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Abstract: Automatic segmentation of blood vessels in fundus images is of great importance as eye diseases as well as 
some systemic diseases cause observable pathologic modifications. It is a binary classification problem: for 
each pixel we consider two possible classes (vessel or non-vessel). We use a GPU implementation of deep 
max-pooling convolutional neural networks to segment blood vessels. We test our method on publicly-
available DRIVE dataset and our results demonstrate the high effectiveness of the deep learning approach. 
Our method achieves an average accuracy and AUC of 0.9466 and 0.9749, respectively. 

1 INTRODUCTION 

The retina is a layered tissue lining the inner 
surface of the eye. It converts incoming light to the 
action potential (neural signal) which is further pro-
cessed in the visual centres of the brain. Retina is 
unique as blood vessels can be directly detected non-
invasively in vivo (Abràmoff et al., 2010).  

It is of great purpose in medicine to image the 
retina and develop algorithms for analysing those 
images. Recent technology in last twenty years leads 
to the development of digital retinal imaging sys-
tems (Patton et al., 2006). 

The retinal vessels are connected and create a 
binary treelike structure but some background fea-
tures may also have similar attributes to vessels 
(Fraz et al., 2012). 

Several morphological features of retinal veins 
and arteries (e.g. diameter, length, branching angle, 
tortuosity) have diagnostic significance so can be 
used in monitoring the disease progression, treat-
ment, and evaluation of various cardiovascular and 
ophthalmologic diseases (e.g. diabetes, hyperten-
sion, arteriosclerosis and chorodial neovasculariza-
tion) (Kanski and Bowling, 2012; Ricci and Perfetti, 
2007). 

Because of the manual blood vessel segmenta-
tion is a time-consuming and repetitious task which 
requires training and skill, automatic segmentation 
of retinal vessels is the initial step in the develop-

ment of a computer-assisted diagnostic system for 
ophthalmic disorders (Fraz et al., 2012). 

Automatic segmentation of the blood vessels in 
retinal images is important in the detection of a 
number of eye diseases because in some cases they 
affect vessel tree itself. In other cases (e.g. patholog-
ical lesions) the performance of automatic detection 
methods may be improved if blood vessel tree is 
excluded from the analysis. Consequently the auto-
matic vessel segmentation forms a crucial compo-
nent of any automated screening system (Niemeijer 
et al., 2004). 

Conventional supervised methods are usually 
based on two phases: feature extraction and classifi-
cation. Finding the best set of features (which mini-
mizes segmentation error) is a difficult task as 
choice of features significantly affects segmentation. 
Recent works use convolutional neural networks 
(CNNs) to segment images so feature extraction 
itself is learned from data and not designed manual-
ly. These approaches obtain state-of-the-art results in 
many applications (Masci et al., 2013). 

Where the idea for deep neural network (DNN) 
originated? Observing cat’s visual cortex simple 
cells and complex cells were found. Simple cells are 
responsible for recognition orientation of edges. 
Complex cells show bigger spatial invariance than 
simple cells. That was inspiration for later DNN 



 

architectures (Schmidhuber, 2014). DNNs are in-
spired by CNNs introduced in 1980 by Kunihiko 
Fukushima (Fukushima, 1980), improved in the 
1990s especially by Yann LeCun, revised and sim-
plified in the 2000s. Training huge nets requires 
months or even years on CPUs. In 2011, the first 
GPU-implementation (Ciresan et al., 2011a) of 
MPCNNs (max-pooling convolutional neural net-
works – MPCNNs) was described, extending earlier 
work on MPCNNs and on early GPU-based CNNs 
without max-pooling. GPU didn’t make some fun-
damental enhancement in DNN, but faster training 
on bigger datasets allows getting better results in 
some reasonable time. A GPU implementation 
(Ciresan et al., 2011b) accelerates the training time 
by a factor of 50. 

Our method is inspired by work of Ciresan et al. 
(2012) where they – in a similar problem of seg-
menting neuronal membranes in electron microsco-
py images – use deep neural network as a pixel clas-
sifier. They use the same approach in mitosis detec-
tion in breast cancer histology images which won 
the competition (IPAL, TRIBVN, Pitié-Salpêtrière 
Hospital, The Ohio State University n.d.). 

The main contribution of this paper is demon-
strating the high effectiveness of the deep learning 
approach to the segmentation of blood vessels in 
fundus images. We tested our results on publicly 
available dataset DRIVE (Staal et al., 2004). 

The rest of the paper is organized as follows. In 
Related work we describe the state-of-the-art and 
give a brief overview of applied methods and their 
results. In section Methods we describe the proposed 
method of retinal blood vessel segmentation. Then 
follows a review of obtained results. In conclusion 
we give an overview of plans for future work which 
would lead to enhancements.  

2 RELATED WORK 

A large number of algorithms and techniques 
have been published relating to the segmentation of 
retinal blood vessels. These developments have been 
documented and described in a number of review 
papers (Bühler et al., 2004; Faust et al., 2012; Felkel 
et al., 2001; Fraz et al., 2012, 2012; Kirbas and 
Quek, 2004; Winder et al., 2009). 

In this section we will give a brief overview of 
various methodologies. It is out of the scope of this 
paper to give detailed description of all algorithms 
and discuss advantages and disadvantages of all of 
them, but some current trends and discussion will be 
given to outline main problems and some future 

directions. There are many works where algorithms 
were evaluated on the DRIVE database and, as we 
tested our methods on that database, it is illustrating 
to see previous results and which methods dominat-
ed and how much neural networks are represented.  

A common categorization of algorithms for 
segmentation of vessel-like structures in medical 
images (Kirbas and Quek, 2004) includes image 
driven techniques (such as edge-based and region-
based approaches), pattern recognition techniques, 
model-based approaches, tracking-based approaches 
and neural network based approaches. Similarly Fraz 
et al. (2012) in their overview divide techniques into 
six main categories: pattern recognition techniques, 
matched filtering, vessel tracking/tracing, mathemat-
ical morphology, multiscale approaches (Lindeberg, 
1998; Magnier et al., 2014), model based approaches 
and parallel/hardware based approaches.  

Many articles in which supervised methods are 
used have been published to date. The most preva-
lent approach in these articles has been matched 
filtering. The performance of algorithms based on 
supervised classification is better in general than on 
unsupervised. Almost all articles using supervised 
methods report AUCs of approximately 0.95. How-
ever, these methods do not work very well on the 
images with non uniform illumination as they pro-
duce false detection in some images on the border of 
the optic disc, hemorrhages and other types of pa-
thologies that present strong contrast. Many im-
provements and modifications have been proposed 
since the introduction of the Gaussian matched filter. 
The matched filtering alone cannot handle vessel 
segmentation in pathological retinal images; there-
fore it is often employed in combination with other 
image processing techniques. Some results show that 
Gabor Wavelets are very useful in retinal image 
analysis. Also it can be seen that neural networks are 
not a very common approach (Fraz et al., 2012). 

The problem in comparing experimental results 
could be in non uniform performance metrics which 
authors obtain for their results. Some papers de-
scribe the performance in terms of accuracy and area 
under receiver operating characteristic (ROC) 
whereas other articles choose sensitivity and speci-
ficity for reporting the performance. 

In Fraz et al. survey (2012) algorithms achieve 
average accuracy in range of 0.8773 to 0.9597 and 
AUC from 0.8984 to 0.961. Detailed results can be 
seen in Fraz et al. (2012). 



 

3 METHODS 

We use a DNN, or more specifically convolu-
tional neural networks (CNNs) which instead of 
subsampling or down-sampling layers have a max-
pooling layer (MPCNNs).  

MPCNNs consist of a sequence of convolutional 
(denoted C), max-pooling (denoted MP) and fully 
connected (denoted FC) layers. MPCNN can map 
input samples into output class probabilities using 
several hierarchical layers to extract features, and 
several fully connected layers to classify extracted 
features. During the training of the network, parame-
ters of feature extraction and classification are joint-
ly optimized (Ciresan et al., 2012).  

Image processing layer (denoted I) is not re-
quired pre-processing layer. It is made of predefined 
non changeable filters.  

2D filtering is applied between input images and 
a bank of filters in every C layer. It results with new 
set of images (denoted as maps). As in FC input-
output representation maps are also linearly com-
bined. After that, it is applied a nonlinear activation 
function (rectifying linear unit in our case). 

In forward propagation if in front C layer is layer 
of size 𝑛 ×  𝑛, we use 𝑚 × 𝑚 filter ω. Then size of 
C layer output is (𝑛 − 𝑚 + 1) × (𝑛 − 𝑚 + 1). The 
pre-nonlinearity input to some unit 𝑥𝑖𝑗𝑙  counts as: 

 
𝑥𝑖𝑗𝑙 = ∑ ∑ 𝜔𝑎𝑏

𝑚−1
𝑏=0  𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1𝑚−1
𝑎=0 (1) 

 
Then nonlinearity is applied: 
 

𝑦𝑖𝑗𝑙 = 𝜎�𝑥𝑖𝑗𝑙 �     (2) 

 
We follow closely the forward and back-

propagation steps of MP layer which are in details 
described by Giusti et al (2013) and Masci et al 
(2013). MP layers are fixed and they are not trained. 
They take square blocks of C layers and reduce their 
output into a single feature. The selected feature is 
the most promising as max pooling is carried out 
over the C block. FC layers are the standard neural 
network layers where the output neurons are con-
nected to all the input neurons, with each link having 
a weight as a parameter (Masci et al., 2013).  

In order to do segmentation, image blocks are 
taken (with an odd number of pixels – the central 
pixel plus neighbourhood) to determine the class 
(vessel or non-vessel) of the central pixel. Network 
training is performed on patches extracted from a set 
of images for which a manual segmentation exists. 
After such training, the network can be used to clas-
sify each pixel in the new examples of images 
(Giusti et al., 2014). 

After alternating four steps of C and MP layers 
two FC layers further combine the outputs into a 1D 
feature vector. The last layer is always a FC layer 
with one neuron per class (two in our case due to 
binary classification). In the output layer by using 
Softmax activation function each neuron’s output 
activation can be taken as the probability of a partic-
ular pixel. 

In table 1 we show the 10-layer architecture for 
the network with numbers of maps and neurons, 
filter size for each layer, weights and connections for 
C and FC layers (Cireşan et al., 2013). 

 

Table 1: 10-layer architecture for network. Layer type: I – input, C – convolutional, MP – max-pooling, FC – fully connect-
ed 

Layer Type Maps and 
neurons 

Filter 
size 

Weights Connections 

0 I 1M x 65x65N ─ ─ ─ 
1 C 48Mx60x60N 6x6 1776 6393600 
2 MP 48Mx30x30N 2x2 ─ ─ 
3 C 48Mx26x26N 5x5 57648 38970048 
4 MP 48Mx13x13N 2x2 ─ ─ 
5 C 48Mx10x10N 4x4 36912 3691200 
6 MP 48Mx5x5N 2x2 ─ ─ 
7 C 48Mx4x4N 2x2 9264 148224 
8 MP 48Mx2x2N 2x2 ─ ─ 
9 FC 100N 1x1 19300 19300 
10 FC 2N 1x1 202 202 

Similarly to the method described in Ciresan et 
al. (2012), to train the classifier, we used all blood 
vessel pixels as positive examples, and the same 

amount of pixels randomly sampled among all non 
blood vessel pixels. This ensures a balanced training 
set. The positive and negative samples are interleav-



 

ed when generating the training samples. We use the 
green channel of the input images as it is well 
known from the literature that the green channel 
contains the most contrast in fundus photographs. 
We do not preprocess the input images. 

4 EXPERIMENTAL RESULTS 

Training and testing of the proposed method was 
done using a computer with 2 Intel Xeon processors, 
64 GB of RAM and a Tesla K20C graphics card. We 
decided to use the Caffe deep learning toolkit (Jia, 
Y. n.d.) in order to speed up the computation of 
parameters of the convolutional neural network. It 
takes approximately two days to train the network 
on the mentioned hardware.  

We tested our method on publicly-available 
DRIVE dataset, which contains 40 images divided 
into a test and training set, both containing 20 imag-
es. An example for an original image and manual 
segmentation for the same image is shown in figure 
1. Note that picture that shows manual segmentation 
is binary, but the output image is not, as outputs of 
the DNN are probabilities of each pixel to be a blood 
vessel. For practical purposes thresholding should be 
done to obtain a binary image.  

In the retinal vessel segmentation process, the 
outcome is a pixel-based classification result. Notice 
that we do not rely on any bottom-up segmentation, 
since we treat semantic segmentation as pixel classi-
fication, where each pixel is described by its neigh-
borhood. Therefore the method is not affected by the 
errors of bottom-up segmentation. In figure 1 we can 
see how a typical output image looks like. We can 

see that areas belonging to blood vessels have higher 
probability of being part of blood vessels.  

In order to quantitatively measure the perfor-
mance of the proposed method we calculate the area 
under the ROC curve for each image, accuracy, true 
positive rate (TPR) and false positive rate (FPR). 
TPR represents the fraction of pixels correctly de-
tected as vessel pixels while FPR is the fraction of 
pixels erroneously detected as vessel pixels. The 
accuracy is measured by the ratio of the total number 
of correctly classified pixels to the number of pixels 
in the image field of view. ROC curve plots the 
fraction of TPR versus FPR. 

The method achieves an average accuracy of 
0.9466 with 0.7276 and 0.0215 TPR and FPR, re-
spectively on the DRIVE database. We obtained the 
threshold using the optimal operating point on the 
ROC curve, assuming the same costs of missclasify-
ing both classes. 

Average AUC is 0.9749, where minimal AUC is 
0.9665 and maximal 0.9843. The ROC curves are 
calculated only for pixels inside the field of view of 
the image. In figure 2 and figure 3 we can see the 
original image, the softmax classification, and the 
ROC curve for the given image. In figure 2 AUC 
reach maximum and in figure 3 it is lowest. It can be 
seen that in the figure with the lowest AUC segmen-
tation is much worse. That is due to pathologic mod-
ifications (there are some exudates seen on the orig-
inal picture). In the DRIVE dataset there are not 
many fundus images with pathologic changes and 
probably it would be possible to supress these false 
positives by including more pathologies in the train-
ing, however that would require annotations for 
pathologies and therefore such method would not be 
comparable to the published work. We leave this 
improvement for the future work. 

 
 

   
Figure 1: Retinal images from DRIVE. From left to right: original image, manual segmentation and output image. 



 

   
Figure 2: Original image, the softmax classification, and the ROC curve with maximum AUC (0.9843). 

   
Figure 3: Original image, the softmax classification, and the ROC curve with lowest AUC (0.9665). 

  

5 CONCLUSIONS 

The segmentation of the blood vessels in the ret-
ina has been a heavily researched area in recent 
years. Although many techniques and algorithms 
have been developed, there is still room for further 
improvements. 

We presented an approach using deep max-
pooling convolutional neural networks with GPU 
implementation to segment blood vessels and results 
show that it is promising method. Our method yields 
the highest reported AUC for the DRIVE database, 
to the best of our knowledge.  

In Fraz et al. survey (2012) algorithms achieve 
average accuracy in range of 0.8773 to 0.9597 and 
AUC from 0.8984 to 0.961. Our method achieves an 
average accuracy and AUC of 0.9466 and 0.9749, 
respectively. Minimal AUC is 0.9665 and maximal 
0.9843. 

Future work would be to enhance the algorithm 
by various methods like simulating more data for 
training: using all channels (not only green), to ro-
tate, scale and mirror images etc. Perhaps some 
preprocessing and postprocessing would enhance 

results and surely averaging more networks would 
improve results. Possibly foveation or non uniform 
sampling is also a way to enhance results. Training 
on a set with more images with pathologic changes 
might improve results. 

There is also room for experimenting with non-
linear activation functions to see whether they would 
improve results. 
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