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Abstract—This paper defines the scaling laws for syn-
chronous permanent magnet machines which include three
separate procedures: rewinding, axial scaling, radial scal-
ing. The derivation of scaling relations is based on the
requirement that the magnetic fields in the scaled model
should be the exact images of the fields in the referent
model. The exact equations for the various parameters
(torque, power, losses, mass, resistance, inductance) of the
machine are derived using the three scaling factors, one
for each scaling procedure. The equations are numerically
validated using the state-of-the-art finite-element software.

Index Terms—synchronous machine with permanent
magnets, optimization, scaling laws, similitude laws, series
of motors

I. INTRODUCTION

Scaling (or similitude) laws are rather popular in
physics and engineering and are often used in numer-
ous examples, e.g. thermodynamic correlations, small-
scale/large-scale models, fractals etc. They are used to
predict the performance of a new design based on data
from an existing, similar design. In the electromagnetics,
new design and similar design will have the similar
geometry, but in general not the same materials and
electromagnetic excitation (both in terms of amplitude
and time scale).

Hsieh and Kim [1] presented a detailed derivation
of scaling laws for an electromechanical system using
the electromagnetic diffusion equation, thermal diffusion
equation, momentum equation and kinematic equation
along with numerical validation on

√
2 times smaller

electromagnetic launcher. Wood [2] was dealing with
the general scaling laws for electromagnetical systems
motivated by the thermal stability of the magnetic record-

ing systems. From the Landau-Lifshitz-Gilbert equation
he concluded that for non-linear ferromagnetic systems
there are two independent scaling factors (λ for length,
and τ for time). If the time is not scaled, there is only one
scaling factor. Kofler et. al. [3] explored magnetic field in
the end-winding space of a superconducting synchronous
machine reduced by scaling laws from [4]. These laws
are basically identical to the ones derived in [2].

Bone [5], [6] determined basic scaling laws for in-
duction machines. These laws are not exact as the ones
derived in this paper because the field solutions are
changed but are very valuable as a tool for machine
designer. Binns and Shimmin [7] tried to determine
the basic scaling laws for the permanent magnet (PM)
machines. Their scaling laws are based on keeping the
current density equal for the radially scaled machine
which does not keep the same field solution. Gu and
Stiebler [8] dealt with the scaling laws for switched-
reluctance machines. Their work was expanded in this
paper and applied to PM machines to include the three
separate scaling procedures.

The axial scaling (core lengthening) is a known NTC
(no tool cost) procedure for the induction machines [9],
[10] which can be applied also for PM machines, but has
a technological limit in terms of stack length. Therefore
radial scaling (using the larger frame size) can be utilized
in order to achieve larger torque ratings when maximum
allowed stack length is reached.

The main contribution of this paper is a comprehen-
sive definition of scaling laws for PM machines which
includes rewinding, axial scaling and radial scaling that
preserves saturation levels in the original and scaled
machine and allows quick and accurate calculation of
parameters of the scaled machine.



II. MOTIVATION

The research related to the scaling laws for PM ma-
chines was started in order to explore the ability to design
the optimal series (set) of the machines by optimizing
only one design, so called referent design. All of the
particular machines in the series are considered scaled
designs (scaled from the referent design) and they are
calculated by using the scaling laws. They have equal or
similar lamination cross-section, the same voltage rating
but different torque/power rating.

The three scaling procedures are: rewinding, axial
scaling (lengthening or shortening) and radial scaling
(increase or reduction in diameter). By using these three
procedures it is possible to scale any PM machine to
have different length, radial size or rated voltage and
quickly calculate its parameters and characteristics (e.g.
efficiency map). It is also possible to determine the
size, the winding features and the characteristics of the
similar machine with prescribed value of torque (power,
efficiency etc.).

The derivation of scaling relations is based on the
requirement that the magnetic fields in the scaled model
should be the exact images of the fields in the referent
model (magnetic flux density is unchanged in all active
parts after the scaling procedure). This is the main
characteristic of all scaling laws derived in this paper.
The geometry of the scaled model is similar to the one
in the referent model (equal also means similar), all
the materials and the technology (winding type, slot-fill
factor) utilized are the same and the machines operate
at the same temperature. The mechanical losses (friction
and windage) and 3D effects in magnet losses are ne-
glected but can be also scaled according to the principles
mentioned below. In the following text, index 0 denotes
that the quantity is referring to the referent machine or
otherwise it is referring to the scaled machine.

III. REWINDING

Rewinding is a well known procedure related to elec-
trical machines and normally is used to adapt the winding
of the machine to the voltage (or current) rating of the
power supply system. It in fact means a change of the
numbers of turns per coil (Nc) and the number of parallel
paths (ap) of the referent machine in the same ratio while
keeping the cross-section geometry, stack length and slot
current density unchanged. The equations are derived for
a three-phase two-layer winding but are also valid for any
winding type.

The referent machine will generally have Nc0 turns per
coil and ap0 parallel paths. The peak value of the rated
phase current for the referent machine can be written as

I0 =
√
I2d0 + I2q0 =

√
2
ap0
Nc0

J0
Aslot0

2
kCu0, (1)

where J0 is the winding current density, Aslot0 is the
slot cross-section area, kCu0 is the slot fill factor of the
referent machine.

The rewound (scaled) machine will generally have
Nc turns per coil and ap parallel paths. Its rated phase
current can be expressed as

I =
√
I2d + I2q =

√
2
ap
Nc
J
Aslot

2
kCu, (2)

With regard to the initial assumptions (J = J0, Aslot =
Aslot0, kCu = kCu0) one can write

I =
ap
Nc

Nc0

ap0
I0 =

1

kW
I0. (3)

where kW is the rewinding factor.
All the following equations are derived for the specific

case of the referent machine with 1 turn per coil (Nc0 = 1)
and no parallel paths (ap0 = 1) in order to reduce the size
of the equations. The winding scaling factor is therefore

kW =
Nc

ap
. (4)

There is no loss of the generality because the ratio of the
Nc and ap is of the key importance. If the current density
in the slot is unchanged, the magnetic field solutions are
unchanged which is evident from the Poisson’s equation

∂

∂x

(
1

µ

∂Az

∂x

)
+

∂

∂y

(
1

µ

∂Az

∂y

)
= −Jz. (5)

It is known that the rewound machine will have a
different flux linkage than the referent machine

Ψ =
Nc

ap
Ψ0 = kWΨ0, (6)

but the magnetomotive force (MMF) of the stator wind-
ing and the magnets will not change.

The electromagnetic torque will not change as one can
see from

Tem =
3

2
p|Ψ × I| = 3

2
p|kWΨ0 ×

I0
kW
| = Tem0. (7)

The phase winding of the scaled machine will have
Nc/ap, i.e. kW times more turns connected in series,
but will be made of ap parallel paths. The cross-section



area of one turn will be Nc times smaller. The resistance
of the phase winding is therefore

R =
1

ap
ρ

lt
Qs

3
kW

1

2
Aslot

1

Nc
kCu

= k2Wρ
lt
Qs

3
1

2
Aslot0kCu

= k2WR0

(8)

where lt is the mean turn length, Qs is the number of
stator slots, and ρ is the resistivity of the stator winding
material.

For example, q-axis inductance can be expressed as

Lq =
Ψq
Iq

=
kWΨq
1

kW
Iq

= k2WLq. (9)

The rewinding procedure can be independent of any
other scaling procedures but in this paper it is not
separable from the axial and radial scaling because the
scaled machine must have prescribed voltage rating.
Rewinding can be of high importance when determining
the optimal winding parameters for a traction drive with
prescribed drive cycle [11]–[13].

IV. AXIAL SCALING

Axial scaling means in fact the variation of the axial
core length in by keeping the lamination cross-section
preserved. It is considered that the axial length of the
stator stack, the rotor stack and the magnets is changed
in the same ratio. The stack length of the scaled machine
lFe is determined from

lFe = kAlFe0, (10)

where kA is the axial scaling factor and lFe0 is the
referent machine stack length. Axially scaled machine
is also rewound so it has a certain number of turns per
coil and parallel paths generally different from 1 and
chosen to satisfy the prescribed voltage rating.

The slot current density must be preserved in the axial
scaling procedure so that magnetic field solutions would
stay unchanged. The change of the axial length does
not affect the 2D solutions but affects magnetic flux,
voltage, torque, losses, resistance and inductance. The
phase current is therefore only influenced by rewinding

I =
1

kW
I0. (11)

Stator and rotor MMF remain unchanged with the
combined axial scaling and rewinding which additionally
confirms that the saturation in all active parts of the
scaled machine will be the same as in the referent

machine. This is also evident from the Poisson’s equation
(5).

The end-winding arrangement and shape is determined
only by the lamination cross-section and not by the stack
length. There is a technological influence of the number
of turns per coil and parallel paths, but it can be neglected
in this analysis. It means that all the machines of the
same cross section will have equal end-winding. Only
one part of the scaled machine’s flux linkage is affected
by the change of the stack length - it is the core part, the
one with index co. The end-winding part, with index ew
remains unchanged. For example, the d-axis stator flux
linkage can be written as

Ψd = Ψdco + Ψdew = kWkAΨd0co + kWΨ0ew. (12)

The q-axis inductance is given by:

Lq =
1

ap

Ψq
1

ap
Iq

=
kWkAΨq0co + kWΨq0ew

1

kW
Iq0

= k2WkALq0co + k2WL0ew. (13)

The phase resistance of axially scaled machine can be
calculated as

R =
1

ap
ρ
(lco + lew)

Qs

3
kW

1

2
Aslot0kCu0

1

Nc

= k2Wρ

Qs

3
kAlco0

1

2
Aslot0kCu0

+ k2Wρ

Qs

3
lew0

1

2
Aslot0kCu0

= k2WkAR0co + k2WR0ew, (14)

where lco is the core part and lew0 is the end-winding
part of the mean turn length lt.

The end-winding does not take active part in the torque
generation therefore the electromagnetic torque of the
axially scaled machine is proportional only to the change
of the stack length,

Tem =
3

2
p

[
kWkAΨmd0

1

kW
Iq0 − kWkAΨmq0

1

kW
Id0+

+ k2WkA (Ld0 − Lq0)
1

k2W
Iq0Id0 + k2WkALdq0

1

k2W

(
I2q0 − I2d0

) ]
=

3

2
p

[
kAΨmd0Iq0 − kAΨmq0Id0 + kA (Ld0 − Lq0) Iq0Id0+

+ kALdq0

(
I2q0 − I2d0

) ]
= kATem0. (15)

More detailed derivation of all the similar expression
for the axial scaling can be found in [14].



V. RADIAL SCALING

Radial scaling considers proportional change of all
dimensions of the cross-section. It is important to deter-
mine under which conditions the magnetic flux densities
of the scaled machine are preserved. The Poisson’s
equation for the referent machine is

∂

∂x

(
1

µ

∂Az

∂x

)
+

∂

∂y

(
1

µ

∂Az

∂y

)
= −Jz, (16)

and for the scaled machine

∂

∂x′

(
1

µ′
∂A′

z

∂x′

)
+

∂

∂y′

(
1

µ′
∂A′

z

∂y′

)
= −J ′

z. (17)

Let x and y dimensions be scaled by factor of kR, and
slot current density scaled by factor kJ . The terms in
the parentheses must be equal for both the scaled and
the referent machine in order to preserve the exact same
saturation, i.e. the value of µ:

1

kR

∂

∂x

(
1

µ

∂Az

∂x

)
+

1

kR

∂

∂y

(
1

µ

∂Az

∂y

)
= −kJJz (18)

This is accomplished if

kJ =
1

kR
. (19)

It is again necessary to rewind the scaled machine in
order to satisfy the voltage rating so these two procedures
are performed one after another. All the areas of the
cross-section are scaled by factor k2R so the phase current
(after rewinding) must be scaled by factor kR/kW

I =
√
2

1

kW

1

kR
J0k

2
R

Aslot0

2
kCu0 =

kR
kW

I0 (20)

Flux linkage related to the active part (i.e. core) is
proportional to factor kR due to the increase of the
stator bore circumference by the factor kR while the
stack length remains unchanged. Flux linked by the end-
windings is proportional to k2R due to the increase of
both circumference and end-winding axial length. After
rewinding, the d-axis stator flux linkage can be written
as

Ψd = Ψdco + Ψdew = kWkRΨd0co + kWk
2
RΨ0ew, (21)

and the q-axis inductance as

Lq =
Ψq
Iq

=
kWkRΨq0co + kWk

2
RΨq0ew

kR
kW

Iq0

= k2WLq0co + k2WkRL0ew. (22)

The phase resistance of radially scaled machine can
be calculated as

R =
1

ap
ρ
(lco + kRlew0)

Qs

3
kW

1

2
k2RAslot0kCu0

1

Nc

= k2Wρ

Qs

3
lco

1

2
k2RAslot0kCu0

+ k2Wρ

Qs

3
kRlew0

1

2
k2RAslot0kCu0

=
k2W
k2R

R0co +
k2W
kR

R0ew. (23)

The rewinding does not affect the produced electro-
magnetic torque, but due to change of the rotor volume
with radial scaling the torque is changed by the factor
k2R

Tem =
3

2
p

[
kWkRΨmd0

kR
kW

Iq0 − kWkRΨmq0
kR
kW

Id0+

+k2W (Ld0 − Lq0)
k2R
k2W

Iq0Id0 + k2WLdq0
k2R
k2W

(
I2q0 − I2d0

) ]
=
3

2
p

[
k2RΨmd0Iq0 − k2RΨmq0Id0 + k2R (Ld0 − Lq0) Iq0Id0

+k2RLdq0

(
I2q0 − I2d0

) ]
= k2RTem0 (24)

VI. GENERAL SCALING LAWS

It is possible to derive the generalized scaling laws us-
ing the aforementioned principles. They include rewind-
ing, axial scaling and radial scaling without considera-
tion of the order of performing these actions because, in
the way they are presented, they are independent of each
other. Three key parameters that will change the frame
size, the stack length and the rated voltage are kR, kA and
kW respectively. If the referent machine is excited with
the current I0 and has all the right-hand side parameters
indexed with 0 in (26) to (48), then the scaled machine
will have all the left-hand side parameters listed in (26)
to (48) if excited with current according to (25).

I =
kR
kW

I0 (25)

Ψd = kWkRkAΨd0co + kWk
2
RΨ0ew (26)

Ψq = kWkRkAΨq0co + kWk
2
RΨ0ew (27)

Ψmag,d = kWkRkAΨmag,d0co (28)

Ψmag,q = kWkRkAΨmag,q0co (29)

Tem = k2RkATem0 (30)

Tshaft = k2RkATshaft0 (31)



Vd = kW

{(
kA
kR
R0co +R0ew

)
Id0 − kRkAω0Ψmagq0 − ω0

[(
kRkALq0co + k2RLq0ew

)
Iq0 + kRkALqd0Id0

]}
,

(32)

Vq = kW

{(
kA
kR
R0co +R0ew

)
Iq0 + kRkAω0Ψmagd0 + ω0

[(
kRkALd0co + k2RLd0ew

)
Id0 + kRkALdq0Iq0

]}
,

(33)

V =
√
V 2
d + V 2

q (34)

Pshaft = k2RkAPshaft0 (35)

Pin = k2RkA

(
Pem0 +

1

k2R
PCu0co +

1

kRkA
PCu0ew

)
(36)

PCu = kAPCu0co + kRPCu0ew (37)

PFe = k2RkAPFe0 (38)

Pmag = k2RkAPFe0 (39)

η =
Pshaft0

Pem0 +
1

k2R
PCu0co +

1

kRkA
PCu0ew

(40)

cosϕ =
VdId + VqIq

V I
(41)

Ld = k2WkALd0co + k2WkRLd0ew (42)

Lq = k2WkALq0co + k2WkRLq0ew (43)

Ldq = Lqd = k2WkALdq0co = k2WkALqd0co (44)

R =
k2W
k2R

kAR0co +
k2W
kR

R0ew (45)

mCu = k2RkAmCu0co + kRmCu0ew (46)

mFe = k2RkAmFe0 (47)

mmag = k2RkAmm0 (48)

These purely analytical scaling laws can be used to
obtain the parameters of the scaled machine without
the need to recalculate all the parameters with the
method (e.g. analytical or numerical) that was used to
calculate the parameters of the referent machine. This
is very useful if calculation of the parameters for the
referent machine uses a numerical method (e.g. FEA)
which is very common for the synchronous permanent
magnet machines. The benefit is obvious if the scaling
calculation is performed inside an optimization routine
where thousands of designs are checked in one study.

VII. EXAMPLE

In order to show the correctness of the derived ex-
pressions one can use any FEA software package with
the post-processing procedure to extract the parameters
or even specialized analytical+FEA packages such as
SPEED PC-BDC+PC-FEA, MotorCAD Emag. As an
example, the referent 1 kW IPM machine (12s4p) was
created and calculated using PC-BDC software (analyti-
cal+embedded FEA analysis using PC-FEA).The results
are shown in the 2nd column (original) in table I and on
Fig. 1.

In order to create similar 2 kW machine, the geometry
was scaled using the factors kR = 1.2, kA = 1.4, the
machine was rewound for the original voltage of 24 V
with kW = 0.5965 and recalculated in the same software
package (results in the 3rd column and on Fig. 2). The
results in the 4th (SL = scaling laws) column are obtained
using the scaling laws derived in this paper and the
parameters of the referent 1 kW machine. The percentage
difference between the recalculated parameters and the
scaled parameters is negligible, yet the scaling procedure
takes significantly less computational time (it is purely
analytical).

VIII. CONCLUSION

Generalized scaling laws for PM machines using three
scaling factors are presented and numerically verified.
Utilization of the scaling laws for PM machines leads
to significant time savings when optimized design of a
series of machines is performed. While calculating the
parameters for every candidate (referent machine) in the
optimization procedure, one can very quickly calculate
all the parameters for all the machines in the series
(axially and/or radially scaled machines). It is then easy
to calculate the optimization cost function e.g. the total
cost of the material for the series of motors or the
inequality constraint e.g. the minimum efficiency of each
machine in the series.



TABLE I
IPM, 1 kW SCALED TO 2 kW, 1000 min−1 , 24 V, RATED LOAD

FEA 1 kW FEA 2 kW SL 2 kW % diff.

Nc 19 17 17 0,0

ap 2 3 3 0,0

OD,mm 530 636 636 0,0

lstk,mm 120 168 168 0,0

lt,mm 419 551 551 0,0

lco,mm 240 336 336 0,0

lew,mm 179 215 215 0,0

Aslot,mm2 626 902 902 0,0

J,A/mm2 2,9 2,4 2,4 0,0

I,A 37,6 75,7 75,7 0,0

Tshaft,N m 9,6 19,3 19,3 0,0

Tem,N m 9,6 19,4 19,4 0,0

Pshaft,W 1005 2025 2025 0,0

Pin,W 1097 2148 2148 0,0

PCu,W 90,2 118,6 118,6 0,0

PFe,W 2,0 4,1 4,1 0,0

η,% 91,59 94,29 94,29 0,0

Vph,V 13,8 13,7 13,7 0,2

VLL,V 24,0 23,7 23,7 0,2

cosϕ 0,70 0,69 0,69 0,1

Ld,mH 0,62 0,31 0,31 0,6

Lq,mH 1,90 0,95 0,95 0,2

Lew, µH 23,5 10,0 10,0 0,0

Rph,mΩ 21,23 6,90 6,90 0,0

mCu, kg 5,6 10,6 10,6 0,0

mFe, kg 17,3 35,0 35,0 0,0

mmag, kg 1,1 2,2 2,2 0,0

Bgap,Load,T 0,18 0,18 0,18 0,0

Bmag,Load,T 0,17 0,16 0,16 0,3
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Fig. 1. 2D finite element field solution at rated load point for 12s4p
IPM, referent design

Fig. 2. 2D finite element field solution at rated load point for 12s4p
IPM, scaled design


