

- interior of D. The density of Θ is given by

- Reflections (2009)
- reflectors (2013)

- as s $ightarrow \infty$.

Random Reflections and Stopped Random Walks Tvrtko Tadić (joint work with Krzysztof Burdzy)

Random walk representation

The points of reflection are given by $\{(-s + S_k, (1 + (-1)^k)/2) : 0 \le k \le N_s - 1\}.$

$S_0 = 0, S_n = S_{n-1} + X_n;$	$\triangleright Y_1 \stackrel{a}{=}$
we stop after S goes over s:	► P(Y-
$(S_n: n \leq N(s)),$	► P(Y
where	► E[Y
$N_{s} = \inf\{n \ge 0 : S_{n} > s\}.$	► E [Y]

Overshoot and undershoot

Overshoot and undershoot: $O_s = S_{N_s} - s$ and $U_s = s - S_{N_s-1}$. It is known that $O_s \stackrel{\mathbb{P}}{\to} \infty$ and $U_{s} \stackrel{\mathbb{P}}{\to} \infty.$

Proposition (Burdzy, Tadić, 2014)

 $\lim_{s\to\infty} \mathbb{P}\left(\frac{U_s}{O_s+U_s}\leq t\right)=t^2.$

Domain of attraction of the normal law

Recall, $\mathbb{P}(Y_1 > y) \sim \frac{1}{2v^2}$. Y_1 is in the domain of attraction of the normal distribution. Theorem (Burdzy, Tadić 2014, Erickson 1970)

$$\left(\sqrt{\frac{\log U_s}{\log s}}, \sqrt{\frac{\log O_s}{\log s}}\right) \stackrel{d}{\to} (X, X)$$

ere $X \sim U[0, 1].$

where
$$X \sim U[0, 1]$$
.

 $s = s_0$

University of Washington, Seattle

 $U_{\rm s}, O_{\rm s} \stackrel{d}{\approx} {\rm s}^{{\rm X}^2}$

Uniform law

Theorem (Burdzy, Tadić, 2014)

As $s \to \infty$

What does the

Theorem (Burdzy, Tadić, 2014)

Corollary (Burdzy, Tadić, 2014)

WWW: http://www.math.washington.edu/~tadic