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ABSTRACT 

The design procedure of low-sensitivity, low-pass (LP) 2nd-and 
3rd-order class-4 Sallen and Key active resistance-capacitance 

(RC) allpole filters, using impedance tapering, has already been 
published [1]. In this paper desensitization using impedance 

tapering is applied to HP and BP 2nd-order filters. It is shown 

that HP filters have dual properties to LP filters in the sense of 
sensitivity. Among various topologies of BP filters, the best 

topology is proposed. The sensitivity of a filter transfer function 

to component tolerances is examined using the Schoeffler 

sensitivity measure as a basis for comparison. Monte Carlo runs 
are performed as a double-check. The component values, 

selected for impedance tapering, account for the considerable 

decrease in sensitivities to component tolerances for the LP as 

well as for the HP and BP filters. 

1. INTRODUCTION 

A procedure for the design of class-4 Sallen-and-Key [2] low-
sensitivity allpole filters was presented in [1]. The class-4 filter 

circuit has an RC-ladder network in the positive feedback loop 

[3]. The design procedure in [1] is based on “impedance 
tapering”. It was shown that by the use of impedance tapering, in 

which L-sections of the RC network are successively impedance 
scaled upwards, from the driving source to the positive amplifier 

input, the sensitivity of the filter characteristics to component 
tolerances can be significantly decreased. In this paper we apply 

impedance tapering to HP and BP filters [4], [5], and we show 
that this extension follows the same principles as in the LP case.  

2. DEFINITION OF SENSITIVITY 

The relative sensitivity of a function F(x) to variations of a 

variable x is defined as 
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Consider the general transfer function T(s) of a nth-order, allpole 

filter expressed in terms of coefficients ai
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The transfer function T(s) in (2) has no finite zeros, i.e. it has n
zeros at infinity (k=0) for LP filter, k-fold zero at the origin 

(k=n/2) for a BP filter, or k=n for an HP filter. 

The relative change of T(s) to the variation of its coefficients ai is 
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where )( sT

ai
S  is the sensitivity to coefficient variations. It was 

shown in [1] that the variation of the amplitude response α(ω) is 

given by 

[ ] ∑∑
== ω=

∆ω=∆=ωα∆
n

i i

i
i

n

i i

i

js

sT
a

a

a
f

a

a
S

i
00

)( )(Re)( . (4) 

The coefficient variation is given by 
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where Rµ are resistors, Cν capacitors and β the feedback gain of 

an operational amplifier. The terms ia

x
S  represent the coefficient-

to-component sensitivities.

The magnitudeT(jω) of the filter transfer function T(s) in (2), 

is a function of frequency ω. It depends on the values of the 

coefficients ai of the polynomial D(s). The functions fi(ω) in (4), 

represent sensitivities to coefficient variations. They depend only 

on the value of the coefficients ai and frequency ω. Because, the 

LP, HP and BP transfer functions T(s) in (2) have the same 

denominator D(s), and different numerators N(s), the functions 

fi(ω), differ only in a constant, for each case. This can be readily 

shown using the rule: 
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As a consequence, the conclusions from the LP filter 
magnitude’s sensitivities to coefficient variations can be extended 

to HP and BP filters, i.e. the amplitude sensitivity is proportional 

to the pole Qs, meaning that the higher pole Qs results by higher 
sensitivities. Since the high-order filters have higher pole-Qs, the 

general rule should be to design filters with as low ripple and as 
low order as consistent with the filter specifications. 

Table 1. Sensitivities of a1 to component variations of a 

2nd-order class-4 HP filter.
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Unlike the amplitude-to-coefficient sensitivities, the coefficient-

to-component sensitivities ia

xS , shown in Table 1, where x

represents each of the component types, are dependent on the 

realization of the filter circuit and can be reduced by non-

standard filter design as shown in [1]. 

3. DESIGN OF SECOND-ORDER FILTERS 

Consider a 2nd-order HP filter shown in Figure 1(a) [4], [5]. This 
circuit is dual to the 2nd-order LP filter presented in [1]. The 

voltage transfer function T(s) for this circuit is given by  

22

2

01

2

2

1

2

)/()(

)(
)(

ppp sqs

Ks

asas

Ks

sD

sN

V

V
sT

ω+⋅ω+
=

++
===  (7) 

where the coefficients ai are shown in Table 2. The voltage gain 

β=1+RF/RG is obtained with an ideal non-inverting operational 

amplifier (OA), i.e. circuits belong to the class 4 [4]. The 

sensitivity of a0 to all RC components is –1 (and to the gain β it 

is zero), thus ∆a0/a0 can be decreased only by decreasing the 
tolerances of R1, R2, C1 and C2. This is also true for all the class-4 

filters [1]. The sensitivity expressions of a1 to the tolerance of 
passive components, are given in the first column of Table 1.  

The method for minimizing the sensitivity of the coefficient a1

with respect to β, for class-4 circuits is shown in [1]. We obtain 
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where we denote the pole Q of the passive sub-network by q̂ .

The coefficient sensitivities are all proportional to qp. Thus, one 
does well to select the filter type with the lowest pole Qs for a 

given application. From (8) it follows that the coefficient a1

sensitivity to the gain is inversely proportional to the pole Q 

factor of the passive network q̂ , which is less than 0.5 [3]. The 

value of q̂  can be maximized by appropriately impedance 

scaling individual sections of an RC-network. This is referred to 

as “impedance tapering” in [1]. Referring to Figure 1(a), for our 

circuit this is accomplished when the second RC-section in the 

feedback loop comprising R2 and C2 (inside the rectangle) is 

impedance scaled upwards in order to minimize the loading on 
the first, i.e. R1 and C1. Letting 

 R1=R; C1=C;   R2=rR;   C2=C/ρ (9) 

we obtain the sensitivity relations given in the second column of 

Table 1, and from the expression for pole Q, qp it follows that: 

5.0
211

ˆ =
ρ+

ρ=
ρ++

ρ
=

∞→ρρ=r
r

r
q  (10) 

Thus, impedance scaling R2 and C2 as in (9), q̂  will approach 0.5 

and the sensitivity of a1 to β will be minimized according to (8). 

A glance at the sensitivities in the second column of Table 1, 

shows that some of them are proportional to ρ and r and some to 

ρ-1 and r-1. Setting ρ=1 provides a useful compromise, whereby, 

of course, r>1. Note that pqa SS ββ −=1 .

Consider the four different realisations of the second-order BP 

filter circuits shown in Figure 1(c)-(f). One can distinguish 
between two basic topologies, i.e. the type A circuit in Figure 

1(c) and the type B circuit shown in Figure 1(d). The circuits in 
Figure 1(e), (f) are dual to the circuits (c) and (d), respectively. It 

can readily be shown, that dual filters of types A  and B  have 

similar characteristics, in the sense of sensitivity, therefore A and 
B, will not be considered in this work. Note that in order to 

minimize (8), we have to increase the impedance of the first 

section of BP filter type A. For simplicity we denote the two 
input resistors as 

 R1=ξ1Rp; R2=ξ2Rp; Rp=R1R2. (11) 

Design equations for the tapered second-order HP filter follow. 

With the tapering factors in (9) and with 
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we obtain for the coefficients of T(s)
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From 2

0 pa ω=  and pp qa /1
ω= , which are given by the filter 

specifications, we must determine ω0, ρ, r and β. Parameters r

and ρ must both be positive, and β must be larger than unity. 
This leads to the following realizability constraints. 
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Figure 1. HP and BP active-RC class-4 allpole filters, with impedance scaling factors r and ρ. (a) 2nd-order HP filter. (b)

Ensuring β≥1. (c)-(f) 2nd-order BP filters: (c) Type A. (d) Type B. (e) Type A . (f) Type B .
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Table 2 The second-order filter coefficients in terms of component values and GSP equations. 

Type 
2

0 pa ω= pp qa /1 ω= N(s) r (min. GSP) GSP

HP
2121

1

CCRR 2121

2222211 )(

CCRR

CRCRCCR β−++ β
2121

1

CCRR
s2 ( ) 2

12

2
11121

4 



 −ρ++ρ −

p

p

q
q ρ

β r
qp

2

BP-A 
21321

21

CCRRR

RR +

21321

13112121321 )()(

CCRRR

CRRCRRCCRRR β−+++ β
21

1

CR
s ( ) 2

12

2
11121

36 



 +ρ++ρ −

p

p

q
q ρξ

β
r

qp

1

2

2

BP-B 
21321

21

CCRRR

RR +

21321

2312323121121 )(

CCRRR

CRRCRRRRRRCRR β−+++ β
11

1

CR
s ( ) 2

12

2
11121

4 



 −ρ++ρ −

p

p

q
q ρξ

β r
qp

2

2

        

Figure 2. Sensitivities of 2nd-order filter circuits. (a) HP. (b) BP type A. (c) BP type B. 

3.1 Realizability constraints 

In order to obtain positive values for r and ρ in (14) for the HP 

filter, the design frequency must satisfy the following constraint  
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Because β≥1, the expression under the square root is always 

positive. From (14) it follows that constraint (15) is automatically 

satisfied, since r, ρ>0. Thus, this constraint does not need to be 

checked. Similar realizability constraints for the values of r and ρ
of BP filters can be derived as well. They are also automatically 

satisfied. Furthermore, to ensure that β≥1, with the chosen 

capacitive tapering factor ρ for the HP filter, we have an upper 

bound on the resistive tapering factor r, i.e. 

ρρ+=≤ β /)1( 22

pqrr . (16) 

The constraint (16) needs to be checked for. For the BP filter 

type B the constraint to ensure that β≥1 is not a limitation, 

because we have the feedback attenuation factor ξ1. If (16) is 

satisfied, we have the case i) 1<ξ2<β, and if not, then we have ii)

β<ξ2. In the latter case, we can choose r, i.e. rβ<r<rmax to obtain 

β≥1. The upper bound rmax is dependent on the choice of ρ and ξ1

and is given by: 
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If, for any reason, we require that β<1, we can substitute 

capacitance C2 by a capacitive voltage divider with a factor 

0<µ<1, as shown in Figure 1(b). Then the needed amplifier gain 

β/µ will be greater than or equal to unity. In the case of a LP 

circuit, the same is possible by substituting R2 with a resistive 

voltage divider resulting in a voltage reduction by a factor µ. The 

disadvantage is that we need one more component, thus a better 

solution is to select the appropriate tapering factors r, ρ (and ξ1)

to obtain β≥1. The BP filter type A has no constraints, because of 

its topology. 

3.2 Example 

Consider the following practical example. Suppose that 

 pF.kHz; 500;5862 ==⋅π=ω Cq pp  (18) 

The design procedure for a HP filter can be accomplished by the 

following step-by-step procedure.  

i) Select r and ρ and calculate ω0 and β: Let ρ=1 and r=4, thus 

from (18) we have 

331
0 107.1080410862/)( ⋅=⋅⋅π=ρω==ω − rRC p rad/s. 

4.1//1/)1(1 =ρ⋅−ρ++=β rqr
pLP .

In this step we check the constraints for β≥1, and if it is not 

satisfied we choose another r and ρ. Note that we can select ρ
and then calculate r for min. GSP, using the equations in Table 2. 

ii) Select C  and compute R , R2, and C2: Let C=500pF, thus 

R=(ω0C)-1=1850.6Ω. Then R1=R=1850.6Ω, C1=C=500pF, C2=

C/ρ=500pF, R2=rR=7.4kΩ.

iii) Select RG and calculate RF: Let RG=10kΩ, then

 RF=RG(β-1)=10kΩ⋅(1.4-1)=4kΩ (Filter Nr. 4 in Table 3). 

The design procedure for BP filters can be accomplished by the 
same procedure, with just a few differences. For a BP type B 

(a) (b) (c) 

(17) 
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filter we use the appropriate equations in step i) βBP-B=ξ1⋅βLP, and 

in step ii) R1=ξ1R, R2=ξ2R, ξ2=ξ1/(ξ1-1), R3=rR, C1=C, C2=C/ρ.

For BP type A filter we use in i) [ ]rqr
p

ρ⋅−ρ++ξ=β − /11
2ABP

and in ii) R1=ξ1rR, R2=ξ2rR, ξ2=ξ1/(ξ1-1), R3=R, C1=C/ρ, C2=C.

In the design process, various methods of impedance tapering 
have been applied and the resulting component values are 

presented in Tables 4, 5 and 6. The corresponding Schoeffler 
sensitivities are shown in Figure 2. A sensitivity analysis was 

performed assuming the relative changes of the resistors and 
capacitors to be uncorrelated random variables, with a zero-mean 

and 1% standard deviation. The standard deviation (which is 
related to the Shoeffler sensitivities) of the variation of the 

logarithmic gain ∆α=8.68588 ∆|TBP(ω)|/|TBP(ω)|, with respect to 
the passive elements, is calculated for the filter examples in 

Table 3 and shown in Figure 2(a), for the HP filter case. Monte 
Carlo runs (using PSPICE simulation) were performed as a 

double-check. We present the corresponding standard deviation 

σα(ωp) in [dB] of the filter’s magnitude obtained using Monte 

Carlo runs at pole frequency ωp, in the last columns of Tables 4, 

5, and 6, together with filter component values. The pole 

frequency ωp is suitable for observing the magnitude spread, 

because the spread is the highest in the vicinity of this frequency. 

From Figure 2(a) we can conclude that the ideally impedance-

tapered filter (No. 2) has considerably decreased sensitivities, 

compared to the non-tapered standard circuit version (No. 1). By 
tapering only the resistors, while keeping the capacitor values 

equal (No. 4), the filter sensitivities are decreased even more.  

Table 3 Component values of 2nd-order HP filters 

(resistors in [kΩ], capacitors in [pF], σα (ωp) in [dB]). 

Nr. Filter R1 r C1 ρ β GSP σα

1) Non Tapered 3.7 1 500 1 2.8 39.2 3.36 

2) Impedance Tapered 3.7 4 500 4 2.05 21.0 1.99 

3) Part. Tapered (r=1) 7.4 1 500 4 5.6 78.4 1.38 

4) Part. Tapered (ρ=1) 1.85 4 500 1 1.4 19.6 4.80 

5) ρ=1 and min. GSP 1.57 5.53 500 1 1.28 19.2 1.19 

6) C-Taper, min. GSP 2.01 13.52 500 4 1.26 14.6 0.93 

Table 4 Component values of 2nd-order BP-A filter 

(resistors in [kΩ], capacitors in [pF], σα(ωp) in [dB]). 

Nr. Filter R3 ξ1 r C2 ρ β GSP σα

1) Non Tapered 3.7 2 1 500 1 5.6 78.4 4.34 

2) Impedance Tapered 3.7 2 4 500 4 16.4 168 3.21 

3) Part. Tapered (r=1) 7.4 2 1 500 4 11.2 157 4.85 

4) Part. Tapered (ρ=1) 1.85 2 4 500 1 11.2 157 4.71 

5) C-Taper, min. GSP 5.44 2 1.85 500 4 12.6 146 3.63 

6) R-Taper, min. GSP 10 2 4 126 1.85 12.6 146 3.80 

Table 5 Component values of 2nd-order BP-B filter 

(resistors in [kΩ], capacitors in [pF], σα(ωp) in [dB]). 

Nr. Filter R1 ξ1 r C1 ρ β GSP σα

1) Non Tapered 3.7 2 1 500 1 5.6 78.4 4.46 

2) Impedance Tapered 3.7 2 4 500 4 4.1 42.0 2.83 

3) Part. Tapered (r=1) 7.4 2 1 500 4 11.2 165 5.37 

4) Part. Tapered (ρ=1) 1.85 2 4 500 1 2.8 39.2 3.12 

5) ρ=1 and min. GSP 1.57 2 5.53 500 1 2.55 38.3 3.16 

6) C-Taper, min. GSP 2.01 2 13.52 500 4 2.52 29.2 2.3 

The resistively tapered filter (No. 3) has the highest sensitivities. 

Furthermore, the filters with equal capacitors and min. GSP (Nr. 
5) and C-tapered and min. GSP (Nr. 6) show somewhat lower 

sensitivities. 

In summary, for the general second-order allpole HP filter of 
Figure (a), resistive impedance tapering with equal capacitors 

(ρ= ), or capacitor values selected for GSP-minimization, 

provide circuits with minimum sensitivity. 

Observing the standard deviation σα(ω)[dB] Figure 2(b) and (c) 

we conclude that the ideally impedance-tapered filter (No. 2) has 

considerably decreased sensitivities, compared to the non-tapered 

standard circuit version (No. 1), for both type A and B BP 

circuits, for the reason explained in [6]. In [6] the so-called 
“lossy” LP to BP transformation is applied to the 1st-order LP 

filter, to obtain 2nd-order BP filter type A, as in Figure 1(c). It 
was shown there that the minimum sensitivity is obtained when 

r=ρ. Furthermore, from Figure 2 the topology B is shown to be 

slightly less sensitive than topology A, and can be even more 

desensitized by minimizing the GSP while tapering the 

capacitors [see (No. 6) in Figure 2(c)]. 

In summary, for the general second-order allpole BP filters of 

Figure 1(c) and (d), ideal impedance tapering (ρ=r), provides 

circuits with minimum sensitivity. 

4. CONCLUSIONS 

In this paper, design equations and realizability constraints for 
second-order HP and BP filters are presented. A procedure for 

the design of low-sensitivity active RC allpole filters of second-

order was published earlier in [1]. Instead of standard design 

methods, as given in various design handbooks, the component 

values are calculated using “impedance tapering”. Capacitive 
impedance tapering with equal resistors (r=1) provides HP 

circuits with minimum sensitivity to the component tolerances. 
This is dual to the LP filter case, as shown in [1], where resistive 

impedance tapering with equal capacitors (ρ=1) provides 

minimum sensitivity circuits. In both cases it is preferable to 

minimize the GSP-product wherever possible. On the other hand, 

for the BP circuits, ideal impedance tapering (ρ=r) shows the 

best results. For these, the topology B is slightly better than 

topology A. 
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