
Multi-agent Modeling Methods for Massivley
Multi-Player On-Line Role-Playing Games

Markus Schatten, Igor Tomičić, Bogdan Okreša Ðurić
Artificial Intelligence Laboratory

Faculty of Organization and Informatics
University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia
Email: {markus.schatten, igor.tomicic, dokresa}@foi.hr

Abstract—Massively Multi-Player On-Line Role-Playing
Games (MMORPG) give us the opportunity to study two
important aspects of computing: (1) large-scale virtual social
interaction of people (players) and (2) the design, development
and coordination of large-scale distributed artificial intelligence
(AI). A common denominator for both aspects are the methods
used to study them: social interaction can be described and
simulated using agent-based models (ABM) whilst distributed AI
is commonly modeled in terms of multi-agent systems (MAS).
The important question to ask in both perspectives is how
do agents organize in order to perform their tasks and reach
their objectives? In the following paper we will present and
overview of agent-based approaches to modeling MMORPG’s
agents including human players, artificial players (bots) and non-
playing characters (NPCs). We will put a special accent on useful
agent behaviors, coordination and consensus mechanisms as well
as organization and social network structure of agent societies.

Keywords—MMORPG, multi-agent systems, modeling, npc, bot,
agent behaviors.

I. INTRODUCTION

Role-playing computer games (commonly referred to as
role-playing games or RPGs) are a computer game genre in
which the player controls the actions of a protagonist (or sev-
eral party members) in some world which is well defined [1].
A massively multi-player on-line game (MMOG) is a computer
game that supports a great number of players playing the game
on-line simultaneously often causing interaction among them
[2]. Massively multi-player on-line role playing games are thus
a mixture of the RPG genre with MMO allowing players to
control the action of their avatar (protagonist) by interacting
with a potentially large user-base on-line [3].

MMORPGs have become enormously popular during the
last two decades. According to Wikipedia [4] numbers of
players on some popular MMORPGs are given below:

• Dofus – 10,000,000
• World of Warcraft – 7,600,000 (on average 34,000

simultaneously on-line)
• MapleStory – 5,000,000
• Knight Online – 4,250,000
• Start Trek Online – 3,200,000
• Guild Wars 2 – 3,000,000
• Final Fantasy XIV – 2,500,000 (avg. 30,000-45,000)

The global MMO market [5], [6] is growing continuously
with 2011 ≈ 8.5 billion e, 2012 ≈ 10.2 Bne, 2013 ≈ 11.7

Bne and 2014 approx 15.0 Bne.

While the importance of MMORPGs in economic terms
is obvious, another aspect is of equal importance: it allows
us to study two aspects of large-scale computing - social
interaction of (large numbers of) players through a computing
platform as well as the design and implementation large-
scale distributed artificial intelligence (in form of non-player
characters – NPCs, mobs – various monsters to be fought, as
well as artificial players – bots). Both of this aspects can and
should be studied using agent-based techniques the former by
ABM (social science perspective of agents) and the latter by
MAS (computer science perspective).

In the following work in progress paper we will present
an overview of agent based modeling techniques which can be
applied to study MMORPGs some of which have already been
applied in the ModelMMORPG project1. Basically we will
describe three sets of methods that allow us (1) to model NPCs
(finite state machines), (2) user behavior (agent based modeling
of social network structures), and (3) bots (agent behaviors,
automated planning techniques, consensus and coordination
techniques). Our objective in future research is to study user
behavior using social network analysis and natural language
processing in order to establish agent based models of their
behavior that will be mapped into an ontology of organizational
design of large-scale MAS (developed partially in [7], [8],
[9], [10]) to be used in the implementation of bots to foster
organizational behavior among them.

MMORPGs have various subgenres, but a usual setting is
that a protagonist is placed into a world in which he interacts
with various NPCs and mobs which give out quests that have
to be resolved in order to proceed to higher levels, buy better
equipment or learn new skills like magic and similar. For
the sake of the ModelMMORPG project the MMORPG The
Mana World (TMW)2 has been selected in order to conduct
our research. It was selected due to a number of reasons:
(a) it is open source (GPL licensed)) allowing us to modify
code and add additional functionality, (b) it has a supportive
community, (c) it supports a number of interaction techniques
which can be studies (e.g. trade among players, IRC based
chat, organizing teams called parties, social network functions
e.g. friends, enemies, parties etc.), (d) it is a (more or less)
finished game featuring lots of quests that can be analyzed.

1See http://ai.foi.hr/modelmmorpg for details.
2See http://themanaworld.org for details.

MIPRO 2015/CIS 1503

In order to study organizational behavior of players, apart
from existing quests, we have partially developed a quest
which fosters players to organize called “The quest for the
dragon egg”. The basic idea of the quest is that players have to
establish parties of at least three players to transport a dragon
egg to their castle to hatch it. Additionally, they have to gather
a number of ingredients scattered across the Mana World to
create a hatching potion. The catch is that time limits exist
for each of the tasks, so they cannot be performed by a single
player by himself. An egg hatches on a random location every
24± 1 hours, the egg has to be hatched in an hour or it goes
bad. The hatching potion has to be available at the moment
the egg is transported to the castle. Ingredients can be acquired
by fighting mobs or by trading with other parties. Since all of
these constraints are in fact (more or less) simple to implement,
we use finite state machines to model NPCs needed for the
quest.

The rest of the paper is organized as follows: in section
II we give an overview of related work. In section III we
show how NPCs can be modeled using finite state machines
in TMW. In section IV we give an introduction on how to
model social network behavior of players using an agent based
technique. In section V we provide AI agent formalisms for
modeling artificial players - bots. In the end VI we draw our
conclusion and give an outline to future work.

II. RELATED WORK

Since MMORPGs are a relatively new phenomena, there
are consequently only few studies that investigate MAS and
ABM approaches in MMORPGs. Most studies deal with
the design of individual AI agents (NPCs). For example
Eckschlager et al. [11] try to model emotional behavior through
artificial neural networks and a Five-Factor Model of Person-
ality. Tychsen & Hitchens [12] deal with the limited abilities
of MMORPGs in story-telling and identify agent based story-
telling [13] as a possible solution. Eladhari & Mateas [14]
describe a technical framework for modeling personality and
emotion for both players and NPCs called the Mind Module.
They describe a semi-autonomous agent architecture built to
be used in a multi-player environment, employed as a part
of the player’s avatar. Brom & Lukavsky [15] focus on the
usage of full episodic memory in contrast to ad-hoc, or special
purpose, memory, and how it can be contributed to the agent’s
believability.

Some investigations deal with a MAS oriented design of
MMORPGs. Robert et al. [16] clarify why classifier systems
(CS) are good candidates for action selection mechanisms of
NPCs. CSs are used as control architectures for simulated
animals or robots in order to decide what to do at each
time. The authors describe different classifier systems and
introduce a new CS architecture, acting in a MAS environment,
which is adapted to the specific constraints of the MMORPGs.
Fairclough & Cunningham [17] deal with the area of computer-
mediated storytelling, and describe the "development of an
expert case-based character director system which dynamically
generates and controls a story, which is played out in a
multi-player networked game world". The proposed system
includes a story director system which utilizes the case based
planning paradigm, and facilitates multi-player stories. Stories
are modeled as cases, and their planning and scheduling is the

primary activity of the system. This work is story-centered,
and the notion of AI for the most part refers to the story
director agent. Modeling of the NPCs is performed in a layered
structure, from low-level behaviors to higher level targeted
goals (low level such as collision detection, followed by
social simulation, idle behaviors, targeted behaviors, attitudes
etc.). Berger et al. [18] describe “an integrated, game-like
e-Business environment that follows the role model of (...)
MMORPGs”, and essentially is a 3D virtual world based on
game engine technology. This environment provides a platform
for conducting business, and is based on MAS ideas, composed
of many autonomous individuals - both human and software
agents, which constitute avatars in the 3D virtual world. The
goal of this environment is to support the complex interaction
patterns between the members in an e-Business setting, and
provide grounds for a lively and sustainable on-line community
composed of providers and consumers.

Other studies employ ABM techniques to study player
behavior. For example Lehdonvirta [19] is trying to apply con-
cepts and techniques from economics to study the complicated
interactions inside game worlds and is asking the question if
techniques and theories from real economics be applied to
virtual economics? Basic motivation for Lofgren & Fefferman
[20] was a software update released into the MMORPG World
of Warcraft, which created a full-blown epidemic. Players
of this game encountered an extremely virulent and highly
contagious virtual disease, which caused high rates of mortality
and social chaos within gaming population that comes from a
large-scale outbreak of a deadly disease. The authors conclude
that the virtual outbreak in WoW game was both a missed
opportunity to study epidemics, and a new direction for future
epidemiological research. Ang & Zaphiris [21] have proposed
a new method for sociability design and research through the
use of simulation, and have developed an ABM to simulate
and study the formation of social networks in a MMORPG
guild community. Fishwick [22], on the other hand, introduces
personal aspects of agents through first person perspective,
inside an open-source, multi-user, virtual environment system
called OpenSimulator.

While these studied do analyze the social structure and
dynamics of players (trough social network analysis for exam-
ple) they do not particularly target the question of how players
organize in order to perform their tasks.

From this reasoning follows that there are two important
aspects which aren’t covered in contemporary MMORPG stud-
ies: (1) organizational techniques of artificial player’s societies
development, (2) study of organizational behavior of players.

III. MODELING NPCS

An NPC is an in-game character which is, most usually,
used for communication with the player, serving the purpose
of delivering all kinds of information to the player, e.g. basic
information for new players, introduction to new areas, simple
server-wide or local news service, information about a certain
quest, etc. An NPC can range from a simple reactive agent to
a completely interactive, environment and history immersed
agent, based on the purpose it serves. Here we will consider
simplest and an agent of average complexity, modeled as a
finite automaton.

1504 MIPRO 2015/CIS

Fig. 1. Graph representation of the described agent

Fig. 2. In-game representation of the two simple interaction examples,
dependent on the state of the quest

This finite state-machine needed for our goal is defined by
six elements (Σ,Γ, S, s0, δ, ω), as follows: Σ is a non-empty
symbol set called the in-alphabet, Γ is a non-empty symbol set
called the out-alphabet, S is a finite non-empty set of states,
s0 is the initial state, δ is transition function defined as δ :
S×Σ→ S, and ω is an exit function defined as ω : S×Σ→ Γ.
This more general definition, when specialized for defining
agents, is adapted as follows: in-alphabet is a set of possible
experiences, out-alphabet is a set of possible actions, set of
states is a set of agent’s inner-self states, the initial state is the
initial inner-self state, transition function is the next internal
state function of the agent, whilst the exit is the action function
that will be performed by the agent.

The less complicated version is a simple reactive agent
which reacts to user-initiated interaction. Based on the status of
the quest the user started with another NPC, the NPC delivers
simple, static, information about the state of the world. As
defined, the NPC has several defined states, activated by user
interaction. Figure 1 shows an example of possible states and
the transitions needed to reach them.

The in-alphabet of this agent consists of possible variable
values, out-alphabet, considering it is a set of actions, gathers
all the actions the NPC can take, i.d. send one of the messages
to the player, set of inner NPC states are the states of this NPC,
as visible in Figure 1, etc.

User interaction is started by clicking on the NPC or other

Fig. 3. In-game representation of the choices a player can make

ways of conversation initiation. The graph on Figure 1 depicts
the possible state transitions, e.g. from Interaction Initiated
state, in order to move to the Displaying Message1 state, the
quest status has to be checked. Based on this action, the agent
changes its state, showing either Message1 or Message2, as
seen in Figure 2. Similarly, player has to click the Close button,
so as to finish interaction with the NPC, and to get it ready
for interaction with the next player, NPC or mob.

A more complex example is an NPC which gives out a
quest, and is the sole authority on the state of the quest,
depending on user interaction and a more dynamic environ-
ment, considering it interacts with the player on a more active
level, and depends on some environment events, such as a
timer. TMW NPCs are implemented using an domain specific
scripting language, where quest process is tracked using a
variable, and several code segments to be defined. These
segments are accessed based on player decisions or status of
variables or special elements of the environment. For example,
an NPC, the Knight of Ni, after sending a default greetings
message to the player, checks if this particular player is a part
of a player party, and proceeds accordingly, as is shown in the
code listing below.

i f (g e t c h a r i d (1) = = 0) go to L_Deny ;
i f (g e t c h a r i d (1)) go to L_Allow ;

L_Deny :
(. . .)

L_Allow :
(. . .)

The whole process of interaction between the user and the
NPC is manipulated by using conditional expressions, such as
in the following piece of code.

i f (c o u n t i t e m (6 6 3) > 0 &&
$@KnightNiShrubberyQues t == 3)

s e t $@KnightNiShrubberyQuest , 4 ;
i f ($@KnightNiShrubberyQues t == 0)

go to L _ S t a r t ;
i f ($@KnightNiShrubberyQues t == 1)

go to L _ Q u e s t S t a t e 1 ;

MIPRO 2015/CIS 1505

In the code listing above, the first line checks if the player
concerned has the needed item, defined by ID 663 (named
Black Rose in the game), and if the quest state variable has
value 3. If those are fulfilled, then the engine will set the value
of variable $@KnightNiShrubberyQuest to 4. Other lines of
code work in a similar manner, since the value of the quest
state variable is checked, and a certain action is taken, e.g. the
engine is instructed to go to the label L_Start, where some
other code follows.

These mentioned labels are markers throughout the NPC
script, which allow for non-linear script execution, and interac-
tive communication with the user. For example, label L_Start
contains the code which will try to attract the player to accept a
quest. Although in a rather guided fashion, a player can choose
the path they want to take, as shown in the code below.

L _ S t a r t :
mes "We a r e

Keepers o f t h e s a c r e d words . " ;
n e x t ;
mes " Ni ! " ;
n e x t ;
mes " I s h a l l say Ni ! a g a i n i f you do

n o t a p p e a s e me . \ " " ;
menu

"You a r e a what ? ! " ,
L_Ni ,

" A l l r i g h t ! What do you want ? " ,
L_Desc r ibe ;

Figure 3 depicts the example communication done in the
game environment, at the moment when the player is offered
to choose their move. Direct interaction with player data, such
as player inventory content, is something this game genre
cannot do without. The example NPC will proceed to direct
player data interaction only if the quest state variable has a
certain value, which is, in turn, set by checking the player’s
inventory. In case of a successful check, the NPC will proceed,
taking an item from the player’s inventory (delitem) and giving
them another item (getitem). More specifically, when certain
conditions for an action are met, the NPC is going to proceed
to this defined action, hence producing an effect affecting the
player, as shown in code listing below. This example represents
a prime example of the finite state automaton, since there is
an input, a condition for an action, the action and a certain
effect this action has on the environment (i.e. the player).

L_Next4 :
mes " [Knigh t o f Ni] " ;
d e l i t e m 663 , 1 ;
mes " \ " Very good ,

t h a t i s a n i c e s h r u b b e r y . " ;
n e x t ;
mes "You s h a l l be awarded

wi th t h i s mighty g i f t ! " ;
g e t i t e m 742 , 1 ;
mes "Now go ! \ " " ;
s e t $@KnightNiShrubberyQuest , 5 ;
c l o s e ;

Non-player interaction with NPC is enhanced by using
NPC timers and special code which activates when this timer

reaches a defined point in time. In this example, the NPC
is going to change value of the quest variable exactly sixty
minutes after the second part of the quest is started, as seen
in code below.

L_Next2 :
(. . .)
i n i t n p c t i m e r ;
c l o s e ;

OnTimer3600 :
s e t $@KnightNiShrubberyQuest , 1 1 ;
end ;

This particular action allows for more unpredictable and
non-linear NPC behavior, when observed by the player. In-
troducing a random number generating function would further
increase unexpected, yet completely foreseen NPC behavior.

IV. MODELING PLAYER BEHAVIOR

In order to model the behavior of players in an MMORPG
one needs to acquire statistical data about them using the
game. Such logging data in TMW is available in form of chat
logs, user (social) behavior logs, user inventory logs, trade
logs and other logs that can be collected and analyzed. The
collected data can be analyzed using various methods, but two
approaches are of particular interest: social network analysis
(SNA) and natural language processing (NLP) with possible
help of sentiment analysis (SA) [23], [24]. SNA allows us to
study the social structure of the players (interactions including
chat, trade, fight etc; friendships; antagonisms; parties and
similar [25]) as well as processes on networks (the dynamics of
network creation [26], spreading of information [27], mixing
patterns [28], [29] etc.). While SNA is very insightful in the
construction and analysis of player networks, the actual mean-
ing (semantics) of the interactions as well as their intensity can
more efficiently be analyzed using NLP and SA techniques. In
this way a comprehensive study of behavior can emerge that
can be the input to the construction of agent based models of
player behavior (see [30] for detailed examples).

A very interesting method to be used here is the so called
recipeWorld brought forward by Fontana & Terna which is “an
agent-based model that simulates the emergence of networks
out of a decentralized autonomous interaction” [31]. The main
of their approach is that modeled agents are given so called
recipes that represent variable numbers of steps, some of which
might run in parallel, which ought to be taken in order to
achieve a given result. In this way the social network of agents
emerges as a side effect of agent behavior which use recipes
to achieve attended objectives. The model of recipeWorld is
founded on four distinct sets: A the actual world populated by
entities and their actual network; B an ABM with agents that
base their behavior on the objectives and recipes derived from
A; C the social network generated by B, D the data exchanged
on the network. Fontana & Terna proposed that it is possible to
populate sets A, B and C, by knowing D with use of inference
and an approach similar to reverse engineering.

From our perspective recipes can be patterns of interactions
(e.g. message passing, trade transactions and other actions) that
lead to well connected subnets over some observed periods

1506 MIPRO 2015/CIS

TABLE I. THE STRIPS ALGORITHM

If on top is Then
A complex or atomic
goal which is Remove it
satisfied
A complex goal 1. Leave it on top
which is not 2. Put its subgoals on top
satisfied in a different order

Find a rule which adding list includes the goal
1. Exchange the goal with the rule
2. Put the rule’s preconditions on top

An atomic goal If no such rule exists put the
which is not preconditions on top in a different order
satisfied If no such order exists find an alternative

rule.
If no such rule exists the,
goal is not satisfiable.
1. Remove the rule

A rule 2. Update the state using the rule
3. Write down the rule (solution)

Nothing Stop

of time. These patterns of interaction could be extracted
using adequate SNA and NLP techniques and then used for
simulation experiments to construct artificial agent networks.
Such simulated networks could then be analyzed and compared
to empirical data to see if they actually conform to real
processes by using various network metrics for example. In
this way automated organization techniques for agents could
be established.

V. MODELING BOTS

The previous contemplation brings us to the most complex
part of the project which deals with implementation of artificial
agent players. In order for a an artificial agent to play a
MMORPG a number of MAS and AI techniques have to
be employed. The agent has to have the ability to connect
to the game server, learn about its environment, understand
instructions from NPCs and mobs, solve quests and interact
with other (possibly artificial) players and organize to solve
harder (social) quests. For the first part, we have partially
implemented a low level client to the TMW server in the
Python scripting language that allows us to connect an agent to
the server, move around, collect items and interact with other
players, NPCs and mobs.

In order to implement intelligent agents we will use the
Smart Python Agent Development Environment (SPADE) [32]
that provides a FIPA (Foundation for Intelligent Physical
Agents) compliant development environment for Python and
features a number of predefined agent behaviors, advanced
knowledge bases and agent organization facilities like group
chat and organizational units. We will use SPADE to build
an agent layer above the low level interface that will allow
agents to understand their surroundings (by using some of
the provided advanced knowledge bases), solve quests (by
implementing a belief, desire, intention – BDI agent model and
an automated planning algorithm e.g. STRIPS [33] see table
I) and interact with their environment (using the integrated
communication and organization facilities).

Individual agents are usually defined by a number of
behaviors which might be [34]:

• role factory (a role added at runtime and then enacted
by the agent);

• itinerary (allows mobile agents to travel across vari-
ous locations and perform tasks);

• periodic (looped behavior possibly with a given pe-
riod of time intervals between iterations);

• observer (an agents awaits an event in order to
perform its actions);

• listener (a special type of observer in which an agent
awaits a special message of some other agent);

• client/server (resembles the client-server model);
• one-shot behavior or task (represents a simple task

or activity);
• finite state machine (resembles a finite state machine

in which every node is an activity to be performed);
• sequential behavior (a sequence of other behaviors);
• parallel (various behaviors are run in parallel).

Most of these behaviors will have to be used to implement
a working bot (except maybe for itinerary, since our agents will
not have to travel across the network). Role factories come to
use in organizational behavior of agents. For example when
an agent joins a party he might be assigned a role to act
as the carrier of some item (e.g. the dragon egg) and has
to enact this role (e.g. has to keep line of sight with two
other party members). The periodic behavior can be used in
multiple different occasions for example to harvest a given
resource mobs of a given type have to be fought. The agent will
loop this behavior until it has enough of a given resource. An
observer behavior is likewise important – an agent will observe
its environment and in case of an event (e.g. an attack of some
mob) react accordingly. The listener behavior is similar – if
a bot receives a message from another player it might choose
to react. Client/server behavior are especially important for
trading – (server) agents will offer some items and wait for
other (client) agents to pay for them in order to deliver the
good. Task behaviors are ubiquitous – every action (moving,
attacking, talking etc.) are simple tasks to be performed. FSM
behaviors on the other hand might come in handy to deal
with various states of quests – e.g. when the player solves one
part of the quest (by for example bringing some item to some
NPC) it moves to another state (e.g. finding some other item).
Sequential behaviors are important for the planning system
– all plans will be sequences of (simpler) actions. Parallel
behaviors on the other hand are obvious – while solving some
task an agent has to be alert about events in the environment,
thus the task behavior will run in parallel with some kind of
observing behavior.

VI. CONCLUSION

In this work in progress paper we have shown some
important agent based modeling techniques that allow us to
study MMORPGs with a special accent on techniques to be
employed in the ModelMMORPG project in which the TMW
MMORPG has been chosen for study. We have firstly shown
how to implement NPCs using finite state machines and how
they can be implemented in the scripting language of TMW.
Later we have provided some recommendations on how to
collect, analyze and model behavioral and social player data
using SNA, NLP, SA and ABM techniques. Based on the pro-
posed ABM technique to model the social and organizational
behavior of players, we have contemplated that artificial agents
might implement their consensus and coordination techniques

MIPRO 2015/CIS 1507

in the same way by using the recipeWorld approach. In the
end we have shown some important modeling techniques for
implementing artificial players – bots – by providing important
agent behaviors as well as examples of their usage.

Out future research is aimed towards implementing the
(dragon egg) quest that will foster organizational behavior
of players. Afterwards we will conduct a large scale study
with the developed quest by collecting server logs that will
be analyzed in the described way. The analysis will yield
agent based models of organizational behavior among players
that we will embed into an ontology of organizational design
techniques for the development of large-scale MAS. In the end
we shall implement artificial agent organizations and test their
performance against human players on the TMW platform.

ACKNOWLEDGMENT

This work has been supported in full by the Croatian
Science Foundation under the project number 8537.

REFERENCES

[1] Wikipedia Contributors, “Role-playing video game — wikipedia,
the free encyclopedia,” 2015, [Online; accessed 9-February-
2015]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=
Role-playing_video_game&oldid=642919862

[2] ——, “Massively multiplayer online game — wikipedia,
the free encyclopedia,” 2015, [Online; accessed 9-February-
2015]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=
Massively_multiplayer_online_game&oldid=646153954

[3] ——, “Massively multiplayer online role-playing game — wikipedia,
the free encyclopedia,” 2015, [Online; accessed 9-February-
2015]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=
Massively_multiplayer_online_role-playing_game&oldid=642752380

[4] ——. (2014) Comparison of massively multiplayer online role-playing
games. [Online]. Available: http://en.wikipedia.org/wiki/Comparison_
of_massively_multiplayer_online_role-playing_games

[5] Global Collect. (2014) The global mmo games market: Payments,
intelligence and trends. [Online]. Available: http://www.globalcollect.
com/the-global-mmo-games-market

[6] NewZoo. (2012) The global mmo market; sizing and
seizing opportunities. [Online]. Available: http://www.newzoo.com/
infographics/the-global-mmo-market-sizing-and-seizing-opportunities/

[7] M. Schatten, “Active graph rewriting rules for modeling multi-agent
organizational dynamics,” in Proceedings of the IBC 2012, 1st Interna-
tional Internet & Business Conference, M. Ivković, M. Pejić Bach, and
V. Šimičević, Eds. Rovinj: BIT Society, 2012, pp. 180–185.

[8] ——, “Reorganization in multi-agent architectures: An active graph
grammar approach,” Business Systems Research, vol. 34, no. 1, pp.
14–20, 2013.

[9] M. Schatten, P. Grd, M. Konecki, and R. Kudelić, “Towards a formal
conceptualization of organizational design techniques for large scale
multi agent systems,” Procedia Technology, vol. 15, pp. 577–586, 2014.

[10] M. Schatten, “Organizational architectures for large-scale multi-agent
systems’ development: An initial ontology,” Advances in Intelligent
Systems and Computing, vol. 290, pp. 261–268, 2014.

[11] M. Eckschlager, R. Bernhaupt, and M. Tscheligi, “Nemesys: neural
emotion eliciting system,” in CHI’05 Extended Abstracts on Human
Factors in Computing Systems. ACM, 2005, pp. 1347–1350.

[12] A. Tychsen and M. Hitchens, “Ghost worlds–time and consequence
in mmorpgs,” in Technologies for Interactive Digital Storytelling and
Entertainment. Springer, 2006, pp. 300–311.

[13] R. Aylett, S. Louchart, J. Dias, A. Paiva, M. Vala, S. Woods, and
L. Hall, “Unscripted narrative for affectively driven characters,” Com-
puter Graphics and Applications, IEEE, vol. 26, no. 3, pp. 42–52, 2006.

[14] M. P. Eladhari and M. Mateas, “Semi-autonomous avatars in world of
minds: A case study of ai-based game design,” in Proceedings of the
2008 International Conference on Advances in Computer Entertainment
Technology. ACM, 2008, pp. 201–208.

[15] C. Brom and J. Lukavsky, “Towards virtual characters with a full
episodic memory ii: The episodic memory strikes back,” in Proc.
empathic agents, AAMAS workshop, 2009, pp. 1–9.

[16] G. Robert, P. Portier, and A. Guillot, “Classifier systems as’ ani-
mat’architectures for action selection in mmorpg,” in 3rd International
Conference on Intelligent Games and Simulation, at London, 2002.

[17] C. Fairclough and P. Cunningham, “A multiplayer case based story
engine,” Trinity College Dublin, Department of Computer Science,
Tech. Rep., 2003.

[18] H. Berger, M. Dittenbach, D. Merkl, A. Bogdanovych, S. Simoff,
and C. Sierra, “Playing the e-business game in 3d virtual worlds,”
in Proceedings of the 18th Australia conference on Computer-Human
Interaction: Design: Activities, Artefacts and Environments. ACM,
2006, pp. 333–336.

[19] V. Lehdonvirta, “Virtual economics: applying economics to the study of
game worlds,” in Proceedings of the 2005 Conference on Future Play
(Future Play 2005), Lansing, MI, 2005.

[20] E. T. Lofgren and N. H. Fefferman, “The untapped potential of virtual
game worlds to shed light on real world epidemics,” The Lancet
infectious diseases, vol. 7, no. 9, pp. 625–629, 2007.

[21] C. S. Ang and P. Zaphiris, “Simulating social networks of online
communities: simulation as a method for sociability design,” in Human-
Computer Interaction–INTERACT 2009. Springer, 2009, pp. 443–456.

[22] P. A. Fishwick, “An introduction to opensimulator and virtual environ-
ment agent-based m&s applications,” in Simulation conference (WSC),
proceedings of the 2009 winter. IEEE, 2009, pp. 177–183.

[23] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foun-
dations and trends in information retrieval, vol. 2, no. 1-2, pp. 1–135,
2008.

[24] M. Schatten, “Opinion mining on news portal comments – towards
a Croatian sentiment database,” in Seminar za metodologijo in infor-
matiko. Novo Mesto: Fakulteta za informacijske študije, 2012.

[25] S. Wasserman and K. Faust, Social Network Analysis ; Methods and
Applications, ser. Structural analysis in the social sciences. Cambridge
University Press, 1994.

[26] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on
Complex Networks. Cambridge University Press, 2008.

[27] Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of rumor
spreading in complex networks,” Physical Review E, vol. 69, no. 6,
p. 066130, 2004.

[28] M. E. J. Newman, “Mixing patterns in networks,” Physical review. E,
Statistical, nonlinear, and soft matter physics, vol. 67, no. 2, pp. 1–13,
2003.

[29] R. Fabac, M. Schatten, and T. Ðuričin, “Social network mixing patterns
in mergers & acquisitions-a simulation experiment,” Business Systems
Research, vol. 2, no. 1, pp. 36–44, 2011.

[30] M. Schatten, J. Ševa, and B. Okreša Ðurić, “An introduction to social
semantic web mining & big data analytics for political attitudes and
mentalities research,” European Quarterly of Political Attitudes and
Mentalities EQPAM, vol. 4, no. 1, pp. 40–62, 2015.

[31] M. Fontana and P. Terna, “From agent-based models to network analysis
(and return): the policy-making perspective,” in SwarmFest. University
of Notre Dame, 2014.

[32] M. E. Gregori, J. P. Cámara, and G. A. Bada, “A jabber-based multi-
agent system platform,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM, 2006,
pp. 1282–1284.

[33] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application
of theorem proving to problem solving,” Artificial intelligence, vol. 2,
no. 3, pp. 189–208, 1972.

[34] T. Marian, B. Dumitriu, M. Dinsoreanu, and I. Salomie, “A framework
of reusable structures for mobile agent development,” in Proceedings
of IEEE International Conference on Intelligent Engineering Systems
(INES2004), Cluj-Napoca, Romania, 2004, pp. 279–284.

1508 MIPRO 2015/CIS

