pellian equation. The right-hand side of (2) is greater than zero.

Our goal is to make the right-hand side of (2) a perfect square. That condition can be satisfied by taking d

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

For $g=1$ the previous equation becomes

$$
\begin{equation*}
X^{2}-2 d(2 d-1) Y^{2}=2 d\left(4+\varepsilon^{2}\right)-4 \tag{2}
\end{equation*}
$$

The equation (2) is a Pellian equation. The right-hand side of (2) is greater than zero.

Our goal is to make the right-hand side of (2) a perfect square. That condition can be satisfied by taking $d=\frac{1}{8} \varepsilon^{2}-\frac{1}{2} \varepsilon+1$.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Pellian equation (2) becomes

$$
\begin{equation*}
X^{2}-2 d(2 d-1) Y^{2}=\left(\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right)\right)^{2} \tag{3}
\end{equation*}
$$

the equation (3) becomes

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Pellian equation (2) becomes

$$
\begin{equation*}
X^{2}-2 d(2 d-1) Y^{2}=\left(\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right)\right)^{2} \tag{3}
\end{equation*}
$$

If we set

$$
\begin{equation*}
X=\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U, \quad Y=\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) V \tag{4}
\end{equation*}
$$

the equation (3) becomes

$$
\begin{equation*}
U^{2}-2 d(2 d-1) V^{2}=1 \tag{5}
\end{equation*}
$$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Equation (5) is a Pell equation which has infinitely many positive integer solutions (U, V), and consequently, there exist infinitely many positive integer solutions (X, Y) of (3) of the form (4).

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Equation (5) is a Pell equation which has infinitely many positive integer solutions (U, V), and consequently, there exist infinitely many positive integer solutions (X, Y) of (3) of the form (4). We can easily get

$$
\sqrt{2 d(2 d-1)}=[2 d-1 ; \overline{2,4 d-2}] .
$$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Generally, nonnegative integer solutions of (5) are generated by recursive sequences

$$
\begin{gather*}
U_{0}=1, \quad U_{1}=4 d-1, \quad U_{m+2}=2(4 d-1) U_{m+1}-U_{m}, \\
V_{0}=0, \quad V_{1}=2, \quad V_{m+2}=2(4 d-1) V_{m+1}-V_{m}, \quad m \in \mathbb{N}_{0} \tag{6}
\end{gather*}
$$

By induction on m, one gets that
$U_{m} \equiv 1 \quad(\bmod (4 d-2)), m \geq 0$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Generally, nonnegative integer solutions of (5) are generated by recursive sequences

$$
\begin{gather*}
U_{0}=1, \quad U_{1}=4 d-1, \quad U_{m+2}=2(4 d-1) U_{m+1}-U_{m}, \\
V_{0}=0, \quad V_{1}=2, \quad V_{m+2}=2(4 d-1) V_{m+1}-V_{m}, \quad m \in \mathbb{N}_{0} \tag{6}
\end{gather*}
$$

By induction on m, one gets that

$$
U_{m} \equiv 1 \quad(\bmod (4 d-2)), m \geq 0
$$

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

It remains to compute the corresponding values of n which arise from

$$
X=(4 d-2) n+2 d \varepsilon, \quad X=\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U
$$

We want the above number n to be a positive integer.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

It remains to compute the corresponding values of n which arise from

$$
X=(4 d-2) n+2 d \varepsilon, \quad X=\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U
$$

We obtain

$$
n=\frac{\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U-2 d \varepsilon}{4 d-2} .
$$

We want the above number n to be a positive integer.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Congruences

$$
\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U-2 d \varepsilon \equiv-(2 d-1) \varepsilon \equiv 0 \quad(\bmod (4 d-2)),
$$

show that all numbers n generated in the specified way are integers.
are odd integers so we may conclude

$\frac{1}{2}($

which implies that all such integers n are odd

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

Congruences

$$
\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U-2 d \varepsilon \equiv-(2 d-1) \varepsilon \equiv 0 \quad(\bmod (4 d-2)),
$$

show that all numbers n generated in the specified way are integers.
From the first recursive sequence in (7) we know that $U_{m}, m \geq 0$, are odd integers so we may conclude
$\frac{1}{2}\left(\varepsilon^{2}-2 \varepsilon+4\right) U-2 d \varepsilon \equiv 2 U \equiv 2 \quad(\bmod 4)$ and $4 d-2 \equiv 2 \quad(\bmod 4)$, which implies that all such integers n are odd.

The case $\delta=2$ and $\varepsilon \equiv 0(\bmod 4)$

The first few values of number n, which we get from U_{1}, U_{2}, U_{3}, are

$$
\begin{gathered}
\left\{\begin{array}{l}
n=\frac{1}{2}\left(\varepsilon^{2}-3 \varepsilon+6\right), \\
d_{1}=1, \\
d_{2}=\varepsilon^{2}-2 \varepsilon+5 .
\end{array}\right. \\
\left\{\begin{array}{l}
n=\frac{1}{2}\left(\varepsilon^{4}-6 \varepsilon^{3}+20 \varepsilon^{2}-33 \varepsilon+34\right), \\
d_{1}=\varepsilon^{2}-2 \varepsilon+5, \\
d_{2}=\varepsilon^{4}-6 \varepsilon^{3}+19 \varepsilon^{2}-30 \varepsilon+29 .
\end{array}\right. \\
\left\{\begin{array}{l}
n=\frac{1}{2}\left(\varepsilon^{6}-10 \varepsilon^{5}+50 \varepsilon^{4}-148 \varepsilon^{3}+281 \varepsilon^{2}-323 \varepsilon+198\right), \\
d_{1}=\varepsilon^{4}-6 \varepsilon^{3}+19 \varepsilon^{2}-30 \varepsilon+29, \\
d_{2}=\varepsilon^{6}-10 \varepsilon^{5}+49 \varepsilon^{4}-142 \varepsilon^{3}+262 \varepsilon^{2}-292 \varepsilon+169 .
\end{array}\right.
\end{gathered}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Theorem

If $\varepsilon \equiv 2(\bmod 4)$, then there exist infinitely many positive odd integers n with the property that there exists a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=4 n+\varepsilon$.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let n be an odd integer, $\varepsilon \equiv 2(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=4 n+\varepsilon .
$$

Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$ and d is a positive integer which satisfies the equation

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let n be an odd integer, $\varepsilon \equiv 2(\bmod 4)$ and d_{1}, d_{2} divisors of $\left(n^{2}+1\right) / 2$ where

$$
d_{1}+d_{2}=4 n+\varepsilon
$$

Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$ and d is a positive integer which satisfies the equation

$$
d_{1} d_{2}=\frac{g\left(n^{2}+1\right)}{2 d}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2}
$$

we obtain the equation

$$
\begin{equation*}
X^{2}-2 d(8 d-g) Y^{2}=32 d g+2 \varepsilon^{2} d g-4 g^{2} \tag{7}
\end{equation*}
$$

where X, Y are $X=(16 d-2 g) n+4 d \varepsilon$ and $Y=d_{2}-d_{1}$.

The right-hand side of (8) is always greater that zero

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2}
$$

we obtain the equation

$$
\begin{equation*}
X^{2}-2 d(8 d-g) Y^{2}=32 d g+2 \varepsilon^{2} d g-4 g^{2} \tag{7}
\end{equation*}
$$

where X, Y are $X=(16 d-2 g) n+4 d \varepsilon$ and $Y=d_{2}-d_{1}$.
For $g=1$ (7) becomes

$$
\begin{equation*}
X^{2}-2 d(8 d-1) Y^{2}=2 d\left(16+\varepsilon^{2}\right)-4 \tag{8}
\end{equation*}
$$

The right-hand side of (8) is always greater that zero.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

If we take

$$
d=\frac{1}{32} \varepsilon^{2}-\frac{1}{8} \varepsilon+\frac{5}{8},
$$

the right-hand side of (8) is a perfect square and Pellian equation (8) becomes

$$
\begin{equation*}
X^{2}-2 d(8 d-1) Y^{2}=\left(\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right)\right)^{2} \tag{9}
\end{equation*}
$$

We must notice that d is an integer if $\varepsilon \equiv 6(\bmod 8)$, and it is not an integer if $\varepsilon \equiv 2(\bmod 8)$. So, we split the proof in two subcases.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let $\varepsilon \equiv 6(\bmod 8)$. We set

$$
\begin{equation*}
X=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W, \quad Y=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) Z \tag{10}
\end{equation*}
$$

and the equation (9) becomes

$$
\begin{equation*}
W^{2}-2 d(8 d-1) Z^{2}=1 \tag{11}
\end{equation*}
$$

The equation (11) is a Pell equation which has infinitely many positive integer solutions (W, Z), and consequently, there exist infinitely many positive integer solutions (X, Y) of (9) of the form (10)

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let $\varepsilon \equiv 6(\bmod 8)$. We set

$$
\begin{equation*}
X=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W, \quad Y=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) Z \tag{10}
\end{equation*}
$$

and the equation (9) becomes

$$
\begin{equation*}
W^{2}-2 d(8 d-1) Z^{2}=1 \tag{11}
\end{equation*}
$$

The equation (11) is a Pell equation which has infinitely many positive integer solutions (W, Z), and consequently, there exist infinitely many positive integer solutions (X, Y) of (9) of the form (10).

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

All positive solutions of (11) are given by $\left(W_{m}, Z_{m}\right)$ for some $m \geq 0$. Generally, nonnegative integer solutions of (11) are generated by recursive sequences

$$
\begin{gather*}
W_{0}=1, \quad W_{1}=16 d-1, \quad W_{m+2}=2(16 d-1) W_{m+1}-W_{m}, \tag{12}\\
\quad Z_{0}=0, \quad Z_{1}=4, \quad Z_{m+2}=2(16 d-1) Z_{m+1}-Z_{m}, \quad m \in \mathbb{N}_{0} .
\end{gather*}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

By induction on m, one gets that

$$
W_{m} \equiv 1 \quad(\bmod (16 d-2)), \quad m \geq 0
$$

It remains to compute the corresponding values of n which arise from

We obtain

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

By induction on m, one gets that

$$
W_{m} \equiv 1 \quad(\bmod (16 d-2)), \quad m \geq 0
$$

It remains to compute the corresponding values of n which arise from

$$
X=(16 d-2) n+4 d \varepsilon, \quad X=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

By induction on m, one gets that

$$
W_{m} \equiv 1 \quad(\bmod (16 d-2)), \quad m \geq 0
$$

It remains to compute the corresponding values of n which arise from

$$
X=(16 d-2) n+4 d \varepsilon, \quad X=\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W
$$

We obtain

$$
n=\frac{\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W-4 d \varepsilon}{16 d-2}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

The congruences
$\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W-4 d \varepsilon \equiv(8 d-1)\left(1-\frac{\varepsilon}{2}\right) \equiv 0 \quad(\bmod (16 d-2))$
show us that all numbers n generated in the specified way are integers.
From recursive sequence (12) and because of the following
congruences
$\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W-4 d \varepsilon \equiv 2 W \equiv 2 \quad(\bmod 4)$ and $16 d-2 \equiv 2$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

The congruences

$$
\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W-4 d \varepsilon \equiv(8 d-1)\left(1-\frac{\varepsilon}{2}\right) \equiv 0 \quad(\bmod (16 d-2))
$$

show us that all numbers n generated in the specified way are integers.
From recursive sequence (12) and because of the following congruences

$$
\frac{1}{4}\left(\varepsilon^{2}-2 \varepsilon+16\right) W-4 d \varepsilon \equiv 2 W \equiv 2 \quad(\bmod 4) \text { and } 16 d-2 \equiv 2 \quad(\bmod 4)
$$

we can conclude that such integers n are odd.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

The first few values of number n, which we get from W_{1}, W_{2}, W_{3}, are

$$
\begin{gathered}
\left\{\begin{array}{l}
n=\frac{1}{4}\left(\varepsilon^{2}-3 \varepsilon+18\right), \\
d_{1}=1 \\
d_{2}=\varepsilon^{2}-2 \varepsilon+17 .
\end{array}\right. \\
\left\{\begin{array}{l}
n=\frac{1}{4}\left(\varepsilon^{4}-6 \varepsilon^{3}+44 \varepsilon^{2}-105 \varepsilon+322\right), \\
d_{1}=\varepsilon^{2}-2 \varepsilon+17, \\
d_{2}=\varepsilon^{4}-6 \varepsilon^{3}+43 \varepsilon^{2}-102 \varepsilon+305 .
\end{array}\right. \\
\left\{\begin{array}{l}
n=\frac{1}{4}\left(\varepsilon^{6}-10 \varepsilon^{5}+86 \varepsilon^{4}-388 \varepsilon^{3}+1529 \varepsilon^{2}-3155 \varepsilon+5778\right), \\
d_{1}=\varepsilon^{4}-6 \varepsilon^{3}+43 \varepsilon^{2}-102 \varepsilon+305, \\
d_{2}=\varepsilon^{6}-10 \varepsilon^{5}+85 \varepsilon^{4}-382 \varepsilon^{3}+1486 \varepsilon^{2}-3052 \varepsilon+5473 .
\end{array}\right.
\end{gathered}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Now, we deal with the case when $\varepsilon \equiv 2(\bmod 8)$, where $\varepsilon=8 k+2, \quad k \in \mathbb{N}_{0}$.

The right-hand side of the equation will be a perfect square if $2 d-1$ is a perfect square. Motivated by the experimental data, we take

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Now, we deal with the case when $\varepsilon \equiv 2(\bmod 8)$, where $\varepsilon=8 k+2, \quad k \in \mathbb{N}_{0}$.
For $g=d_{1}=\frac{1}{4} \varepsilon^{2}+4$, the equation (7) becomes

$$
X^{2}-2 d(8 d-g) Y^{2}=\frac{2 d-1}{4} \varepsilon^{4}+8 \varepsilon^{2}(2 d-1)+64(2 d-1) .
$$

The right-hand side of the equation will be a perfect square if $2 d-1$ is a perfect square. Motivated by the experim
take

$$
d=\frac{1}{512} \varepsilon^{4}-\frac{1}{64} \varepsilon^{3}+\frac{7}{64} \varepsilon^{2}-\frac{5}{16} \varepsilon+\frac{41}{32}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Now, we deal with the case when $\varepsilon \equiv 2(\bmod 8)$, where $\varepsilon=8 k+2, \quad k \in \mathbb{N}_{0}$.
For $g=d_{1}=\frac{1}{4} \varepsilon^{2}+4$, the equation (7) becomes

$$
X^{2}-2 d(8 d-g) Y^{2}=\frac{2 d-1}{4} \varepsilon^{4}+8 \varepsilon^{2}(2 d-1)+64(2 d-1)
$$

The right-hand side of the equation will be a perfect square if $2 d-1$ is a perfect square. Motivated by the experimental data, we take

$$
d=\frac{1}{512} \varepsilon^{4}-\frac{1}{64} \varepsilon^{3}+\frac{7}{64} \varepsilon^{2}-\frac{5}{16} \varepsilon+\frac{41}{32} .
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

So, the equation (7) becomes

$$
\begin{equation*}
X^{2}-2 d(8 d-g) Y^{2}=\left(\frac{1}{32}\left(\varepsilon^{2}+16\right)\left(\varepsilon^{2}-4 \varepsilon+20\right)\right)^{2} \tag{13}
\end{equation*}
$$

We consider the corresponding Pell equation

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

So, the equation (7) becomes

$$
\begin{equation*}
X^{2}-2 d(8 d-g) Y^{2}=\left(\frac{1}{32}\left(\varepsilon^{2}+16\right)\left(\varepsilon^{2}-4 \varepsilon+20\right)\right)^{2} \tag{13}
\end{equation*}
$$

We consider the corresponding Pell equation

$$
\begin{equation*}
U^{2}-2 d(8 d-g) V^{2}=1 \tag{14}
\end{equation*}
$$

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let $\left(U_{0}, V_{0}\right)$ be the least positive integer solution of (14). That equation has infinitely many solutions. From (14) we get that

$$
U^{2} \equiv 1 \quad(\bmod (16 d-2 g))
$$

Motivated by experimental data, we can also set $d_{2}=d_{1}^{2}-16 k d_{1}, \quad k \in \mathbb{N}_{0}$

For $Y=d_{2}-d_{1}$ we get

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let $\left(U_{0}, V_{0}\right)$ be the least positive integer solution of (14). That equation has infinitely many solutions. From (14) we get that

$$
U^{2} \equiv 1 \quad(\bmod (16 d-2 g))
$$

Motivated by experimental data, we can also set

$$
d_{2}=d_{1}^{2}-16 k d_{1}, \quad k \in \mathbb{N}_{0}
$$

For $Y=d_{2}-d_{1}$ we get

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Let $\left(U_{0}, V_{0}\right)$ be the least positive integer solution of (14). That equation has infinitely many solutions. From (14) we get that

$$
U^{2} \equiv 1 \quad(\bmod (16 d-2 g))
$$

Motivated by experimental data, we can also set

$$
d_{2}=d_{1}^{2}-16 k d_{1}, \quad k \in \mathbb{N}_{0}
$$

For $Y=d_{2}-d_{1}$ we get
$Y=\left(\frac{1}{4} \varepsilon^{2}+4\right)^{2}-(2 \varepsilon-3)\left(\frac{1}{4} \varepsilon^{2}+4\right)=\frac{\varepsilon^{4}}{16}-\frac{\varepsilon^{3}}{2}+\frac{11 \varepsilon^{2}}{4}-8 \varepsilon+28$.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From (13), we obtain:

$$
X=\frac{\left(\varepsilon^{2}+16\right)\left(\varepsilon^{6}-16 \varepsilon^{5}+140 \varepsilon^{4}-768 \varepsilon^{3}+3120 \varepsilon^{2}-8704 \varepsilon+14400\right)}{2048} .
$$

We claim that X satisfies the congruence

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From (13), we obtain:

$$
X=\frac{\left(\varepsilon^{2}+16\right)\left(\varepsilon^{6}-16 \varepsilon^{5}+140 \varepsilon^{4}-768 \varepsilon^{3}+3120 \varepsilon^{2}-8704 \varepsilon+14400\right)}{2048} .
$$

We claim that X satisfies the congruence

$$
\begin{equation*}
X \equiv 4 d \varepsilon \quad(\bmod (16 d-2 g)) . \tag{15}
\end{equation*}
$$

Indeed

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From (13), we obtain:

$$
X=\frac{\left(\varepsilon^{2}+16\right)\left(\varepsilon^{6}-16 \varepsilon^{5}+140 \varepsilon^{4}-768 \varepsilon^{3}+3120 \varepsilon^{2}-8704 \varepsilon+14400\right)}{2048} .
$$

We claim that X satisfies the congruence

$$
\begin{equation*}
X \equiv 4 d \varepsilon \quad(\bmod (16 d-2 g)) \tag{15}
\end{equation*}
$$

Indeed,

$$
16 d-2 g=\frac{\varepsilon^{4}}{32}-\frac{\varepsilon^{3}}{4}+\frac{5 \varepsilon^{2}}{4}-5 \varepsilon+\frac{25}{2},
$$

$X-4 d \varepsilon=\left(\frac{\varepsilon^{4}}{32}-\frac{\varepsilon^{3}}{4}+\frac{5 \varepsilon^{2}}{4}-5 \varepsilon+\frac{25}{2}\right)\left(\frac{\varepsilon^{4}}{64}-\frac{\varepsilon^{3}}{8}+\frac{13 \varepsilon^{2}}{16}-\frac{9 \varepsilon}{4}+9\right)$.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

From $n=\frac{X-4 d \varepsilon}{16 d-2 g}$, we get

$$
n=\frac{\varepsilon^{4}}{64}-\frac{\varepsilon^{3}}{8}+\frac{13 \varepsilon^{2}}{16}-\frac{9 \varepsilon}{4}+9=64 k^{4}+28 k^{2}+7
$$

and we see that n is an odd integer.

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

We set $X=X_{0}$ and $Y=Y_{0}$. Because $\left(X_{0}, Y_{0}\right)$ is a solution of (13), solutions of (13) are also
$X_{i}+\sqrt{2 d(8 d-g)} Y_{i}=\left(X_{0}+\sqrt{2 d(8 d-g)} Y_{0}\right)\left(U_{0}+\sqrt{2 d(8 d-g)} V_{0}\right)^{2 i}, \quad i=0,1,2, \ldots$
From the equation (16), we get

$$
X_{i} \equiv U_{0}^{2 i} X_{0} \equiv X_{0} \equiv 4 d \varepsilon \quad(\bmod (16 d-2 g))
$$

So, there are infinitely many solutions $\left(X_{i}, Y_{i}\right)$ of (13) where X_{i}
satisfies the congruence (15)

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

We set $X=X_{0}$ and $Y=Y_{0}$. Because $\left(X_{0}, Y_{0}\right)$ is a solution of (13), solutions of (13) are also
$X_{i}+\sqrt{2 d(8 d-g)} Y_{i}=\left(X_{0}+\sqrt{2 d(8 d-g)} Y_{0}\right)\left(U_{0}+\sqrt{2 d(8 d-g)} V_{0}\right)^{2 i}, \quad i=0,1,2, \ldots$
From the equation (16), we get

$$
X_{i} \equiv U_{0}^{2 i} X_{0} \equiv X_{0} \equiv 4 d \varepsilon \quad(\bmod (16 d-2 g))
$$

So, there are infinitely many solutions $\left(X_{i}, Y_{i}\right)$ of (13) where X_{i}
satisfies the congruence (15)

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

We set $X=X_{0}$ and $Y=Y_{0}$. Because $\left(X_{0}, Y_{0}\right)$ is a solution of (13), solutions of (13) are also
$X_{i}+\sqrt{2 d(8 d-g)} Y_{i}=\left(X_{0}+\sqrt{2 d(8 d-g)} Y_{0}\right)\left(U_{0}+\sqrt{2 d(8 d-g)} V_{0}\right)^{2 i}, \quad i=0,1,2, \ldots$
From the equation (16), we get

$$
X_{i} \equiv U_{0}^{2 i} X_{0} \equiv X_{0} \equiv 4 d \varepsilon \quad(\bmod (16 d-2 g))
$$

So, there are infinitely many solutions $\left(X_{i}, Y_{i}\right)$ of (13) where X_{i} satisfies the congruence (15).

The case $\delta=4$ and $\varepsilon \equiv 2(\bmod 4)$

Therefore, by

$$
n_{i}=\frac{X_{i}-4 d \varepsilon}{16 d-2 g}, \quad i=0,1,2, \ldots
$$

we get infinitely many integers n_{i} with the required properties. It is easy to see that number n_{i} defined in this way is odd. Indeed, we have $16 d-2 g \equiv 2(\bmod 4), X_{0} \equiv 2(\bmod 4)$, and since (14) implies that U_{0} is odd and V_{0} is even, we get from (15) that

$$
X_{i}-4 d \varepsilon \equiv X_{i} \equiv U_{0}^{2 i} X_{0} \equiv X_{0} \equiv 2 \quad(\bmod 4)
$$

so every $n_{i}, \quad i=0,1,2, \ldots$, is an odd integer.

- $\delta=2$

1 Introduction

2 The case $\delta=2$

3 The case $\delta=4$

4 The case $\varepsilon=0$
■ $\delta=2$

-The case $\varepsilon=0$

L $\delta=2$

The case $\varepsilon=0$ and $\delta=2$

Proposition

There exist infinitely many positive odd integers n with the property that there exists a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$. These solutions satisfy $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$ and $d_{1} d_{2}=\frac{n^{2}+1}{2}$.

The case $\varepsilon=0$ and $\delta=2$

■ Let n be an odd integer and let d_{1}, d_{2} be positive divisors of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$.

- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then $g \mid(2 n)$ and $g \mid\left(n^{2}+1\right)$ which implies that $g \mid\left((2 n)^{2}+4\right)$ so we can conclude that $g \mid 4$
- Recause g is the greatest common divisor of d_{1}, d_{2} and d_{1}, d_{2} are odd numbers, we can also conclude that g is an odd number
- So, $5=1$
- Like we did in the proofs of the previous theorems, we define a positive integer d which satisfies the equation $d_{1} d_{2}=\frac{n^{2}+1}{2 d}$

The case $\varepsilon=0$ and $\delta=2$

- Let n be an odd integer and let d_{1}, d_{2} be positive divisors of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$.
- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then $g \mid(2 n)$ and $g \mid\left(n^{2}+1\right)$ which implies that $g \mid\left((2 n)^{2}+4\right)$ so we can conclude that $g \mid 4$.
- Because g is the greatest common divisor of d_{1}, d_{2} and d_{1}, d_{2} are odd numbers, we can also conclude that g is an odd number.
- So, $g=1$
- Like we did in the proofs of the previous theorems, we define a positive integer d which satisfies the equation $d_{1} d_{2}=\frac{n^{2}+1}{2 d}$

- The case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

- Let n be an odd integer and let d_{1}, d_{2} be positive divisors of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$.
- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then $g \mid(2 n)$ and $g \mid\left(n^{2}+1\right)$ which implies that $g \mid\left((2 n)^{2}+4\right)$ so we can conclude that $g \mid 4$.
- Because g is the greatest common divisor of d_{1}, d_{2} and d_{1}, d_{2} are odd numbers, we can also conclude that g is an odd number.
- So, $g=1$
- Like we did in the proofs of the previous theorems, we define a nositive integer d which satisfies the equation $d_{1} d_{2}=\frac{n^{2}+1}{2 d}$

- The case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

- Let n be an odd integer and let d_{1}, d_{2} be positive divisors of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$.
- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then $g \mid(2 n)$ and $g \mid\left(n^{2}+1\right)$ which implies that $g \mid\left((2 n)^{2}+4\right)$ so we can conclude that $g \mid 4$.
- Because g is the greatest common divisor of d_{1}, d_{2} and d_{1}, d_{2} are odd numbers, we can also conclude that g is an odd number.
- So, $g=1$.
- Like we did in the proofs of the previous theorems, we define a positive integer d which satisfies the equation $d_{1} d_{2}=\frac{n^{2}+1}{2 d}$

ᄂThe case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

■ Let n be an odd integer and let d_{1}, d_{2} be positive divisors of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=2 n$.

- Let $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then $g \mid(2 n)$ and $g \mid\left(n^{2}+1\right)$ which implies that $g \mid\left((2 n)^{2}+4\right)$ so we can conclude that $g \mid 4$.
- Because g is the greatest common divisor of d_{1}, d_{2} and d_{1}, d_{2} are odd numbers, we can also conclude that g is an odd number.
- So, $g=1$.
- Like we did in the proofs of the previous theorems, we define a positive integer d which satisfies the equation $d_{1} d_{2}=\frac{n^{2}+1}{2 d}$.

The case $\varepsilon=0$ and $\delta=2$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2}
$$

we can easily obtain

$$
\begin{equation*}
(2 d-1) n^{2}-2 d y^{2}=1, \tag{17}
\end{equation*}
$$

where $d_{2}-d_{1}=2 y$.
$L_{\delta}=2$

The case $\varepsilon=0$ and $\delta=2$

We will use the next lemma, which is Criterion 1 from [4] to check if there exists a solution for (17).

Lemma (Grelak, Grytczuk)
Let $a>1, b$ be positive integers such that $\operatorname{gcd}(a, b)=1$ and $D=a b$ is not a perfect square. Moreover, let $\left(u_{0}, v_{0}\right)$ denote the least positive integer solution of the Pell equation

$$
u^{2}-D v^{2}=1
$$

Then equation $a x^{2}-b y^{2}=1$ has a solution in positive integers x, y if and only if

$$
2 a \mid\left(u_{0}+1\right) \text { and } 2 b \mid\left(u_{0}-1\right)
$$

The case $\varepsilon=0$ and $\delta=2$

In order to find solutions of (17), for start we solve the Pell equation

$$
\begin{equation*}
U^{2}-2 d(2 d-1) V^{2}=1, \tag{18}
\end{equation*}
$$

where $n=U, y=V$.
Its least positive integer solution is $(4 d-1,2)$

-The case $\varepsilon=0$

$\square \delta=2$

The case $\varepsilon=0$ and $\delta=2$

In order to find solutions of (17), for start we solve the Pell equation

$$
\begin{equation*}
U^{2}-2 d(2 d-1) V^{2}=1 \tag{18}
\end{equation*}
$$

where $n=U, \quad y=V$.
Its least positive integer solution is $(4 d-1,2)$.

- The case $\varepsilon=0$

$\left\llcorner_{\delta}=2\right.$

The case $\varepsilon=0$ and $\delta=2$

According to introduced Lemma, conditions that have to be satisfied are

$$
2(2 d-1) \mid 4 d \text { and } 4 d \mid(4 d-2),
$$

which is not true for $d \in \mathbb{N}$. So, for Pellian equation (17) there are no integer solutions (n, y) when $a=2 d-1>1$.
Finally, we have to check the remaining case for $a=1$, which is
the case that is not included in Lemma. The condition $a=1$
implies that $d=1$.

ᄂThe case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

According to introduced Lemma, conditions that have to be satisfied are

$$
2(2 d-1) \mid 4 d \text { and } 4 d \mid(4 d-2),
$$

which is not true for $d \in \mathbb{N}$. So, for Pellian equation (17) there are no integer solutions (n, y) when $a=2 d-1>1$.
Finally, we have to check the remaining case for $a=1$, which is the case that is not included in Lemma. The condition $a=1$ implies that $d=1$.

-The case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

From (17) and $d=1$, we get the Pell equation

$$
\begin{equation*}
n^{2}-2 y^{2}=1 \tag{19}
\end{equation*}
$$

which has infinitely many solutions $n=U_{m}, \quad y=V_{m}, m \in \mathbb{N}_{0}$ where

$$
\begin{gathered}
U_{0}=1, \quad U_{1}=3, \quad U_{m+2}=6 U_{m+1}-U_{m} \\
V_{0}=0, \quad V_{1}=2, \quad V_{m+2}=6 V_{m+1}-V_{m}, \quad m \in \mathbb{N}_{0}
\end{gathered}
$$

-The case $\varepsilon=0$

$L_{\delta=2}$

The case $\varepsilon=0$ and $\delta=2$

From the first few values $\left(U_{i}, V_{i}\right)$ which are

$$
\left(U_{0}, V_{0}\right)=(1,0), \quad\left(U_{1}, V_{1}\right)=(3,2), \quad\left(U_{2}, V_{2}\right)=(17,12), \ldots
$$

we can easily generate (n, d_{1}, d_{2})

$$
\left(n, d_{1}, d_{2}\right)=(3,1,5), \quad(17,5,29), \quad(99,29,169), \ldots
$$

We have proved that in this case is $g=1$ and $d=1$, so we
conclude that numbers d_{1} and d_{2} are coprime and that
$d_{1} d_{2}=\frac{n^{2}+1}{2}$

-The case $\varepsilon=0$

L $\delta=2$

The case $\varepsilon=0$ and $\delta=2$

From the first few values $\left(U_{i}, V_{i}\right)$ which are

$$
\left(U_{0}, V_{0}\right)=(1,0), \quad\left(U_{1}, V_{1}\right)=(3,2), \quad\left(U_{2}, V_{2}\right)=(17,12), \ldots
$$

we can easily generate (n, d_{1}, d_{2})

$$
\left(n, d_{1}, d_{2}\right)=(3,1,5), \quad(17,5,29), \quad(99,29,169), \ldots
$$

We have proved that in this case is $g=1$ and $d=1$, so we conclude that numbers d_{1} and d_{2} are coprime and that $d_{1} d_{2}=\frac{n^{2}+1}{2}$.

LThe case $\varepsilon=0$
L $\delta \equiv 2(\bmod 4), \quad \delta \geq 6$

1 Introduction

2 The case $\delta=2$

3 The case $\delta=4$

4 The case $\varepsilon=0$

■ $\delta \equiv 2(\bmod 4), \quad \delta \geq 6$

```
-The case \(\varepsilon=0\)
\(-\delta \equiv 2(\bmod 4), \quad \delta \geq 6\)
```


The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \quad \delta \geq 6$

Theorem

Let $\delta \geq 6$ be a positive integer such that $\delta=4 k+2, k \in \mathbb{N}$. Then there does not exist a positive odd integer n with the property that there exists a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n$.

```
-The case \(\varepsilon=0\)
\(\left\llcorner^{\prime} \equiv 2(\bmod 4), \delta \geq 6\right.\)
```


The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

- Suppose on the contrary that this is not so and let the number δ be the smallest positive integer $\delta=4 k+2, k \in \mathbb{N}$ for which there exists an odd integer n and a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n$.
- We assume that $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)>1$ which leads us to
contradiction
- So in this case $g=1$

```
-The case \(\varepsilon=0\)
\(\left\llcorner^{\prime} \equiv 2(\bmod 4), \quad \delta \geq 6\right.\)
```


The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

- Suppose on the contrary that this is not so and let the number δ be the smallest positive integer $\delta=4 k+2, k \in \mathbb{N}$ for which there exists an odd integer n and a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n$.
- We assume that $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)>1$ which leads us to contradiction.
- So, in this case $g=1$

```
-The case \(\varepsilon=0\)
\(\left\llcorner_{\delta} \equiv 2(\bmod 4), \quad \delta \geq 6\right.\)
```


The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

■ Suppose on the contrary that this is not so and let the number δ be the smallest positive integer $\delta=4 k+2, k \in \mathbb{N}$ for which there exists an odd integer n and a pair of positive divisors d_{1}, d_{2} of $\frac{n^{2}+1}{2}$ such that $d_{1}+d_{2}=\delta n$.
■ We assume that $g=\operatorname{gcd}\left(d_{1}, d_{2}\right)>1$ which leads us to contradiction.

■ So, in this case $g=1$.
$\left\llcorner^{\prime} \equiv 2(\bmod 4), \quad \delta \geq 6\right.$

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2},
$$

and using $g=1$, we obtain

$$
\left(\delta^{2} d-2\right) n^{2}-d\left(d_{2}-d_{1}\right)^{2}=2
$$

We set $\left(d_{2}-d_{1}\right)=2 y$ (number $d_{2}-d_{1}$ is an even number because d_{1}, d_{2} are odd integers), and get
$\llcorner\equiv \equiv 2(\bmod 4), \delta \geq 6$

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

From the identity

$$
\left(d_{2}-d_{1}\right)^{2}=\left(d_{1}+d_{2}\right)^{2}-4 d_{1} d_{2},
$$

and using $g=1$, we obtain

$$
\left(\delta^{2} d-2\right) n^{2}-d\left(d_{2}-d_{1}\right)^{2}=2
$$

We set $\left(d_{2}-d_{1}\right)=2 y$ (number $d_{2}-d_{1}$ is an even number because d_{1}, d_{2} are odd integers), and get

$$
\left(\delta^{2} d-2\right) n^{2}-4 d y^{2}=2 .
$$

$$
\left\llcorner^{\circ} \equiv 2(\bmod 4), \quad \delta \geq 6\right.
$$

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

If we divide both sides by 2 and define $\delta^{\prime}=\frac{\delta}{2}=2 k+1$, the previous equation becomes

$$
\begin{equation*}
\left(2 \delta^{\prime 2} d-1\right) n^{2}-2 d y^{2}=1 . \tag{20}
\end{equation*}
$$

We will use introduced Lemma from [4] to prove that the above Pell equation (20) has no solutions

First, we find the least positive integer solution of the equation

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

If we divide both sides by 2 and define $\delta^{\prime}=\frac{\delta}{2}=2 k+1$, the previous equation becomes

$$
\begin{equation*}
\left(2 \delta^{\prime 2} d-1\right) n^{2}-2 d y^{2}=1 . \tag{20}
\end{equation*}
$$

We will use introduced Lemma from [4] to prove that the above Pell equation (20) has no solutions.
First, we find the least positive integer solution of the equation

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

If we divide both sides by 2 and define $\delta^{\prime}=\frac{\delta}{2}=2 k+1$, the previous equation becomes

$$
\begin{equation*}
\left(2 \delta^{\prime 2} d-1\right) n^{2}-2 d y^{2}=1 . \tag{20}
\end{equation*}
$$

We will use introduced Lemma from [4] to prove that the above Pell equation (20) has no solutions.
First, we find the least positive integer solution of the equation

$$
\begin{equation*}
u^{2}-2 d\left(2 \delta^{\prime 2} d-1\right) v^{2}=1 . \tag{21}
\end{equation*}
$$

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

The least positive integer solution of equation (21) is

$$
\left(u_{0}, v_{0}\right)=\left(4 \delta^{\prime 2} d-1,2 \delta^{\prime}\right) .
$$

According to Lemma from [4] conditions that have to be satisfied are

$$
\left(4 \delta^{\prime 2} d-2\right)\left|4 \delta^{\prime 2} d, \quad 4 d\right|\left(4 \delta^{\prime 2} d-2\right) .
$$

We can easily see that $4 d \mid\left(4 \delta^{\prime 2} d-2\right)$ if and only if $4 d \mid 2$ which is not possible because d is an integer

The case $\varepsilon=0$ and $\delta \equiv 2(\bmod 4), \delta \geq 6$

The least positive integer solution of equation (21) is

$$
\left(u_{0}, v_{0}\right)=\left(4 \delta^{\prime 2} d-1,2 \delta^{\prime}\right) .
$$

According to Lemma from [4] conditions that have to be satisfied are

$$
\left(4 \delta^{\prime 2} d-2\right)\left|4 \delta^{\prime 2} d, \quad 4 d\right|\left(4 \delta^{\prime 2} d-2\right) .
$$

We can easily see that $4 d \mid\left(4 \delta^{\prime 2} d-2\right)$ if and only if $4 d \mid 2$ which is not possible because d is an integer.

LThe case $\varepsilon=0$
$L \delta \equiv 2(\bmod 4), \quad \delta \geq 6$

Acknowledgement

I would like to thank Professor Andrej Dujella for many valuable suggestions and a great help.

Bibliography

[1] M. Ayad, Critical points, critical values of a prime polynomial, Complex Var. Elliptic Equ. 51 (2006), 143-160.
[2] Ayad, M. and Luca, F., Two divisors of $\left(n^{2}+1\right) / 2$ summing up to $n+1$, J. Théor. Nombres Bordeaux, 19 (2007), 561-566.
[3] Dujella A. and Luca F., A. Dujella and F. Luca, On the sum of two divisors of $\left(n^{2}+1\right) / 2$, Period. Math. Hungar., 65 (2012), 83-96.
[4] Grelak, A. and Grytczuk, A., On the Diophantine equation $a x^{2}-b y^{2}=c$, Publ. Math. Debrecen, 44 (1994), 291-299.

