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L Introduction

Previous Results

m In [1] Ayad gives sufficient conditions for a polynomial P to be
indecomposable! in terms of its critical points and critical values
and conjectures the following claim

Polynomial P is indecomposable if it can be expressed as the composition
of two non-constant and non-linear polynomials.
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L Introduction

Previous Results

m In [1] Ayad gives sufficient conditions for a polynomial P to be
indecomposable! in terms of its critical points and critical values
and conjectures the following claim

There do not exist two divisors dy, dy of (p? + 1)/2, greater than 1 such
that
di+db=p+1

Polynomial P is indecomposable if it can be expressed as the composition
of two non-constant and non-linear polynomials.
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L Introduction

Previous Results

m In [2], Ayad and Luca have proved that there does not exist
an odd integer n > 1 and two positive divisors dq, d» of @
such that

d+dr=n+1

and they also proved that the primitive function of
/ (x — x1) P~ D/2(x — )P~/

p € P\{2} x1,x2 € C, x1 # xo

is indecomposable over C which was already proved in [1] by a
different method
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L Introduction

Previous Results

A Diophantine application of the previous claim that is also proved
in [2] is

Corollary

Let a < b,c < d, e fixed integers and let p < q be odd primes. If
Diophantine equation

| = a)e = )ED e~ [ (s = (s - )@ 15 = e
0

0

has infinitely many solutions (x,y), then

—f
p=q, c—a=d—b=Ff, e= / ((t — a)(t — b))P*~D/24t,
J0O
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L Introduction

Previous Results

In [3], Dujella and Luca have dealt with a more general issue,
where n+ 1 was replaced with an arbitrary linear polynomial
on+ €, where § > 0 and ¢ are given integers.
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L Introduction

Previous Results

m Since di, d» are divisors of a sum of two coprime squares we
conclude
C/1 = d2 =1 (mod 4)

and
di+dr=6n+¢e,

then there are two cases: it is either § = ¢ =1 (mod 2), or
d=e+4+2=0 or 2 (mod 4).
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L Introduction

Previous Results

m Since di, d» are divisors of a sum of two coprime squares we
conclude
dl = d2 =1 (mod 4)
and
di+dr=6n+¢e,
then there are two cases: it is either § = ¢ =1 (mod 2), or
d=e+4+2=0 or 2 (mod 4).

m In [3] authors have focused on the first case and we deal with
the second case.
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L Introduction

We completely solve cases when
mJ=2 and ¢ =0 (mod 4),
mJ=4 and ¢ =2 (mod 4),
mec=0 and 6 =2 (mod 4).
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Theorem

If e =0 (mod 4), then there exist infinitely many positive odd
integers n with the2 property that there exists a pair of positive
divisors dy, d> of”TJrl such that di + d» = 2n+ €.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

m Let n be an odd integer, ¢ =0 (mod 4) and di, d» divisors of
(n? +1)/2 where
di+dr =2n+¢.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

m Let n be an odd integer, ¢ =0 (mod 4) and di, d» divisors of
(n? +1)/2 where
di+dr =2n+¢.

m Let g = gcd(di, dz). We can write
di = gdi, d» =gd}, di,dbeN.
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g

LThe case 6 = 2

The case § =2 and € =0 (mod 4)

m Let n be an odd integer, ¢ =0 (mod 4) and di, d» divisors of

(n? +1)/2 where
di+dr =2n+¢.

m Let g = gcd(di, dz). We can write
& =gd|, d»=gd, dl.d}eN.

m Since dy, d are divisors of (n® + 1)/2, we can conclude
gd,dj = lem(di, db) divides 25
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g

LThe case 6 = 2

The case § =2 and € =0 (mod 4)

m Let n be an odd integer, ¢ =0 (mod 4) and di, d» divisors of
(n? +1)/2 where
di+dr =2n+¢.

m Let g = gcd(di, dz). We can write
d1 = gdi, dr = gdj, di,d5eN.
m Since dy, d are divisors of (n® + 1)/2, we can conclude
gd,dj = lem(di, db) divides 25
m There exists a positive integer d such that
g(n* +1)

d]_d2 — T
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

From the identity
(dr — d1)? = (ch + do)? — 41 ds,

we can easily obtain

2
1
(db — di)? = (2n+¢)? — 4@7
2d
d(4d —2g)(da — dy)?* = —8dg — 2e2dg + 4g>.
(1)
For , Y = dy — di, the equation (1) becomes

X2 — d(4d — 2g)Y? = 8dg + 2c°dg — 4g°.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

For g = 1 the previous equation becomes
X2 —2d(2d —1)Y? = 2d(4 + £2) — 4. (2)

The equation (2) is a Pellian equation. The right-hand side of (2)
is greater than zero.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

For g = 1 the previous equation becomes
X2 —2d(2d —1)Y? = 2d(4 + £2) — 4. (2)

The equation (2) is a Pellian equation. The right-hand side of (2)
is greater than zero.

Our goal is to make the right-hand side of (2) a perfect square.
That condition can be satisfied by taking d = é€2 — %5 + 1.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Pellian equation (2) becomes

X% —2d(2d —1)Y? = (;(52 — 2+ 4))2. (3)
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Pellian equation (2) becomes
1 2
X% —2d(2d —1)Y? = (2(52 — 2+ 4)) . (3)
If we set
1 2 1 o
X:§(s —2e+4)U, Y:§(5 —2e+4)V, (4)

the equation (3) becomes

U? —2d(2d —1)V? =1. (5)
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Equation (5) is a Pell equation which has infinitely many positive
integer solutions (U, V'), and consequently, there exist infinitely
many positive integer solutions (X, Y) of (3) of the form (4).
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Equation (5) is a Pell equation which has infinitely many positive
integer solutions (U, V'), and consequently, there exist infinitely
many positive integer solutions (X, Y) of (3) of the form (4).
We can easily get

2d(2d — 1) = [2d — 1;2,4d — 2].
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Generally, nonnegative integer solutions of (5) are generated by
recursive sequences

Up=1, Uy =4d—1, Unss=2(4d — 1)Upns1 — Upn,

Vo =0, Vi =2, Vm+2 = 2(4d — 1)Vm+1 — V5, méeNg. (6)
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Generally, nonnegative integer solutions of (5) are generated by
recursive sequences

Up=1, Uy =4d—1, Unss=2(4d — 1)Upns1 — Upn,

Vo =0, Vi =2, Vm+2 = 2(4d — 1)Vm+1 — V5, méeNg. (6)

By induction on m, one gets that

Un=1 (mod (4d —2)),m>0.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

It remains to compute the corresponding values of n which arise
from

1
X = (4d —2)n+2de, X = 5(52 —2e+4)U.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

It remains to compute the corresponding values of n which arise
from
X =(4d —-2)n+2de, X = %(52 —2e+4)U.
We obtain
1(e? —2e +4)U — 2de
4d — 2 '

We want the above number n to be a positive integer.

n—=
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Congruences

1
§(52 —2e+4)U —2de = —(2d —1)e =0 (mod (4d — 2)),

show that all numbers n generated in the specified way are integers.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

Congruences

1
§(52 —2e+4)U —2de = —(2d —1)e =0 (mod (4d — 2)),
show that all numbers n generated in the specified way are integers.

From the first recursive sequence in (7) we know that Uy, m > 0,
are odd integers so we may conclude

1
5(52—25+4)U—2d5 =2U=2 (mod4) and 4d—2=2 (mod 4),

which implies that all such integers n are odd.
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LThe case 6 = 2

The case § =2 and € =0 (mod 4)

The first few values of number n, which we get from Uy, Us, Us, are

= 1(c2 -3 +6),
dl_]-a
d2:€2—28—|-5.

= 1(e* — 6¢3 + 20e% — 33 + 34),
dy =e?> —2e+5,
dp = e* — 63 + 1922 — 30e + 29.

n=1( — 105 + 50* — 1483 + 281¢% — 323¢ + 198),
di = e* — 63 + 19¢2 — 30¢ + 29,
dr = 0 — 10e® + 49e* — 14223 + 2622 — 292¢ + 1609.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Theorem

If e =2 (mod 4), then there exist infinitely many positive odd
integers n with the2 property that there exists a pair of positive
divisors dy, d> of”TJrl such that di + dr = 4n+ €.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Let n be an odd integer, ¢ =2 (mod 4) and di, d divisors of
(n? +1)/2 where
di+dr=4n+ <.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Let n be an odd integer, ¢ =2 (mod 4) and di, d divisors of
(n? +1)/2 where
di+dr=4n+ <.

Let g = gcd(di, d2) and d is a positive integer which satisfies the
equation
_g(n?+1)
didr, = YRR
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

From the identity
(dy — dy)? = (ch + do)? — 4dhdy,
we obtain the equation
X? —2d(8d — g)Y? = 32dg + 2c2dg — 4g°, (7)

where X, Y are X = (16d — 2g)n+ 4de and Y = dh, — d.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

From the identity
(do — d1)? = (di + db)? — 4dy b,
we obtain the equation
X? —2d(8d — g)Y? = 32dg + 2c2dg — 4g°, (7)

where X, Y are X = (16d — 2g)n+ 4de and Y = dh, — d.
For g =1 (7) becomes

X? —2d(8d — 1)Y? = 2d(16 + &%) — 4. (8)

The right-hand side of (8) is always greater that zero.
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The case § =4 and € =2 (mod 4)

If we take 1 1 5
d=—2— g4
2 8Ty

the right-hand side of (8) is a perfect square and Pellian equation
(8) becomes

X% —2d(8d —1)Y? = G(a? — 2+ 16))2 : (9)

We must notice that d is an integer if ¢ = 6 (mod 8), and it is not
an integer if ¢ =2 (mod 8). So, we split the proof in two subcases.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Let e =6 (mod 8). We set
1o 1 o
X = Z(e —2e+16)W, Y = Z(e —2e+16)Z. (10)

and the equation (9) becomes

W? —2d(8d — 1)Z% = 1. (11)
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The case § =4 and € =2 (mod 4)

Let e =6 (mod 8). We set
1o 1 o
X:Z(e — 2+ 16)W, Y:Z(e —2e+16)Z. (10)
and the equation (9) becomes
W? —2d(8d — 1)Z% = 1. (11)

The equation (11) is a Pell equation which has infinitely many
positive integer solutions (W, Z), and consequently, there exist
infinitely many positive integer solutions (X, Y) of (9) of the form
(10).
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

All positive solutions of (11) are given by (W, Z,,) for some
m > 0. Generally, nonnegative integer solutions of (11) are
generated by recursive sequences

Wo=1, Wi=16d—1, Wpip=2(16d —1)Wpi1 — W, (12)

Zo = 0, 1 = 4, Zm+2 = 2(16d — l)Zm+1 — Zm, m € Np.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

By induction on m, one gets that

Wn=1 (mod (16d —2)), m> 0.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

By induction on m, one gets that
Wn=1 (mod (16d —2)), m> 0.
It remains to compute the corresponding values of n which arise

from
1
X = (16d — 2)n+ 4de, X = 1(52 —2c+16)W.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

By induction on m, one gets that
Wn=1 (mod (16d —2)), m> 0.
It remains to compute the corresponding values of n which arise

from
1
X:(md—@n+Mk,X:Z@2—k+i®ML

We obtain
B 1(e? —2e +16)W — 4de
= 16d — 2 '
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

The congruences
1
J(2 =22+ 16)W —4de = (8d —1)(1 - g) =0 (mod (16d —2))

show us that all numbers n generated in the specified way are
integers.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case 6 = 4

The case § =4 and € =2 (mod 4)

The congruences

1

J(2 =22+ 16)W —4de = (8d —1)(1 - g) =0 (mod (16d —2))
show us that all numbers n generated in the specified way are
integers.

From recursive sequence (12) and because of the following
congruences

1
1(52—25+16)W—4d5 =2W =2 (mod4) and 16d—2=2 (mod 4)

we can conclude that such integers n are odd.
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The case § =4 and € =2 (mod 4)

The first few values of number n, which we get from Wy, Wa, W,
are

n=%(—3e+18),

d=1

dy =2 — 2e + 17.

n= 3(e* — 623 + 4422 — 105¢ + 322),

di =% — 2¢ + 17,

dy = e* — 63 4 4322 — 102¢ + 305.
n = %+(5% — 105 + 86c* — 3883 + 15292 — 3155¢ + 5778),
di = e* — 63 + 4322 — 102¢ + 305,
dy = €5 — 10e® + 85e* — 3823 + 148652 — 3052¢ + 5473.
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The case § =4 and € =2 (mod 4)

Now, we deal with the case when ¢ =2 (mod 8), where
e=8k+2, keNp.
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The case § =4 and € =2 (mod 4)

Now, we deal with the case when ¢ =2 (mod 8), where

e=8k+2, keNp.

For g = dy = & + 4, the equation (7) becomes
2d-1,

X% -2d(8d —g)Y? = —g e+ 8c2(2d — 1) + 64(2d — 1).
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g

LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Now, we deal with the case when ¢ =2 (mod 8), where
e=8k+2, keNp.
For g = dy = & + 4, the equation (7) becomes

2d -1,

g c +8°(2d — 1) +64(2d — 1).

X% -2d(8d —g)Y? =

The right-hand side of the equation will be a perfect square if
2d — 1 is a perfect square. Motivated by the experimental data, we

take
1 4 13+12 5 41

I=502° " & et 163w
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

So, the equation (7) becomes

1 2
X2 — 2d(8d — g)Y? = (32(5 +16)( 45+20)) L (13)
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

So, the equation (7) becomes
1 2
X2 — 2d(8d — g)Y? = (32(5 +16)( 45+20)) L (13)

We consider the corresponding Pell equation

U? —2d(8d — g)V? =1. (14)
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Let (Up, Vo) be the least positive integer solution of (14). That
equation has infinitely many solutions. From (14) we get that

U?=1 (mod (16d — 2g)).
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

Let (Up, Vo) be the least positive integer solution of (14). That
equation has infinitely many solutions. From (14) we get that

U>=1 (mod (16d — 2g)).
Motivated by experimental data, we can also set

dy = d? — 16kd;, k € Ny.
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The case § =4 and € =2 (mod 4)

Let (Up, Vo) be the least positive integer solution of (14). That
equation has infinitely many solutions. From (14) we get that

U>=1 (mod (16d — 2g)).
Motivated by experimental data, we can also set
dy = d? — 16kd;, k € Ny.

For Y = d, — di we get

1 2 1 et 83 112
Y=(-+4) —(2-3) (¢ 4>:— —,  —8s+2s.
(45 + > (2e—-3) (46 + 16 >t 8c+28
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

From (13), we obtain:

X — (€2 +16)(£° — 16e° + 140e* — 76823 + 3120£2 — 8704 + 14400)
B 2048 '
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The case § =4 and € =2 (mod 4)

From (13), we obtain:

X — (€2 +16)(£° — 16e° + 140e* — 76823 + 3120£2 — 8704 + 14400)
B 2048 '

We claim that X satisfies the congruence

X =4de (mod (16d — 2g)). (15)
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The case § =4 and € =2 (mod 4)

From (13), we obtain:

(€2 4+ 16)(e® — 1665 + 140e* — 7683 + 31202 — 8704< + 14400)
2048

X =

We claim that X satisfies the congruence

X =4de (mod (16d — 2g)). (15)
Indeed, y ,
€ € 5e2 25
16d — 2g = 3—2—1—&-*—5 e+ — >

et &3 Be? 25 e 132 O
X—4de=|———+ — — — - = .
de <32 4+ 5¢ + )(64 + +9)
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

From n = fggf‘;eg, we get

4 3 132 9
- 2 L9 — 64kt + 28K 47,

"“6 st 16 4

and we see that n is an odd integer.
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

We set X = Xy and Y = Yp. Because (Xo, Yo) is a solution of
(13), solutions of (13) are also

2i
X++/2d(8d — g)Y; = (x0+ ,/2d(8d—g)y0) (u0+ \/2d(8d—g)V0) =012,

(16)
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

We set X = Xy and Y = Yp. Because (Xo, Yo) is a solution of
(13), solutions of (13) are also

2i
X++/2d(8d — g)Y; = (xo +/2d(8d — g)YO) (uo +/2d(8d — g)VO) L i=0,1,2,...
(16)
From the equation (16), we get

Xi = U3'Xo = Xo = 4de (mod (16d — 2g)).
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LThe case 6 = 4

The case § =4 and € =2 (mod 4)

We set X = Xy and Y = Yp. Because (Xo, Yo) is a solution of
(13), solutions of (13) are also

2i
X++/2d(8d — g)Y; = (xo +/2d(8d — g)YO) (uo +/2d(8d — g)VO) L i=0,1,2,...
(16)
From the equation (16), we get

Xi = U3'Xo = Xo = 4de (mod (16d — 2g)).

So, there are infinitely many solutions (Xj, Y;) of (13) where X;
satisfies the congruence (15).
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The case § =4 and € =2 (mod 4)

Therefore, by

B X,' — 4de
- 16d —2g’
we get infinitely many integers n; with the required properties. It is
easy to see that number n; defined in this way is odd. Indeed, we
have 16d — 2g =2 (mod 4), Xp =2 (mod 4), and since (14)
implies that Up is odd and Vj is even, we get from (15) that

n;j

i=0,1,2,...

Xi—a4de = X; = U3 Xo=Xo =2 (mod 4),

so every nj, i =0,1,2,..., is an odd integer.



Two divisors of (n? + 1)/2 summing up to §n+ €, for § and € even

L The case e = 0
Ls=2

The case e =0

md=2



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0
Ls=2

The case e =0 and § =2

Proposition

There exist infinitely many positive odd integers n with the

2
property that there exists a pair of positive divisors dy, dy of ”TH
such that di + da = 2n. These solutions satisfy gcd(dy, db) = 1

and didp, = +1



Two divisors of (n® + 1)/2 summin up to 6n+ e, for § and € even
g

LThe case € =0

Ls=2

The case e =0 and § =2

m Let n be an odd integer and let di, d> be positive divisors of
2
”TH such that dy + d» = 2n.



Two divisors of (n® + 1)/2 summin up to 6n+ e, for § and € even
g

LThe case € =0

Ls=2

The case e =0 and § =2

(] L;et n be an odd integer and let di, d» be positive divisors of
”TH such that dy + d» = 2n.

m Let g = gcd(dh, d2). Then g|(2n) and g|(n? + 1) which
implies that g|((2n)? + 4) so we can conclude that g|4.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

(] L;et n be an odd integer and let di, d» be positive divisors of
”TH such that dy + d» = 2n.

m Let g = gcd(dh, d2). Then g|(2n) and g|(n? + 1) which
implies that g|((2n)? + 4) so we can conclude that g|4.

m Because g is the greatest common divisor of di, d> and di, d>
are odd numbers, we can also conclude that g is an odd
number.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

(] L;et n be an odd integer and let di, d» be positive divisors of
”TH such that dy + d» = 2n.

m Let g = gcd(dh, d2). Then g|(2n) and g|(n? + 1) which
implies that g|((2n)? + 4) so we can conclude that g|4.

m Because g is the greatest common divisor of di, d> and di, d>
are odd numbers, we can also conclude that g is an odd
number.

m So, g=1.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

Let n be an odd integer and let di, d» be positive divisors of
% such that dy + d» = 2n.

Let g = gcd(d1, d2). Then g|(2n) and g|(n? + 1) which
implies that g|((2n)? + 4) so we can conclude that g|4.
Because g is the greatest common divisor of di, d» and di, db
are odd numbers, we can also conclude that g is an odd
number.

So, g =1.

Like we did in the proofs of the previous theorems, we define a

positive integer d which satisfies the equation didr = ”231.




Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

From the identity
(do — di)? = (d1 + do)? — 4dyda,
we can easily obtain
(2d — 1)n® — 2dy® =1, (17)

where do — di = 2y.



Two divisors of (n? + 1)/2 summing up to §n+ €, for § and € even

LThe case € =0
Ls=2

The case e =0 and § =2

We will use the next lemma, which is Criterion 1 from [4] to check
if there exists a solution for (17).

Lemma (Grelak, Grytczuk)

Let a > 1, b be positive integers such that ged(a, b) = 1 and
D = ab is not a perfect square. Moreover, let (ug, vp) denote the
least positive integer solution of the Pell equation

u? — Dv? = 1.

Then equation ax® — by?> = 1 has a solution in positive integers
x,y if and only if

2a|(up + 1) and 2b|(up — 1).



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

In order to find solutions of (17), for start we solve the Pell
equation
U? —2d(2d —1)V? =1, (18)

where n=U, y=V.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

In order to find solutions of (17), for start we solve the Pell
equation

U? —2d(2d —1)V? =1, (18)
where n=U, y=V.
Its least positive integer solution is (4d — 1,2).



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

According to introduced Lemma, conditions that have to be

satisfied are
2(2d — 1)|4d and 4d|(4d — 2),

which is not true for d € N. So, for Pellian equation (17) there are
no integer solutions (n,y) when a=2d —1 > 1.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

According to introduced Lemma, conditions that have to be
satisfied are

2(2d — 1)|4d and 4d|(4d — 2),

which is not true for d € N. So, for Pellian equation (17) there are
no integer solutions (n,y) when a=2d —1 > 1.

Finally, we have to check the remaining case for a = 1, which is
the case that is not included in Lemma. The condition a =1
implies that d = 1.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

From (17) and d = 1, we get the Pell equation
n? —2y% =1, (19)

which has infinitely many solutions n=U,,, y =V, me Ny
where
Uo=1, U1 =3, Unt2=06Unt1— Un,

Vo=0, Vi =2, Vipio=6Vpi1 — Vin, meNo.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0

Ls=2

The case e =0 and § =2

From the first few values (U;, V;) which are

(Uo, Vo) = (1,0), (Ur, V1) = (3,2), (Un, Vo) = (17,12), ...

we can easily generate (n, di, d>)

(n,dy, do) = (3,1,5), (17,5,29), (99,29,169),....



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2

The case e =0 and § =2

From the first few values (U;, V;) which are

(Uo, Vo) = (1,0), (Ur, V1) = (3,2), (Un, Vo) = (17,12), ...

we can easily generate (n, di, d>)
(n,di, ) = (3,1,5), (17,5,29), (99,29,169),....

We have proved that in this case is g =1 and d = 1, so we
conclude that numbers d; and d> are coprime and that
didy = 5L,



Two divisors of (n? + 1)/2 summing up to §n+ €, for § and € even
L The case = = 0

Ls=2(mod4), 6>6

The case e =0

md =2 (mod4), § >6



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6 >6

Thecasee =0 and § =2 (mod 4), § > 6

Theorem

Let § > 6 be a positive integer such that 6 = 4k + 2,k € N. Then
there does not exist a positive odd integer n with the property that
there exists a pair of positive divisors dyi, d> of @ such that

di + dr = dn.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

m Suppose on the contrary that this is not so and let the
number § be the smallest positive integer d =4k +2, k€N
for which there exists an odd integer n and a pair of positive
divisors dq, d» of % such that d; + d> = dn.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even

LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

m Suppose on the contrary that this is not so and let the
number § be the smallest positive integer d =4k +2, k€N
for which there exists an odd integer n and a pair of positive
divisors dq, d» of % such that d; + d> = dn.

m We assume that g = gecd(di, d2) > 1 which leads us to
contradiction.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

m Suppose on the contrary that this is not so and let the
number § be the smallest positive integer d =4k +2, k€N
for which there exists an odd integer n and a pair of positive
divisors dq, d» of % such that d; + d> = dn.

m We assume that g = gecd(di, d2) > 1 which leads us to
contradiction.

m So, in this case g = 1.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

From the identity
(dr — ch)? = (dh + do)* — 4di b,
and using g = 1, we obtain

(6%d — 2)n* — d(d» — dy)? = 2.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

From the identity

(do — d1)? = (dy + db)? — 4dyds,
and using g = 1, we obtain

(6%d — 2)n* — d(d» — dy)? = 2.

We set (dp — di) = 2y (number d» — dj is an even number because d, da
are odd integers), and get

(6%d — 2)n* — 4dy? = 2.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

If we divide both sides by 2 and define §' = g =2k +1, the
previous equation becomes

(202d — 1)n* — 2dy® = 1. (20)



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

If we divide both sides by 2 and define §' = g =2k +1, the
previous equation becomes

(202d — 1)n* — 2dy® = 1. (20)

We will use introduced Lemma from [4] to prove that the above
Pell equation (20) has no solutions.



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

If we divide both sides by 2 and define §' = g =2k +1, the
previous equation becomes

(202d — 1)n* — 2dy® = 1. (20)

We will use introduced Lemma from [4] to prove that the above
Pell equation (20) has no solutions.
First, we find the least positive integer solution of the equation

u? —2d(20%d —1)v? = 1. (21)



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

The least positive integer solution of equation (21) is
(U()7 V()) = (45/2d — 1./ 2(5/).

According to Lemma from [4] conditions that have to be satisfied
are
(46%d — 2)[46"d, 4d|(46"%d — 2).



Two divisors of (n2 + 1)/2 summing up to §n+ &, for § and € even
LThe case € =0
Ls=2 (mod4), 6>6

Thecasee =0 and § =2 (mod 4), § > 6

The least positive integer solution of equation (21) is
(U()7 V()) = (45/2d — 1./ 2(5/).

According to Lemma from [4] conditions that have to be satisfied
are

(46%d — 2)[46"d, 4d|(46"%d — 2).

We can easily see that 4d|(46"°d — 2) if and only if 4d|2 which is
not possible because d is an integer.

0
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LThe case € =0
Ls=2 (mod4), 6>6
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