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Accidental falls are a major problem of later life. Different technologies to predict falls have been investigated, but with limited success, mainly
because of low specificity due to a high false positive rate. This Letter presents an automatic classifier based on heart rate variability (HRV)
analysis with the goal to identify fallers automatically. HRV was used in this study as it is considered a good estimator of autonomic nervous
system (ANS) states, which are responsible, among other things, for human balance control. Nominal 24 h electrocardiogram recordings from
168 cardiac patients (age 72 ± 8 years, 60 female), of which 47 were fallers, were investigated. Linear and nonlinear HRV properties were
analysed in 30 min excerpts. Different data mining approaches were adopted and their performances were compared with a subject-based
receiver operating characteristic analysis. The best performance was achieved by a hybrid algorithm, RUSBoost, integrated with feature
selection method based on principal component analysis, which achieved satisfactory specificity and accuracy (80 and 72%, respectively),
but low sensitivity (51%). These results suggested that ANS states causing falls could be reliably detected, but also that not all the falls
were due to ANS states.
1. Introduction: Falls represent one of the most common problems
of later life. The annual incidence ranges between 35–50% and
increases with age, reaching 66% (52–84%) per year among
healthy elderly [1]. Falls reduce overall well-being, mobility and
quality of life of elderly and of those family members who care
for them [2]. The mean and median costs for a fall are about
€9000 and €11 000 [3], and considering the aging population,
this equates to millions of euros in the next years.
Falls are caused by complex and dynamic interactions between

intrinsic (subject-based) and extrinsic (environmental) factors [4].
Over 400 risk factors have been identified [5] and their prioritisation
remains unclear [6]. Moreover, the applicability, sensitivity and par-
ticularly the specificity of subject-specific assessment of fall risks
remains imprecise [7].
Several studies investigated the independent capability of several

technologies to prevent falls, including posturography, balance/
gate, trunk accelerations, sock pressure sensors, bed/chair alarms
and other indoor ambient sensors [8].
However, recent systematic reviews highlighted that these tech-

nologies presented several limits including the fact that the occurrence
of false alarms is too high to maintain full attention of the nursing staff
[8]. For that reason, Bressler et al. [9] reported that, in their study on
in-hospital falls prevention, the alarms had to be removed. Moreover,
these approaches require the use of additive sensors (i.e. pressure
matrices or wearable accelerometers) that have no other direct benefits
for the health of the elderly and cause additional costs.
Differently from previous works, the present study focused on

the use of heart rate variability (HRV) to identify fallers automatic-
ally. HRV is considered a reliable non-invasive direct estimator of
cardiovascular system (CVS) states and indirect estimator of au-
tonomous nervous system (ANS) states [10]. This choice resulted
from the evidence that, although 31% of falls are due to accidents
and the causes of 27% of falls remain unclear, the remaining
42% are due to transient problems, which are clearly related to
ANS and CVS states, including [11]: gait/balance disorders or
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weakness (17%), dizziness/vertigo (13%), drop attacks (9%) and
postural hypotension (3%). There are significant relationships
between these physiological conditions and HRV and dizziness/
vertigo [12] or postural hypotension [13].

The present study differs from previous works in that it focuses
on the use of HRV that can be extracted from one lead electrocar-
diogram (ECG), which is largely used to monitor the elderly, in
hospital and in the community, and there is consensus that ECG
monitoring is also beneficial for the early detection of cardiovascu-
lar disease worsening [14–17]. Consequently, the use of ECG/HRV
in patients suffering from cardiovascular disease is even more dif-
fused [18]. This is a relevant consideration for fall prevention as
the most frequent co-morbidities of patients hospitalised for a fall
are cardiovascular diseases [3]: hypertension (63%), coronary
atrial fibrillation (30%), artery disease (25%) and congestive heart
failure (20%). Finally, differently from biomechanical variables,
HRV may also be studied when the patient is lying on a chair or
a bed. This is relevant as most indoor falls happen while rising
from a chair/bed [19].

This Letter presents the results of the automatic classifiers devel-
oped using advanced data mining methods [20–28] and HRV fea-
tures [29–34] to automatically assess falls. The performances of
these classifiers were compared with relevant existing literature
on tools and methods to prevent falls [35–38].

2. Methods: The current study was performed acquiring nominal
24 h ECG Holter from 168 hypertensive patients. Among them,
according to clinical records, 47 subjects experienced one fall
(defined as an unintentionally coming to the ground or some
lower level) within three months from the recording, as reported
at the next outpatient visit. These subjects were referred as fallers
and the remaining ones as non-fallers. This study was approved
by the Federico II University Hospital Ethic Committee and all
the participants signed specific informed consent to allow the use
of their anonymised data for this study.
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2.1. HRV processing: The series of normal-to-normal beat (NN)
intervals were obtained from ECG recordings using an automatic
QRS detector based on nonlinearly scaled ECG curve length
feature [34]. HRV was analysed concurrently in excerpts of
30 min and if less than 600 valid beats were detected, the excerpt
was excluded [30]. Standard linear HRV analysis according to
international guidelines was performed [10]. Moreover, nonlinear
features were computed according to recent literature [29].

A number of standard time-domain HRV measures were calcu-
lated: average of all NN intervals, standard deviation of all NN
intervals (SDNN), square root of the mean of the sum of the
squares of differences between adjacent NN intervals (RMSSD),
number and percentage of differences between adjacent NN inter-
vals that are longer than 50 ms (NN50 and pNN50), standard devi-
ation of the averages of NN intervals in all 5 min segments, mean of
the standard deviations of NN intervals in all 5 min segments,
maximum of NN intervals, minimum of NN intervals, median of
NN intervals, HRV triangular index (the proportion of all accepted
NN intervals to their modal measurement at a discrete scale of
1/128 s bins), triangular interpolation of NN interval histogram
(the baseline width of the distribution measured as a base of a tri-
angle), approximating the NN interval distribution by using the
minimum square difference.

The frequency-domain HRV measures rely on the estimation of
power spectral density, computed, in this work, with three different
methods: Welch periodogram, auto-regressive (AR) method and
Lomb–Scargle periodogram. For the Welch periodogram, the
NN interval was first interpolated with cubic spline interpolation
at 4 Hz, then divided into overlapping segments of 256 points in
length (with 128 point overlap) and each segment was Hamming
windowed. The AR model order was 16. The generalised frequency
bands in case of short-term HRV recordings were the very low
frequency (VLF, 0–0.04 Hz), low frequency (LF, 0.04–0.15 Hz)
and high frequency (HF, 0.15–0.4 Hz). The frequency-domain
measures included absolute, relative powers and peak frequency
for each band, LF and HF band powers in normalised units and
the LF/HF power ratio.

Nonlinear HRV was analysed with the following methods:
Poincaré plot (features SD1 and SD2) [15, 39], approximate
entropy [40], sample entropy [41], correlation dimension (CD)
[42], detrended fluctuation analysis [43, 44] and recurrence plot
(RP) [33, 45, 46].

The Poincaré plot is a common graphical representation of the
correlation between successive relative risk (RR) intervals. A
widely used approach to analyse the Poincaré plot consists of
fitting an ellipse oriented according to the line-of-identity and com-
puting the standard deviation of the points perpendicular to and
along the line-of-identity.

Approximate entropy measures the complexity or irregularity of
the RR series. It is a statistical measure used to quantify the regular-
ities in data without a prior knowledge of the problem.

CD is another method used to measure the complexity of the
HRV time series.

Detrended fluctuation analysis measures the correlation within
the signal and computes two parameters: short-term fluctuations
(α1) and long-term fluctuations (α2).

RP is another approach to measure the complexity of the time
series [33]. The following measures of RP were computed: recur-
rence rate, maximal length of lines, mean length of lines, the deter-
minism and the Shannon entropy.

Further details about these methods can be found elsewhere
[47, 48].

2.2. Data mining methods: To develop a classifier to identify the
fallers, we adopted several data mining approaches and compared
the best performance of each algorithm. We adopted data-mining
methods based on two tree classification algorithms: classification
and regression tree (CART) and C4.5. The two algorithms
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iteratively split the dataset according to a criterion that maximises
the separation of the data, producing a tree-like decision structure.
The most relevant difference is the adopted criterion: Gini index
is adopted in CART default implementation [49], whereas
information gain is used in the C4.5 algorithm [50].

Random forest (RF) is a decision tree ensemble method devel-
oped by Breiman [21]. Decision trees that compose the forest are
constructed by choosing their splitting attributes from a random
subset of k attributes at each internal node. The best split is taken
among these randomly chosen attributes and the trees are built
without pruning, as opposed to C4.5. The quality of the split at
an attribute is determined by its Gini impurity index. RF avoids
overfitting due to two sources of randomness – the aforementioned
random attribute subset selection and bootstrap training set sam-
pling coupled with majority voting (also referred as bagging),
which is shown to reduce the variance of the classifiers.

Rotation forest (RTF) is an ensemble method capable of both
classification and regression, depending on the base classifier
[23]. By default, RTF uses C4.5 decision trees as the base classi-
fiers. The algorithm focuses on presenting transformed data to the
classifier by using a projection filter such as principal component
analysis (PCA), non-parametric discriminant analysis, random pro-
jections and independent component analysis. The most successful
projection filter is the PCA filter [23].

AdaBoost.M1 (AB) is a well-known algorithm for boosting weak
classifiers [25]. The idea of the AB algorithm is to penalise the
instances in the training set that are correctly classified by the clas-
sifier. In the first step, the algorithm uses the bootstrap method to
select the instances for the first training set by giving equal
chance to all the instances. The base classifier is trained and the
instances are classified. The instances that are correctly classified
receive a penalty to their weight for the next step of the training-
classification cycle. The algorithm terminates after a predetermined
number of iterations. A weight is contributed to each constructed
classifier. In the testing phase, each classifier provides a probability
estimate for the target class. Each time a target class is selected, its
weight is increased depending on the weight of the classifiers.
Finally, voting is performed that selects the target class with the
highest weight.

MultiBoost (MB) is regarded as an extension to AB that com-
bines the AB algorithm with the wagging procedure, which is an
extension of the basic bagging method [27].

RUSBoost (RB) is a hybrid approach recently proposed by
Seiffert et al. [26] to handle class imbalance. RB relies on the
random under-sampling (RUS) technique and AB as boosting algo-
rithm. CART was adopted as weak learner. RUS is one of the most
common data level algorithms to deal with an unbalanced dataset or
a rare class problem. RUS randomly discards the majority of class
samples to modify the class distribution until a desired class distri-
bution (e.g. equal number of instances in the majority and minority
classes) is achieved. However, since HRV features have been
shown to be correlated, there is a risk that some of the computed
features might be redundant and could worsen the classifier per-
formance by increasing the running time and reducing its general-
isation ability. To find the optimal feature space, we adopted the
PCA method [23] and we tested the proposed classifier with differ-
ent number of dimensions.

2.3. Performance evaluation: To assess the performance of the
classifiers, we adopted the ten-fold person-independent
cross-validation [51]. In the ten-fold person-independent
cross-validation method, subjects are partitioned into two subsets
in each round (a total of ten rounds): one with 90% subjects for
training and the other with 10% subjects for testing. All the
excerpts of the same subjects were included in the training or in
the testing dataset. As we were interested in a subject-based
classification, for each subject, the proportion of excerpts
classified as fallers was computed and considered an estimate of
Healthcare Technology Letters, pp. 1–6
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Table 1 Binary classification performance measures

Measure Formula

sensitivity (TPR) SEN = TP/(TP + FN)
specificity (SPE;1−FPR) SPE = TN/(FP + TN)
accuracy ACC = (TP + TN)/(TP + TN + FP + FN)
area under curve AUC = area under ROC curve
diagnostic odds ratio (DOR) DOR = (TP/FN)/(FP/TN)

TP, the number of fallers correctly classified; TN, the number of
non-fallers correctly classified; FP, the number of non-fallers incorrectly
classified as fallers; FN, the number of fallers incorrectly classified as
non-fallers

Table 2 Best performance of the adopted classification methods

Class AUC, % ACC, % SEN, % SPE, % DOR (95% CI)

RF 46.3 67.3 21.3 85.1 1.5 (0.6–3.6)
RTF 51.5 67.9 21.3 86.0 1.6 (0.7–3.9)
AB 51.7 68.5 25.5 85.1 2.0 (0.9–4.5)
MB 54.1 63.7 17.0 81.8 0.9 (0.4–2.2)
RB 63.9 69.0 40.4 80.2 2.7 (1.3–5.7)
RB and PCA 67.6 72.0 51.1 80.2 4.2 (2.0–8.7)
the probability that the subject belongs to fallers. A subject-based
receiver operating characteristic (ROC) curve analysis was
performed: for all the cut-points true positive rate (TPR) and false
positive rate (FPR) were calculated. We selected the cut-point
that maximises the TPR and provided a FPR that was lower than
20% as the best cut-point. The most common measures for binary
classification performance were computed according to the
formulae in Table 1.
2.4. Implementation details: The HRV analysis was performed
using an ad hoc developed HRV software based on MATLAB
version R2013a (The MathWorks Inc., Natick, MA)
implementation [52] and the QRS detection was performed
through the WQRS implementation [34] which is freely available
from PhysioNet. The classifiers based on RB algorithm were
developed in MATLAB, whereas the other algorithms were
implemented using the Weka platform for knowledge discovery,
version 3.6.10.
RF was constructed using an ensemble of 100 random trees with

no limit to tree depth. RTF was constructed with an ensemble of
10 C4.5 trees using PCA filter (all dimensions retained). AB was
used in combination with C4.5 classifier, the number of iterations
was varied between 10 and 200 with steps of 50 iterations, and
C4.5 decision tree was tested with a variable minimal number of
observations in each leaf (2, 5, 10, 20). Confidence factor for
pruning was set to default of 0.25. MB was used in combination
with C4.5 classifier, the number of iterations was varied between
10 and 200 with steps of 50 iterations, and C4.5 decision tree was
tested with a variable minimal number of observations in each
Figure 1 Comparison of the ROC curves
RF, random forest; RTF, rotation forest; AB, AdaBoost; MB, MultiBoost;
RB, RUSBoost; RB and PCA, RB enhanced with PCA
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leaf (2, 5, 10, 20). Confidence factor for pruning was set to
default of 0.25. The number of sub-committees was set to 30% of
the number of iterations (classifiers), as default. RB was evaluated
with PCA dimension varying between 2 and 20. The number of
iterations was varied from 20 to 500 with steps of 20 iterations,
and CART was tested with a variable minimal number of observa-
tions in each leaf (5, 25, 50 and RB default) and of misclassification
cost ratio (from 1 to 20). Post-sampling 50:50 class distribution was
adopted.

3. Results: The study sample included 60 female and 108 male
subjects (age 72 ± 8 years). Among them, 47 subjects experienced
a fall within 3 months from the recordings. No significant
differences in age and gender distribution were detected between
the two groups, while a repeated measurement regression analysis
by generalised estimation equation showed significant differences
(p < 0.001) in LF power and in three nonlinear features: the
maximal length of lines, the mean length of lines and the
Shannon entropy (all RP features).

Several classification algorithms have been trained and tested with
the parameter values reported in Section 2.4. The ROC curves of the
best classifier for each algorithm are shown in Fig. 1 and the related
performances for the selected cut-points (higher TPR, provided a
FPR rate lower than 20%) are reported in Table 2.

The algorithms based on the boosting approach appeared to be
superior to those based on bagging and the method based on RB
achieved better performances in terms of accuracy, sensitivity,
and positive and negative predictive values, compared with the
other classifiers. These results were achieved with the following
values of the parameters: 11 PCA dimensions, 180 iterations, learn-
ing rate of 0.7, misclassification cost ratio of 5 and 5 minimal obser-
vations in leaves. In particular, RUS improved the performance of
the AB algorithm, increasing the AUC from 51.7 to 63.9% and
the sensitivity rate from 25.5 to 40.4% without relevant decrease
in specificity rate. Using PCA resulted in a further improvement
of the RB performance, by increasing sensitivity rate from 40.4
to 51.1% and AUC from 63.9 to 67.6% (with an unchanged speci-
ficity rate of 80.2%).

4. Discussion: The current study proposed an automatic classifier
based on HRV analysis to identify fallers among hypertensive
patients. To the best of the authors’ knowledge, only one other
study [53] investigated the discrimination power of HRV features
for fallers’ identification using 24 h ECG, but it was a
retrospective study and did not propose an automatic classifier
method. Moreover, in [53], the authors adopted only standard
linear HRV methods (i.e. SDNN, RMSSD, pNN50, SDNN,
RMSSD, pNN50, total power, HF, LF, VLF), and observed no
significant differences in these measures between fallers and
non-fallers. The statistical analysis on HRV linear and nonlinear
measures of the current dataset showed that frequency and
nonlinear measures, which are not computed in [53], significantly
differed between fallers and non-fallers. Moreover, the statistical
analysis suggested that a depressed HRV, particularly at LF, and
a less ‘chaotic’ behaviour of HRV, as assessed by RP features,
could be associated with an increased risk of falling. Finally, we
3
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computed the feature importance according to RF algorithm, and
observed that among ten most relevant features, there are
frequency domain features expressed in normalised units,
nonlinear features and geometric linear features, all features
which are not computed in [53].

The best performance presented in this Letter was achieved by a
hybrid data-mining algorithm, RB, integrated with feature extrac-
tion based on PCA. This classifier achieved a relatively high speci-
ficity and accuracy (80 and 72%, respectively), but low sensitivity
(51%). Particularly, the sensitivity rate achieved is consistent with
the findings of Rubenstein [11], who highlighted that at least
42% of falls are due to transient problems, which are related to
ANS and CVS states. Since a limited part of falls are directly
caused by CVS (i.e. syncope), the results presented in the current
Letter suggested for the first time that ANS/CVS dysfunctions
may be responsible for a temporary reduced capability to react to
extrinsic risk factors (i.e. reduced reflex velocity) avoiding falls.
Moreover, for the first time, this study proved that these dysfunc-
tions are detectable with HRV monitoring. Moreover, the low rate
of false positives (1−SPE = 19.8%) suggested that this approach
based on HRV analysis could be successfully used in clinical set-
tings, eventually in combination with other approaches.

Several fall risk assessment tools in elderly population have been
proposed in literature and showed a wide variability in the reported
diagnostic accuracy: sensitivity varied from 43 to 100% and speci-
ficity varied from 38 to 96% [7]. To assess the performance of the
proposed method, we compared the ROC curve of the proposed
method with the performances of several functional mobility tests
for predicting falls in community-dwelling older people [36]
(Fig. 2). The proposed method showed higher performance than
all the functional tests, which had RR ranging from 1.3 to 2.3
and sensitivity and specificity scores ranging from 11 to 78%,
and 28 to 93%, respectively. More recently, a Stroop stepping
test using low-cost computer gaming technology has been proposed
to discriminate between older fallers and non-fallers, but the authors
provided only the odds ratio (1.7) [35], which is lower than the one
proposed here (DOR = 4.2, CI 95% = 2.0–8.7, p-value < 0.001) and
reported in Table 2. Finally, the method proposed in the present
Letter is clinically feasible, since it only requires a 24 h ECG
recording, which is often performed in cardiovascular patients or
through wearable devices [18]. For instance, the proposed method
does not require the use of other technologies such as wearable
accelerometers or pressure matrices, which are not used in everyday
Figure 2 Comparison of performance of the proposed method with several
functional mobility tests proposed in literature
STS, sit-to-stand once; STS-5, sit-to-stand five times; HT, half-turn-test
steps; AS, alternate-step test; SMW, six-metre walk; SA, stair ascent; SD,
stair descent
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clinical practices owing to not having direct benefits for hyperten-
sive outpatients. For that reason, the proposed method could be
used widely in outpatient settings to identify high-risk patients
who need further assessment and could benefit from fall prevention
programs or fall detection systems [37, 38]. In particular, the HRV
analysis and the automatic classification could be obtained through
the web cloud-based platform developed in the framework of the
Smart Health and Artificial intelligence for Risk Estimation
(SHARE) project: the ECG could be easily acquired by a commer-
cial wearable device (e.g. Bioharness BH3 manufactured by Zephyr
Ltd) and an ad hoc developed client application; the physician
could see the acquired signal, the processing results (i.e. HRV ana-
lysis and automatic classification) by using a web browser. The
SHARE platform is described in detail elsewhere [54].

Regarding the classification data mining methods, we adopted
up-to-date ensemble algorithms based on bagging (i.e. RF, RTF)
and boosting (i.e. AB, MB, RB), showing that the latter is superior
to the former on this problem, maybe owing to RF performance
being more affected by the dependency structure of the data [20].
Moreover, as recently proposed by Seiffert et al. [26], when a
dataset is imbalanced, as in the current study, the performance of
boosting algorithm could be improved by integrating it with a
data sampling technique. Finally, since previous studies showed
the importance of feature selection for learning from small and
imbalanced datasets [28], we integrated RB with a feature extraction
method based on PCA and observed that using PCA resulted in
higher performances compared with RB and a bagging classifier
adopting PCA filter.

However, this study had some limits that should be considered
before adopting these methods in other contexts. The dataset used
was not specifically designed to study falls. Therefore important in-
formation, such as the exposure to other independent intrinsic risk
factors for falls could not be accessed or used to verify independent-
ly the results. Moreover, the fall recordings were based on patient
self-reports, which are not considered to be reliable every time
because some non-harmful falls can be forgotten and not reported.
Therefore the number of falls could have been underestimated. In
addition, the results of the classifiers could be difficult to interpret
as the employed methods mixed and masked those HRV features
that have an accepted clinical meaning. Rule-based models to dis-
tinguish fallers from non-fallers could be more suitable for
medical personnel. However, with respect to maximum achieved
accuracy, the opaque models obtained from automatic classifiers
have an advantage over those with clear interpretation. It should
be noted that automatic systems in this field are sufficient to
provide early warning signs before adequate medical assessment
can be performed. Finally, our findings have been obtained in a
population of hypertensive patients, in which HRV is already
known to be depressed compared with healthy people. This sug-
gests that depressed HRV could be a more relevant risk factor for
falls in people free of cardiovascular disease.

5. Conclusion: The current study proposed an automated method
based on HRV analysis to identify fallers among elderly suffering
from cardiovascular disease. The classifier presented achieved a
satisfactory overall diagnostic accuracy and specificity, showing
better performances than several functional tests proposed in
literature for fall risk assessment. As the proposed method
requires only ECG recording, which is often performed in cardiac
patients, it could be an inexpensive and clinically feasible tool for
identifying older hypertensive subjects in need of further medical
assessment. The accuracy and the sensitivity achieved suggest
that HRV-based classification would be a valuable
complementary adding to other multidisciplinary approaches
already in use to predict and prevent falls.
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