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Introduction

Recent Results

In [1], Ayad and Luca have proved that there does not exist
an odd integer n > 1 and two positive divisors d1, d2 of n2+1

2
such that d1 + d2 = n + 1.
In [2], Dujella and Luca have dealt with a more general issue,
where n + 1 was replaced with an arbitrary linear polynomial
δn + ε, where δ > 0 and ε are given integers.
Since d1 + d2 = δn + ε, then there are two cases: it is either
δ ≡ ε ≡ 1 (mod 2), or δ ≡ ε+ 2 ≡ 0 or 2 (mod 4).
In [2] authors have focused on the first case.
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We deal with the second case, the case where

δ ≡ ε+ 2 ≡ 0 or 2 (mod 4).
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We completely solve cases when δ = 2, δ = 4 and ε = 0.
We prove that there exist infinitely many positive odd integers
n with the property that there exists a pair of positive divisors
d1, d2 of n2+1

2 such that d1 + d2 = 2n + ε for ε ≡ 0 (mod 4).
We prove an analoguos result for ε ≡ 2 (mod 4) and divisors
d1, d2 of n2+1

2 such that d1 + d2 = 4n + ε.
We also prove that there exist infinitely many odd integers n
with the property that there exists a pair of positive divisors
d1, d2 of n2+1

2 such that d1 + d2 = 2n.
In case when δ ≥ 6 is a positive integer of the form
δ = 4k + 2, k ∈ N we prove that there does not exist an odd
integer n such that there exists a pair of divisors d1, d2 of n2+1

2
with the property d1 + d2 = δn.
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The case δ = 2

The case δ = 2, ε ≡ 0 (mod 4)

Theorem
If ε ≡ 0 (mod 4), then there exist infinitely many positive odd
integers n with the property that there exists a pair of positive
divisors d1, d2 of n2+1

2 such that d1 + d2 = 2n + ε.
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The case δ = 2

The case δ = 2, ε ≡ 0 (mod 4)

We want to find a positive odd integer n and positive divisors
d1, d2 of n2+1

2 such that d1 + d2 = 2n + ε.
Let g = gcd(d1, d2). We can write d1 = gd ′1, d2 = gd ′2. Since
gd ′1d ′2 = lcm(d1, d2) divides n2+1

2 , we conclude that there
exists a positive integer d such that

d1d2 = g(n2 + 1)
2d .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 2

The case δ = 2, ε ≡ 0 (mod 4)

We want to find a positive odd integer n and positive divisors
d1, d2 of n2+1

2 such that d1 + d2 = 2n + ε.
Let g = gcd(d1, d2). We can write d1 = gd ′1, d2 = gd ′2. Since
gd ′1d ′2 = lcm(d1, d2) divides n2+1

2 , we conclude that there
exists a positive integer d such that

d1d2 = g(n2 + 1)
2d .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 2

The case δ = 2, ε ≡ 0 (mod 4)

From the identity

(d2 − d1)2 = (d1 + d2)2 − 4d1d2,

we can easily obtain

(d2 − d1)2 = (2n + ε)2 − 4g(n2 + 1)
2d ,

d(4d−2g)(d2 − d1)2 = (4d − 2g)2n2 + 4(4d − 2g)dεn + 4d2ε2−8dg −2ε2dg + 4g2.
(1)

For X = (4d − 2g)n + 2dε,Y = d2 − d1, the equation (1) becomes

X 2 − d(4d − 2g)Y 2 = 8dg + 2ε2dg − 4g2.
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The case δ = 2, ε ≡ 0 (mod 4)

For g = 1 the previous equation becomes

X 2 − 2d(2d − 1)Y 2 = 2d(4 + ε2)− 4. (2)

The equation (2) is a Pellian equation. The right-hand side of (2)
is nonzero.

Our goal is to make the right-hand side of (2) a perfect square.
That condition can be satisfied by taking d = 1

8ε
2 − 1

2ε+ 1.
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The case δ = 2, ε ≡ 0 (mod 4)

Pellian equation (2) becomes

X 2 − 2d(2d − 1)Y 2 =
(1
2(ε2 − 2ε+ 4)

)2
. (3)

Now, like in [2], we are trying to solve (3).
Let

X = 1
2(ε2 − 2ε+ 4)U, Y = 1

2(ε2 − 2ε+ 4)V .
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The case δ = 2, ε ≡ 0 (mod 4)

The equation (3) becomes

U2 − 2d(2d − 1)V 2 = 1. (4)

Equation (4) is a Pell equation which has infinitely many positive
integer solutions (U,V ), and consequently, there exist infinitely
many positive integer solutions (X ,Y ) of (3).
The least positive integer solution of (4) can be found using the
continued fraction expansion of number√

2d(2d − 1).
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We can easily get√
2d(2d − 1) = [2d − 1; 2, 4d − 2].

All positive solutions of (4) are given by (Um,Vm) for some m ≥ 0.
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The case δ = 2, ε ≡ 0 (mod 4)

Generally, solutions of (4) are generated by recursive expressions

U0 = 1, U1 = 4d − 1, Um+2 = 2(4d − 1)Um+1 − Um,

V0 = 0, V1 = 2, Vm+2 = 2(4d − 1)Vm+1 − Vm, m ∈ N0. (5)

By induction on m, one gets that Um ≡ 1 (mod (4d − 2)),m ≥ 0.
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The case δ = 2, ε ≡ 0 (mod 4)

It remains to compute the corresponding values of n which arise
from

X = (4d − 2)n + 2dε, X = 1
2(ε2 − 2ε+ 4)U.

We obtain
n =

1
2(ε2 − 2ε+ 4)U − 2dε

4d − 2 .

We want the above number n to be a positive integer.
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Congruences

1
2

(ε2 − 2ε+ 4)U − 2dε ≡ 4d + ε− 2− 2dε ≡ −(2d − 1)ε ≡ 0 (mod (4d − 2)),

show us that all numbers n generated in the specified way are
integers.
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The case δ = 2, ε ≡ 0 (mod 4)

The first few values of number n, which we get from U1,U2,U3, are
n = 1

2(ε2 − 3ε+ 6),
d1 = 1,
d2 = ε2 − 2ε+ 5.

n = 1
2(ε4 − 6ε3 + 20ε2 − 33ε+ 34),

d1 = ε2 − 2ε+ 5,
d2 = ε4 − 6ε3 + 19ε2 − 30ε+ 29.

n = 1
2(ε6 − 10ε5 + 50ε4 − 148ε3 + 281ε2 − 323ε+ 198),

d1 = ε4 − 6ε3 + 19ε2 − 30ε+ 29,
d2 = ε6 − 10ε5 + 49ε4 − 142ε3 + 262ε2 − 292ε+ 169.
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The case δ = 4, ε ≡ 2 (mod 4)

Theorem
If ε ≡ 2 (mod 4), then there exist infinitely many positive odd
integers n with the property that there exists a pair of positive
divisors d1, d2 of n2+1

2 such that d1 + d2 = 4n + ε.
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The case δ = 4, ε ≡ 2 (mod 4)

Proof of this theorem will be slightly different from the previous
proof.
Instead of assuming that ε ≡ 2 (mod 4), we will distiguish two
cases: in one case we will be dealing with ε ≡ 6 (mod 8) and we
will apply strategies from [2] and in the other case we will be
dealing with ε ≡ 2 (mod 8) and we will use different methods in
obtaining results.
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The case δ = 4, ε ≡ 2 (mod 4)

We start with the case when ε ≡ 6 (mod 8).
Let g = gcd(d1, d2), d1 = gd ′1, d2 = gd ′2 and d is a positive integer
which satisfies the equation

d1d2 = g(n2 + 1)
2d .
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From the identity

(d2 − d1)2 = (d1 + d2)2 − 4d1d2,

we obtain

d(16d−2g)(d2−d1)2 = (16d−2g)2n2+8(16d−2g)dεn+16d2ε2−32dg−2ε2dg +4g2.
(6)

Let X = (16d − 2g)n + 4dε, Y = d2 − d1. Equation (6) becomes

X 2 − 2d(8d − g)Y 2 = 32dg + 2ε2dg − 4g2. (7)

For g = 1 the previous expression becomes

X 2 − 2d(8d − 1)Y 2 = 2d(16 + ε2)− 4. (8)
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The case δ = 4, ε ≡ 2 (mod 4)

Our goal is to make the right-hand side of (8) a perfect square.
That condition can be satisfied by taking

d = 1
32ε

2 − 1
8ε+ 5

8 .

Pellian equation (8) becomes

X 2 − 2d(8d − 1)Y 2 =
(1
4(ε2 − 2ε+ 16)

)2
. (9)
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The case δ = 4, ε ≡ 2 (mod 4)
Let

X = 1
4(ε2 − 2ε+ 16)W , Y = 1

4(ε2 − 2ε+ 16)Z .

The equation (9) becomes

W 2 − 2d(8d − 1)Z 2 = 1. (10)

The equation (10) is a Pell equation which has infinitely many
positive integer solutions (W ,Z ), and consequently, there exist
infinitely many positive integer solutions (X ,Y ) of (9).
The least positive integer solution of (10) can be found using the
continued fraction expansion of number

√
2d(8d − 1).

We can easily get√
2d(8d − 1) = [4d − 1; 1, 2, 1, 8d − 2].
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The case δ = 4, ε ≡ 2 (mod 4)

All positive solutions of (10) are given by (Wm,Zm) for some
m ≥ 0. Generally, solutions of (10) are generated by recursive
expressions

W0 = 1, W1 = 16d − 1, Wm+2 = 2(16d − 1)Wm+1 −Wm,

Z0 = 0, Z1 = 4, Zm+2 = 2(16d − 1)Zm+1 − Zm, m ∈ N0.
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The case δ = 4, ε ≡ 2 (mod 4)

By induction on m, one gets that

Wm ≡ 1 (mod (16d − 2)), m ≥ 0.

It remains to compute the corresponding values of n which arise
from

X = (16d − 2)n + 4dε, X = 1
4(ε2 − 2ε+ 16)W .

We obtain
n =

1
4(ε2 − 2ε+ 16)W − 4dε

16d − 2 .
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The case δ = 4, ε ≡ 2 (mod 4)

The congruences

1
4

(ε2−2ε+16)W −4dε ≡ 8d−1+
ε

2
−4dε ≡ (8d−1)(1−

ε

2
) ≡ 0 (mod (16d−2))

show us that all numbers n generated in the specified way are
integers.
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The case δ = 4, ε ≡ 2 (mod 4)

The first few values of number n, which we get from W1,W2,W3,
are 

n = 1
4(ε2 − 3ε+ 18),

d1 = 1
d2 = ε2 − 2ε+ 17.

n = 1
4(ε4 − 6ε3 + 44ε2 − 105ε+ 322),

d1 = ε2 − 2ε+ 17,
d2 = ε4 − 6ε3 + 43ε2 − 102ε+ 305.

n = 1
4(ε6 − 10ε5 + 86ε4 − 388ε3 + 1529ε2 − 3155ε+ 5778),

d1 = ε4 − 6ε3 + 43ε2 − 102ε+ 305,
d2 = ε6 − 10ε5 + 85ε4 − 382ε3 + 1486ε2 − 3052ε+ 5473.
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The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

Now, we deal with the case when ε ≡ 2 (mod 8).
Let ε = 8k + 2, k ∈ N0. For g = 1

4ε
2 + 4 and g = d1, the

equation (7) becomes

X 2 − 2d(8d − g)Y 2 = 2d − 1
4 ε4 + 8ε2(2d − 1) + 64(2d − 1).

The right-hand side of the equation will be a perfect square if
2d − 1 is a perfect square. Motivated by the experimental data, we
take

d = 1
512ε

4 − 1
64ε

3 + 7
64ε

2 − 5
16ε+ 41

32 .
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The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

We get
2d − 1 = 16k4 + 8k2 + 1 = (4k2 + 1)2.

So, the equation (7) becomes

X 2 − 2d(8d − g)Y 2 =
( 1
32(ε2 + 16)(ε2 − 4ε+ 20)

)2
. (11)

We consider the corresponding Pell equation

U2 − 2d(8d − g)V 2 = 1. (12)



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

We get
2d − 1 = 16k4 + 8k2 + 1 = (4k2 + 1)2.

So, the equation (7) becomes

X 2 − 2d(8d − g)Y 2 =
( 1
32(ε2 + 16)(ε2 − 4ε+ 20)

)2
. (11)

We consider the corresponding Pell equation

U2 − 2d(8d − g)V 2 = 1. (12)



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

We get
2d − 1 = 16k4 + 8k2 + 1 = (4k2 + 1)2.

So, the equation (7) becomes

X 2 − 2d(8d − g)Y 2 =
( 1
32(ε2 + 16)(ε2 − 4ε+ 20)

)2
. (11)

We consider the corresponding Pell equation

U2 − 2d(8d − g)V 2 = 1. (12)



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
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The case δ = 4, ε ≡ 2 (mod 4)

Let (U0,V0) be the least positive integer solution of (12). That
equation has infinitely many solutions. From (12) we get that

U2 ≡ 1 (mod (16d − 2g)).

We deal with the case where g = d1 = 1
4ε

2 + 4 and from the
experimental data we can set

d2 = d2
1 − 16kd1, k ∈ N0.

For Y = d2 − d1 we get

Y =
(1
4ε

2 + 4
)2
−(2ε−3)

(1
4ε

2 + 4
)

= ε4

16−
ε3

2 + 11ε2

4 −8ε+28.
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Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

From (11), we obtain:

X = (ε2 + 16)(ε6 − 16ε5 + 140ε4 − 768ε3 + 3120ε2 − 8704ε+ 14400)
2048 .

We claim that X satisfies the congruence

X ≡ 4dε (mod (16d − 2g)). (13)

Indeed,
16d − 2g = ε4

32 −
ε3

4 + 5ε2

4 − 5ε+ 25
2 ,

X − 4dε =
(
ε4

32 −
ε3

4 + 5ε2

4 − 5ε+ 25
2

)(
ε4

64 −
ε3

8 + 13ε2

16 −
9ε
4 + 9

)
.
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The case δ = 4, ε ≡ 2 (mod 4)

From n = X−4dε
16d−2g , we get

n = ε4

64 −
ε3

8 + 13ε2

16 −
9ε
4 + 9 = 64k4 + 28k2 + 7,

and we see that n is an odd integer.
Thus, if we define

(X0,Y0) =
( (ε2 + 16)(ε6 − 16ε5 + 140ε4 − 768ε3 + 3120ε2 − 8704ε+ 14400)

2048
,

1
16

(ε2 + 16)(ε2 − 8ε+ 28)
)
,

we see that (X0,Y0) is a solution of (11) which satisfies the
congruence (13).
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we see that (X0,Y0) is a solution of (11) which satisfies the
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The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

We have proved that for every ε ≡ 2 (mod 8) there exists at
least one odd integer n which satisfies the conditions of this
Theorem.
Our goal is to prove that there exist infinitely many such
integers n that satisfy the properties of this Theorem.
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The case δ = 4, ε ≡ 2 (mod 4)

If (X0,Y0) is a solution of (11), solutions of (11) are also

(Xi ,Yi ) =
(

X0 +
√

2d(8d − g)Y0

)(
U0 +

√
2d(8d − g)V0

)2i
, i = 0, 1, 2, . . .

(14)
From the equation (14), we get

Xi ≡ U2i
0 X0 ≡ X0 ≡ 4dε (mod (16d − 2g)).

So, there are infinitely many solutions (Xi ,Yi) of (11) that satisfy
the congruence (13).



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

If (X0,Y0) is a solution of (11), solutions of (11) are also

(Xi ,Yi ) =
(

X0 +
√

2d(8d − g)Y0

)(
U0 +

√
2d(8d − g)V0

)2i
, i = 0, 1, 2, . . .

(14)
From the equation (14), we get

Xi ≡ U2i
0 X0 ≡ X0 ≡ 4dε (mod (16d − 2g)).

So, there are infinitely many solutions (Xi ,Yi) of (11) that satisfy
the congruence (13).



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

If (X0,Y0) is a solution of (11), solutions of (11) are also

(Xi ,Yi ) =
(

X0 +
√

2d(8d − g)Y0

)(
U0 +

√
2d(8d − g)V0

)2i
, i = 0, 1, 2, . . .

(14)
From the equation (14), we get

Xi ≡ U2i
0 X0 ≡ X0 ≡ 4dε (mod (16d − 2g)).

So, there are infinitely many solutions (Xi ,Yi) of (11) that satisfy
the congruence (13).



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case δ = 4

The case δ = 4, ε ≡ 2 (mod 4)

Therefore, by
n = Xi − 4dε

16d − 2g ,

we get infinitely many integers n with the required properties. It is
easy to see that number n defined in this way is odd. Indeed, we
have 16d − 2g ≡ 2 (mod 4), X0 ≡ 2 (mod 4), and since (12)
implies that U0 is odd and V0 is even, we get from (13) that

Xi − 4dε ≡ Xi ≡ U2i
0 X0 ≡ X0 ≡ 2 (mod 4),

so n is odd.
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δ = 2

1 Introduction

2 The case δ = 2

3 The case δ = 4

4 The case ε = 0
δ = 2
δ ≡ 2 (mod 4), δ ≥ 6



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

Proposition
There exist infinitely many positive odd integers n with the
property that there exists a pair of positive divisors d1, d2 of n2+1

2
such that d1 + d2 = 2n. These solutions satisfy gcd(d1, d2) = 1
and d1d2 = n2+1

2 .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

We want to find a positive odd integer n and positive divisors
d1, d2 of n2+1

2 such that d1 + d2 = 2n.
Let g = gcd(d1, d2). Then g |(2n) and g |(n2 + 1) which
implies that g |((2n)2 + 4) so we can conclude that g |4.
Because g is the greatest common divisor of d1, d2 and d1, d2
are odd numbers, we can also conclude that g is an odd
number.
So, g = 1.
Like we did in the proofs of the previous theorems, we define a
positive integer d which satisfies the equation d1d2 = n2+1

2d .
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δ = 2

The case ε = 0, δ = 2

From the identity

(d2 − d1)2 = (d1 + d2)2 − 4d1d2,

we can easily obtain

d(d2 − d1)2 = 4n2d − 2n2 − 2.

Let d2 − d1 = 2y , so we get

(2d − 1)n2 − 2dy2 = 1. (15)
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From the identity
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The case ε = 0, δ = 2

We will use the next lemma, which is Criterion 1 from [3] to check
if there exists a solution for (15).

Lemma
Let a > 1, b be positive integers such that gcd(a, b) = 1 and
D = ab is not a perfect square. Moreover, let (u0, v0) denote the
least positive integer solution of the Pell equation

u2 − Dv2 = 1.

Then equation ax2 − by2 = 1 has a solution in positive integers
x , y if and only if

2a|(u0 + 1) and 2b|(u0 − 1).
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δ = 2

The case ε = 0, δ = 2

We want to solve the Pell equation

U2 − 2d(2d − 1)V 2 = 1, (16)

where n = U, y = V .
The continued fraction expansion of the number

√
2d(2d − 1) is

already known from Theorem 1 where we have obtained√
2d(2d − 1) = [2d − 1; 2, 4d − 2].

The least positive integer solution of the Pell equation (16) is
(4d − 1, 2). In our case, we want to find solutions of (15), so we
apply Lemma which gives us conditions that have to be fulfilled.
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The case ε = 0, δ = 2

It has to be that

2(2d − 1)|4d and 4d |(4d − 2),

which is not true for d ∈ N. So, for Pellian equation (15) there are
no integer solutions (n, y) when a = 2d − 1 > 1.
Finally, we have to check the remaining case for a = 1, which is
the case that is not included in Lemma.

If a = 2d − 1 = 1, then d = 1.



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

It has to be that

2(2d − 1)|4d and 4d |(4d − 2),

which is not true for d ∈ N. So, for Pellian equation (15) there are
no integer solutions (n, y) when a = 2d − 1 > 1.
Finally, we have to check the remaining case for a = 1, which is
the case that is not included in Lemma.

If a = 2d − 1 = 1, then d = 1.



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

From (15) and d = 1, we get the Pell equation

n2 − 2y2 = 1, (17)

which has infinitely many solutions n = Um, y = Vm, m ∈ N0
where

U0 = 1, U1 = 3, Um+2 = 6Um+1 − Um,

V0 = 0, V1 = 2, Vm+2 = 6Vm+1 − Vm, m ∈ N0.
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The case ε = 0, δ = 2

The first few values (Ui ,Vi) are

(U0,V0) = (1, 0), (U1,V1) = (3, 2), (U2,V2) = (17, 12),
(U3,V3) = (99, 70), . . . .

From those solutions we can easily generate (n, d1, d2)

(n, d1, d2) = (3, 1, 5), (17, 5, 29), (99, 29, 169), . . . .

We have proved that in this case is g = 1 and d = 1, so we
conclude that numbers d1 and d2 are coprime and that
d1d2 = n2+1

2 .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

The first few values (Ui ,Vi) are

(U0,V0) = (1, 0), (U1,V1) = (3, 2), (U2,V2) = (17, 12),
(U3,V3) = (99, 70), . . . .

From those solutions we can easily generate (n, d1, d2)

(n, d1, d2) = (3, 1, 5), (17, 5, 29), (99, 29, 169), . . . .

We have proved that in this case is g = 1 and d = 1, so we
conclude that numbers d1 and d2 are coprime and that
d1d2 = n2+1

2 .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ = 2

The case ε = 0, δ = 2

The first few values (Ui ,Vi) are

(U0,V0) = (1, 0), (U1,V1) = (3, 2), (U2,V2) = (17, 12),
(U3,V3) = (99, 70), . . . .

From those solutions we can easily generate (n, d1, d2)

(n, d1, d2) = (3, 1, 5), (17, 5, 29), (99, 29, 169), . . . .

We have proved that in this case is g = 1 and d = 1, so we
conclude that numbers d1 and d2 are coprime and that
d1d2 = n2+1

2 .



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ ≡ 2 (mod 4), δ ≥ 6

1 Introduction

2 The case δ = 2

3 The case δ = 4

4 The case ε = 0
δ = 2
δ ≡ 2 (mod 4), δ ≥ 6



Two divisors of (n2 + 1)/2 summing up to δn + ε,for δ and ε even
The case ε = 0
δ ≡ 2 (mod 4), δ ≥ 6

The case ε = 0, δ ≡ 2 (mod 4), δ ≥ 6

Theorem
Let δ ≥ 6 be a positive integer such that δ = 4k + 2, k ∈ N. Then
there does not exist a positive odd integer n with the property that
there exists a pair of positive divisors d1, d2 of n2+1

2 such that
d1 + d2 = δn.
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The case ε = 0, δ ≡ 2 (mod 4), δ ≥ 6

Suppose on the contrary that this is not so and let the
number δ be the smallest positive integer δ = 4k + 2, k ∈ N
for which there exists an odd integer n and a pair of positive
divisors d1, d2 of n2+1

2 such that d1 + d2 = δn.
Let g = gcd(d1, d2) > 1. Since d1 = gd ′1, d2 = gd ′2, it follows
that g |(n2 + 1) and g |(δn) and we conclude that
g |((δn)2 + δ2), which implies that g |δ2.
This means that g and δ have a common prime factor p.
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Suppose on the contrary that this is not so and let the
number δ be the smallest positive integer δ = 4k + 2, k ∈ N
for which there exists an odd integer n and a pair of positive
divisors d1, d2 of n2+1

2 such that d1 + d2 = δn.
Let g = gcd(d1, d2) > 1. Since d1 = gd ′1, d2 = gd ′2, it follows
that g |(n2 + 1) and g |(δn) and we conclude that
g |((δn)2 + δ2), which implies that g |δ2.
This means that g and δ have a common prime factor p.
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Let d1 = pd ′′1 , d2 = pd ′′2 , δ = pδ′′. Then, we have
pd ′′1 + pd ′′2 = pδ′′n, so we can conclude d ′′1 + d ′′2 = δ′′n where
d ′′1 , d ′′2 are divisors of n2+1

2 .
It is clear that δ′′ < δ and if it also satisfies δ′′ 6= 2, the
existence of the number δ′′ contradicts the minimality of δ.
So, if δ′′ 6= 2, then we must have g = 1.
If δ′′ = 2, it follows from Proposition 1 that gcd(d ′′1 , d ′′2 ) = 1
and d ′′1 d ′′2 = n2+1

2 .
But, gcd(d1, d2) = pd ′′1 d ′′2 should be a divisor of n2+1

2 which is
not possible because p > 1.
So, in this case we also conclude that g = 1.
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From the identity

(d2 − d1)2 = (d1 + d2)2 − 4d1d2,

and using g = 1, we obtain

(δ2d − 2)n2 − d(d2 − d1)2 = 2.

We set (d2 − d1) = 2y (number d2 − d1 is an even number because d1, d2
are odd integers), and we get

(δ2d − 2)n2 − 4dy2 = 2.
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If we divide both sides by 2, we will get

(2d(2k + 1)2 − 1)n2 − 2dy2 = 1.

We define δ′ = δ
2 = 2k + 1, so we deal with

(2δ′2d − 1)n2 − 2dy2 = 1. (18)

We will prove by applying Lemma that the above Pell equation
(18) has no solutions.

To be able to apply Lemma, we have to deal with an equation of
the form

x2 − Dy2 = 1.
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We have a = 2dδ′2 − 1, a > 1 (because δ′ ≥ 3) and
D = ab = 2d(2δ′2d − 1) is not a perfect square because
2d(2δ′2d − 1) ≡ 2 (mod 4).
We need to find the least positive integer solution of the equation

u2 − 2d(2δ′2d − 1)v2 = 1. (19)

For that purpose we find the continued fraction expansion of the
number √

2d(2δ′2d − 1), δ′ ≥ 3.
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We get√
2d(2δ′2d − 1) = [2dδ′ − 1; 1, 2δ′ − 2, 1, 2(2dδ′ − 1)].

So, the least positive integer solution is
(p3, q3) = (u0, v0) = (4δ′2d − 1, 2δ′) and we apply Lemma.
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In our case we have a = 2δ′2d − 1, b = 2d . From Lemma 3 we get

(4δ′2d − 2)|4δ′2d , 4d |(4δ′2d − 2).

We can easily see that 4d |(4δ′2d − 2) if and only if 4d |2 which is
not possible because d ∈ N.
So, the equation (18) has no solutions.
We have proved that there does not exist a positive odd integer n
with the property that there exists a pair of positive divisors d1, d2
of n2+1

2 such that d1 + d2 = δn.
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