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Abstract. When studying the DPA resistance of S-boxes, the research
community is divided in their opinions on what properties should be con-
sidered. So far, there exist only a few properties that aim at expressing
the resilience of S-boxes to side-channel attacks. Recently, the confusion
coefficient property was defined with the intention to characterize the
resistance of an S-box. However, there exist no experimental results or
methods for creating S-boxes with a “good” confusion coefficient prop-
erty. In this paper, we employ a novel heuristic technique to generate
S-boxes with “better” values of the confusion coefficient in terms of im-
proving their side-channel resistance. We conduct extensive side-channel
analysis and detect S-boxes that exhibit previously unseen behavior. For
the 4×4 size we find S-boxes that belong to optimal classes, but they be-
have like linear elements when running a CPA attack, therefore keeping
an attacker from achieving 100% success rate on recovering the key.

1 Introduction

The security of block-ciphers is a very important area in modern cryptography.
Rather than more traditional linear [1] and differential cryptanalysis [2], the most
practical attacks today belong to side-channel analysis (SCA), targeting actual
implementations of block ciphers in software or hardware. Side-channel analysis
relies on the physical leakages from the actual implementation and its efficiency
is much greater than the one of linear or differential cryptanalysis [3]. To improve
the algorithm resiliency to SCA, there exist many possible countermeasures such
as various hiding and masking schemes [4]. However, all countermeasures come
with a substantial increase in cost due to larger memory and area requirements
and the decrease in performance of the algorithm implemented.

Block ciphers of today are typically designed either as a Feistel network or as
a Substitution-Permutation network (SPN). In both design principles, S-boxes
(or Substitution boxes), are usually the only nonlinear part. Therefore, S-boxes
have a fundamental role in the security of most modern block ciphers [5] and
their “good” cryptographic properties are of utmost importance for the security
of encryption schemes in numerous applications. Although there exist a plethora
of cryptographic properties defined for S-boxes in the literature, there are only
a handful properties related to the SCA resistance. Currently, the properties
related with SCA are SNR (DPA) [6], transparency order [7], criterion for the
S-box resilience against CPA attacks [8] and as the newest measure, confusion
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coefficient [9, 10]. Considering the transparency order, which was heavily inves-
tigated so far, results from different groups are somewhat conflicting [11–13].
Yet in all previous works the transparency order seems to have a certain influ-
ence on DPA resistance. For example, in the 4× 4 S-boxes case (as used in e.g.
PRESENT [20]), it is shown that one can obtain S-boxes that have better DPA
resistance, while retaining properties of optimal S-boxes [14].

Nevertheless, numerous inconclusive results for different ciphers, platforms
and leakage models have led to an attempt to redefine the transparency order
measure [15]. This new approach also remains to be convincing in practical
results.

When considering 8×8 S-boxes, previous results on transparency order suffer
from two major drawbacks. The first drawback stems from the fact that an
improved S-box (in regards to the transparency order property) may result in
deterioration of many properties related with linear and differential resistance of
the algorithm (e.g. nonlinearity and δ-uniformity). The second major drawback is
the necessity to implement such improved S-boxes as lookup tables. For instance,
an improved AES S-box (e.g. derived from heuristic search) loses the algebraic
properties that are important for compact implementations [16, 17]. Still, there
are possible settings where the improvement in DPA resistance makes up for the
aforementioned drawbacks. In contrast to this, when considering 4× 4 S-boxes,
the situation is improved since both implementation options, as a lookup table
and as a Boolean function in hardware, are viable.

In this paper, we generate S-boxes with an improved confusion coefficient
and we show that this also improves DPA resistance. In order to confirm that,
we conduct simulated and practical side-channel analysis on those improved S-
boxes.

1.1 Related Work

In 2004, Guilley presents SNR (DPA) measure which is, to our best knowledge,
the first property related with DPA resistance [6]. One year later, Prouff presents
the transparency order property which is the first DPA-related property for the
multi-bit case [7]. The usefulness of the result is somewhat questionable. On one
hand, it is important to consider the issue but on the other hand considering
this as a countermeasure seems to be doomed, when following the construction
outlined in the paper. However the idea is valuable, as in 2012 several papers
revisit the topic [11–14].
Apart from the transparency-related efforts, a new line of research by Yunsi Fei
et al. [9,10,18,19] attempts to actually model the behavior of a cryptographic im-
plementation with respect to side-channel resistance. Starting from DPA-related
models [9, 18] they expand the concept to CPA attacks [10] and masking [19],
while offering a probabilistic model for side-channel analysis.
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1.2 Our Contribution

It is evident that using side-channel leakages is a powerful means of cryptanaly-
sis. Therefore, it is important to find effective and efficient countermeasures (or
combinations of them) that can prevent this type of cryptanalysis. This paper
investigates the option of using heuristically-created S-boxes to increase the re-
sistance to implementation attacks. More specifically, we are the first to use the
confusion coefficient as a cipher design parameter. With the assistance of genetic
algorithms, we create 4 × 4 and 8 × 8 S-boxes that obtain improved confusion
coefficient property. For the 4 × 4 case, we create S-boxes that have increased
resistance in the form of “ghost peaks” [4] (defined here as “Phantom” S-boxes),
while remaining in optimal classes [5]. For the 8 × 8 case, we obtain increased
resistance, albeit at the cost of classical cryptanalytic properties like nonlinear-
ity and δ-uniformity. We evaluate the newly generated S-boxes in a real world
scenario: we implement variants of PRESENT [20] and AES [21] ciphers that
employ the new S-boxes and we perform side-channel analysis on them.

The remainder of this paper is organized as follows. We present necessary
information about relevant cryptographic properties of S-boxes in Sect. 2. In
Sect. 3 we give explanations of the algorithms we use and the analysis of sev-
eral S-boxes with improved confusion coefficient property. We also compare the
properties of our new S-boxes with the ones obtained from random search as well
as with the original S-boxes. The side-channel resistance of the newly proposed
S-boxes is presented in Sect. 4, both with simulations and also with experiments
on a real target. We conclude the paper in Section 5.

2 Preliminaries

In this section we present some background information about side-channel anal-
ysis and cryptographic properties of S-boxes that are of interest.

2.1 Side-channel Analysis

Cryptographic devices, such as smart cards, RFID tags etc. have become perva-
sive in our lives as they are used in numerous everyday applications. However,
a great deal of care should be taken as it is known that these devices can have
physical channels, which leak the information that they process. These leakages
can be exploited by an adversary monitoring side channels such as timing [22],
power consumption [22, 23], electromagnetic emanation [24] or sound [25]. This
kind of attacks enables the attacker to obtain otherwise unknown information on
the workings of the underlying algorithm, therefore leading to practical attacks
on even real-world cryptosystems. As these attacks are the most practical ones
among many cryptanalysis efforts, this area attracted quite some interest in the
literature in the past decade. There are recent publications in the literature that
focus on modeling the physical leakage of an algorithm with the assumption of
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a certain leakage model [7,18]. This line of research is aimed to provide a way to
evaluate the side-channel resistance of an algorithm at the design phase to help
cryptographers improve the overall security of a cryptosystem.

2.2 Cryptographic Properties of S-boxes

As mentioned previously, there exist several properties of S-boxes where each
property relates to a certain cryptographic attack. However, here we concentrate
only on several basic properties such as bijectivity, linearity and δ-uniformity (as
given in [5]) and of course the new measure, confusion coefficient.

The addition modulo 2 is denoted as “ ⊕ ”. The inner product of vectors ā
and b̄ is denoted as ā · b̄ and equals ā · b̄ = ⊕n

i=1aibi.

Function F, called S-box or vectorial Boolean function, of size (n,m) is de-
fined as any mapping F from Fn

2 to Fm
2 [7]. When m equals 1 the function is

called Boolean function. Boolean functions fi, where i ∈ {1, ...,m}, are coordi-
nate functions of F, where every Boolean function has n variables.

Hamming weight HW of a vector ā, where ā ∈ Fn
2 , is the number of non-

zero positions in the vector.
An (n,m)-function is called balanced if it takes every value of Fm

2 the same
number 2n−m of times [26].

Linearity Lf can be defined as [27]

Lf = max ā ∈ Fn
2

v̄ ∈ Fm∗
2

|WF (ā, v̄)|. (1)

where WF (ā, v̄) is Walsh transform of F [7].

WF (ā, v̄) =
∑
x̄∈Fn

2

(−1)v̄·F (x̄)⊕ā·x̄. (2)

Nonlinearity NF of an (n,m)-function F is equal to the minimum nonlin-
earity of all non-zero linear combinations b̄ · F , where b̄ 6= 0, of its coordinate
functions fi [3].

NF = 2n−1 − 1

2
max ā ∈ Fn

2

v̄ ∈ Fm∗
2

|WF (ā, v̄)|, (3)

Differential delta uniformity δ represents the largest value in the differ-
ence distribution table without counting the value 2n in the first row and first
column position [2, 26,28].

Recently, Fei et al. introduced a new property that relates with the DPA resis-
tance of S-boxes - confusion coefficient [9,10,18,19]. They give a probabilistic
model that encompasses the three core parameters of a side-channel attack: the
target device, the number of traces and the algorithm under examination. That
model manages to separate these three elements and grants us the freedom to
explore the cipher design space by solely focusing on the cipher algorithm.

κ(ki, kj) = Pr[(ψ|kc) 6= (ψ|kg)] (4)
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κ̃(kc, kgi , kgj ) = Pr[(ψ|kgi) = (ψ|kgj ), (ψ|kgi) 6= (ψ|kc)] (5)

K : (Nk − 1)× (Nk − 1), Kij =

{
κ(kc, kg), if i = j

κ̃(kc, kgi , kgj ), if i 6= j
(6)

µ̄Y = 2× ε× κ̄ (7)

where κ̄ is the diagonal vector of K.

ΣY = 16 ∗ σW /Nm ×K + 4× ε2/Nm × (K− κ̄× κ̄T ) (8)

SRDPA = ΦNk−1(
√
NmΣY

−1/2µ̄Y ) (9)

Equation (9) gives the success rate of a DPA attack (SRDPA). It is computed
over the cumulative distribution function (ΦNk

) of a multivariate Gaussian dis-
tribution, with dimension (Nk) equal to key dimensionality (e.g. 256 for AES
if the selection function partitions into 8-bit targets). The number of traces is
directly represented in the formulas via Nm (number of measurements). The
target device is characterized from the signal to noise ratio (SNR = ε/σw) and
the parameters ε and σw can be computed from side-channel measurements.
Cipher algorithm is isolated by defining and constructing the confusion coeffi-
cient κ as given in Eq. (4) and (5). The confusion matrix K that is subsequently
constructed is given in Eq. (6). The matrix elements capture the behavior of
the both the cipher and the selection function with respect to a specific key (kc
denotes the correct key and kg the key guesses that stem from the key space).
The confusion coefficient with respect to a specific S-box was initially defined
as the probability that 2 different keys will lead to a different S-box output as
given in Eq. (4). Intuitively, a high confusion coefficient indicates that the S-box
output (or any other intermediate value ψ targeted by a side-channel attack) is
very distinctive. Thus, the S-box output is a good candidate for data leakage.
Low confusion coefficient values (also referred to as high collision values) make
side-channel attacks harder, i.e. they may require an increase in number of traces
or SNR to yield the correct key candidate.

Early work from Fei et al. suggest that the confusion coefficient matrix cap-
tures the algorithmic behavior of the cipher [9, 18]. However, this matrix incor-
porates all possible confusion coefficients with respect to a given key, making
the whole analysis key-dependent. In addition, we consider beneficial to move
towards CPA-related models instead of DPA. Thus, we use more recent findings
from Fei et al., namely the confusion coefficient for CPA, the confusion coefficient
vector and its frequency distribution [10]. We compute the confusion coefficients
for a given CPA selection functions as shown below.

Having computed all possible confusion coefficient values κ w.r.t. CPA attack
and Hamming weight (HW) power model we compute the confusion coefficient
vector. This vector contains all possible coefficient values for every key combi-
nation and its frequency distribution is deemed by the Fei et al. to be possible
characterizer of side-channel behavior. The natural question that arises is what
features of the frequency distribution of the confusion coefficient vector denotes
side-channel resistance. We observe that the mean value of the distribution is
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Algorithm 1 CPA selection function

for all key pairs ka, kb, ka 6= kb do
for all possible inputs in do
κ(ka, kb) = E[(HW (Sbox(in⊕ ka))−HW (Sbox(in⊕ kb))2]

end for
end for

directly related to the choice of the selection function, i.e. it solely depends on
the divide-and-conquer approach that we use in our attack. Moreover, Heuser
et al. demonstrate the link between nonlinearity and the distribution of the vec-
tor [29]. Specifically, highly nonlinear elements lead to a distribution with low
variance. Therefore, we need to find S-boxes that demonstrate a high variance in
the confusion coefficient vector distribution. Note that our S-boxes are generated
under the Hamming weight leakage assumption – depending on the device this
assumptions does not always hold.

Two S-boxes S1 and S2 are affine equivalent only if the following equation
holds:

S2(x) = B(S1(A(x) + a)) + b, (10)

where A and B are invertible 4×4 matrices and a, b ∈ F4
2 are constant values.

Resistance of S-boxes against most of the attacks remains unchanged if affine
transformation is applied before and after S-box [5].

2.3 Optimal S-boxes

When considering 4 × 4 S-boxes, there exist in total 16! bijective 4×4 S-boxes
which is approximately 244 options to search from. Leander and Poschmann
define optimal S-boxes as those that are bijective, have linearity equal to 8 and
δ-uniformity equal to 4 [5]. Since the linearity of 8 is the same as nonlinearity 4,
we continue talking about nonlinearity property instead of linearity.

Furthermore, they found that all optimal S-boxes belong to 16 classes, i.e.
all optimal S-boxes are affine equivalent to one of those classes [5].

3 Experimental Setup and Results

When generating S-boxes with good properties, we use genetic algorithms ap-
proach as they produced good results in previous works [13, 14]. Additionally,
we use random search as a baseline search strategy and affine transformations
to check whether confusion coefficient property is affine invariant.

Random Search. In this setting we use Monte Carlo search method to find
S-boxes that have good values of confusion coefficient. With this search method
we cannot influence the value of any of the S-box properties and we consider it
as a baseline search strategy. Here, S-boxes are created uniformly at random.
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Genetic Algorithms. In this technique we evolve S-boxes that have good
values not only for DPA-related properties, but also for other cryptography rel-
evant properties.

Affine Transformation. As shown in [14] affine transformation affects
transparency order values. We employ several different transformations and in-
vestigate their influence on confusion coefficient.

Further details about genetic algorithms and affine transformation are given
in the following sections.

3.1 Genetic Algorithm

Genetic algorithms (GAs) are a subclass of evolutionary algorithms where the
elements of the search space S are arrays of elementary types [30]. Genetic algo-
rithms belong to evolutionary techniques that have been successfully applied to
various optimization problems. To be able to evolve new individuals (solutions)
GA uses variation operators where the usual ones are mutation and crossover
(recombination) operators. Mutation operators are operators that use one parent
to create one child by applying randomized changes to parent. Mutation depends
on the mutation rate pm which determines the probability that a change will oc-
cur within individual. Recombination operators work on two or more parents
to create offspring from the information contained within parent solutions. Re-
combination is usually applied probabilistically according to a crossover rate pc.
Besides variation operators, it is necessary to decide about selection method.
Today, the k-tournament selection method is widely used for this purpose [30].
In this selection k solutions are selected at random and the worst among them is
replaced by the offspring of the remaining solutions. Further information about
genetic algorithms can be found in [31,32].

Representation and Fitness Functions. There are several possibilities how
to represent S-boxes (e.g. truth tables or lookup tables). We decide to use per-
mutation encoding since in this way the bijectivity property is automatically
preserved. In this representation, n × m S-box is defined with an array of 2m

integer numbers with values between 0 and 2m − 1. Each of these values occurs
exactly once in an array and represents one entry for the S-box lookup table,
where inputs are in lexicographical order.

For a permutation representation, a mutation operator is selected uniformly
at random between insert and inversion mutation [31]. For crossover operators we
use partially mapped crossover (PMX) [31], position based crossover (PBX) [33]
and order crossover (OX) [31] where the operator is selected uniformly at ran-
dom. All variation operators are described in Appendix C.

Maximization of the value of a fitness function is the objective in all evolu-
tionary experiments. A fitness function represents a definition of the problem
to solve with genetic algorithm. For fitness function we use a combination of
properties as presented in Section 2.

For the 8× 8 case, fitness function equals the sum of nonlinearity (NF ) and
confusion coefficient variance (κ) properties values as follows.
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fitness = NF + κ (11)

When investigating 4 × 4 case, we add to the fitness function δ-uniformity
property. In this way we ensure that evolved S-boxes belong to the one of optimal
S-boxes classes.

fitness = NF + κ+ (2m − δ) (12)

We subtract delta uniformity value from the maximum obtainable value since
we represent the problem as a maximization problem and δ property should be
as small as possible. Both fitness function can be easily extended to contain more
properties that are of relevance to the evolutionary experiments.

Here we emphasize that our approach is not only easily adaptable when
adding additional properties, but if we want to change e.g. the leakage model it
would only affect one term in the fitness function.

Common Parameters. For every fitness function we run 30 independent runs
and population size is equal to 50. Mutation probability is set to 0.3 per individ-
ual. The parameters above are the result of a combination of a small number of
preliminary experiments and our experience with similar problems; no thorough
parameter tuning has been performed. Tournament selection parameter k is set
to 3. Evolution process lasts until the stopping criterion is fulfilled, here the
criterion is 50 generations without improvement.

In Figures 1(a) and 1(b) we present results for random, evolved and original
S-boxes (AES and PRESENT) for sizes 4× 4 and 8× 8 respectively.

(a) 4× 4 size (b) 8× 8 size

Fig. 1. Nonlinearity vs. confusion coefficient variance

We see that for 4 × 4 S-box size we obtain maximum confusion coefficient
variance of 3.07 while staying in optimal classes. For the 8 × 8 size, the best
confusion coefficient variance we found is 4.057. However, this value comes at a
cost of nonlinearity of 98 and δ-uniformity of 12 (AES has nonlinearity 112 and
δ-uniformity 4).
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3.2 Affine Equivalence

Recall that resistance of an S-box against most of attacks stays the same if affine
transformation is applied before and after S-box. Therefore, it is useful to check
whether that is true for confusion coefficient property.

As shown before, transparency order property changes under certain affine
transformations [14]. Next, we check what happens with confusion coefficient
variance property under affine transformation. We apply transformations as
listed in Table 1 to AES S-box as well as to representatives to 16 optimal classes
for 4× 4 size and PRESENT S-box.

Table 1. Affine transformations.

Number Transformation

1 S(x) + c

2 S(B(x) + c)

3 (A(S(B(x) + c)) + d

4 (A(S(B(x) + c) + d)

In this table c, d ∈ F4
2 are constants, + represents XOR operation and A and

B are invertible matrices.
Following conclusions apply both for 4× 4 and 8× 8 S-box sizes.
To change confusion coefficient property, changes 2, 3 and 4 are applicable.

Here we note that our experiments show that the transformations 3 and 4 change
confusion coefficient more significantly. For instance, the PRESENT S-box has
a confusion coefficient variance of 1.709, when applying transformation 2 we
succeed in obtaining maximal confusion coefficient variance of 1.803. However,
when applying transformations 3 or 4, we obtain maximal confusion coefficient
of variance 3.07.

Since affine transformation emerges as a good choice for generating S-boxes
with good DPA properties we present result when applying transformation 3 to
AES S-box and lexicographical representatives of 16 optimal classes. We opted
for transformation 3 since it is one of two transformations that is capable of
significantly changing confusion coefficient and we did not observe any significant
difference between transformations 3 and 4. For all experiments the procedure
consists of applying 25 000 random affine transformations and recording the best
obtained results. The best results are presented in Table 2.

We can observe than in the case of 4 × 4 size, affine transformation reaches
same maximum values (although different S-boxes) as genetic algorithms for 8
out of 16 optimal classes. Furthermore, division between classes that reach 3.07
and 3.02 is the same as in the case of optimal S-boxes and PRINCE suitable
S-boxes [34]. Classes that reach values 3.07 are those that are not suitable for
usage in the PRINCE algorithm. For 8 × 8 size affine transformation improves
confusion coefficient variance only slightly.
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Table 2. Results for affine transformation 3

S-box κ variance

PRESENT 1.709

PRESENT transformation 3.07

G3, G4, G5, G6, G7, G11, G12, G13 3.02

G0, G1, G2, G8, G9, G10, G14, G15 3.07

AES 0.111

AES transformation 0.149

4 Side-Channel Experiments

Although the method explained in the previous sections results in the generation
of S-boxes with various values for the confusion coefficient, these S-boxes require
a thorough practical analysis. This is required to quantify how much of a change
in variance in the confusion coefficient will result in a certain gain in side-channel
resistance in terms of the number of measurements required to recover the key.

First, we performed simulations to see how the newly generated S-boxes
behave under the Hamming weight model when a certain amount of Gaussian
noise is added to the measurements. For the simulated experiments, we used 3
newly generated S-boxes and the PRESENT S-box as the baseline case. One
of the 3 newly generated S-boxes is the so called “Phantom” S-box that leads
to having two key candidates with correlation values equal in magnitude, hence
making it more difficult for an attacker who has no knowledge of the exact
leakage model of a device to deduce the correct key with 100% accuracy. The
“Phantom” S-box can be shortly defined as an S-box leading to ghost peaks
in the correlation trace after running the attacks. This happens since the S-
box outputs have either the same or complementary Hamming weight values for
inputs with a particular XOR difference.

Figure 2 presents the logarithm (log2) of the guessing entropy [35] with re-
spect to the number of traces processed for the attacks we run on the simulated
traces we produced with the inclusion of Gaussian noise with mean 0 and stan-
dard deviation 16. Important point to note about Figure 2 is that the PRESENT
S-box has a confusion coefficient variance of 1.709. Therefore, it can be clearly
seen that Figure 2(a) shows a clear distinction in guessing entropy with respect to
the variance of the confusion coefficient. Similarly one should note that AES has
confusion coefficient variance of 0.11, and Figure 2(b) shows a good distinction
in guessing entropy w.r.t. the confusion coefficient variance.

For the practical experiments, we used an ATmega163 microcontroller em-
bedded in a smart card and we collected many measurements using a modified
card reader enabling us to produce a trigger signal the oscilloscope and a LeCroy
oscilloscope. To be able to make a fair assessment of the side-channel security of
different S-boxes, we collected the information from 50 separate attacks and com-
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Fig. 2. Guessing entropy of the simulated S-boxes (4×4 in (a), 8×8 in (b)) with respect
to the number of traces processed.

bined them in terms of guessing entropy in Figure 3. Again it is clear that when
the attack is applied using the Hamming weight model, the S-box having the
better confusion coefficient value shows better resistance against side-channel at-
tacks. Here an important fact to note here is that the “Phantom” S-box exhibits
this property only when the Hamming weight model is used. The reason for this
behavior is that “Phantom” S-boxes lead to having either the same Hamming
weight, or the exact opposite Hamming weight in the outputs when the inputs
have a certain XOR difference in between. Therefore, when one of the bits is
taken into account rather than the Hamming weight of the whole S-box output
for mounting the attack, this “Phantom” behavior may not necessarily persist.
However, if the target leaks the Hamming weight of intermediate values, then
the attacker would be forced to use a weaker selection function (bit model) for
that particular device, therefore leading to an attack requiring the acquisition
of more power traces.
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Fig. 3. Guessing entropy of the S-boxes (4×4 in (a), 8×8 in (b)) with respect to the
number of traces processed on the AVR microcontroller.
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It should be noted that the results presented in this paper assume a partic-
ular leakage model, namely the Hamming weight model. We have computed the
confusion coefficient with this assumption in mind but if the leakage of a device
is known, it is straightforward to integrate that leakage model in our genetic al-
gorithms and produce an S-box which will resists to side-channel attacks better
in a device leaking in that particular leakage model.

Although we observe that improving the confusion coefficient results in de-
signs which have better side-channel resistance, we do recognize that this cannot
be counted as a countermeasure. We believe it is interesting to investigate how
an improved S-box interacts with other countermeasures and especially with
masking. Since in this work we focus on the practicality of the confusion coeffi-
cient metric, it remains as an interesting open question to see whether the S-box
improvements are persistent after masking or not.

5 Conclusion

In this work we consider the DPA resistance properties of S-boxes of various sizes.
We show it is possible to evolve S-boxes that have better confusion coefficient
variance values. Using genetic algorithms we are able to produce both 4× 4 and
8× 8 size S-boxes that exhibit improved DPA resistance.

Next, we show that an affine transformation changes the confusion coefficient
variance property. This fact can be important not only from the theoretical
perspective, but also from the practical one. We reiterate that with the genetic
algorithms approach change in the leakage model leads only to the change in
one fitness function factor. Therefore, we can easily adapt the procedure to
other more generic scenarios.

In further work we will concentrate on the interaction between the improved
S-boxes and masking countermeasure.
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A Comparison of S-Boxes Used in Lightweight Block
Ciphers

We are interested only in S-box properties and not the strength or the quality of
the algorithm as a whole. Therefore, we select a set of examples that we believe
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are interesting for comparison. Here we compare PRESENT [20], PRINCE [34],
Klein [36], Luffa [37] and NOEKEON [38] S-boxes. Table 3 presents results for
two important criteria for an S-box to be optimal, as well as two properties
related to DPA resistance.

Table 3. S-box Properties of Some Well-known 4× 4 Algorithms

Algorithm NL δ TF SNR(DPA) κ vari-
ance

PRINCE 4 4 3.4 2.129 1.709

PRESENT 4 4 3.533 2.129 1.709

NOEKEON 4 4 3.533 2.187 1.615

Klein 4 4 3.467 1.691 2.742

Luffa 4 4 3.733 2.53 1.191

B Evolved S-boxes

An example of optimal S-box of size 4× 4 and confusion coefficient variance is:

S-box = (0x6, 0x4, 0x7, 0x8, 0x0, 0x5, 0x2, 0xA, 0xE, 0x3, 0xD, 0x1, 0xC, 0xF,

0x9, 0xB)

Evolved 8×8 S-box with variance of 4.057 and nonlinearity 98 is given below.

S-box = (0xb1, 0x23, 0x98, 0x27, 0x4b, 0x14, 0x9, 0x5c, 0x55, 0xa, 0x4a, 0x4c,
0x1b, 0x3a, 0xa2, 0x53, 0xd6, 0xfb, 0x9f, 0x5e, 0xae, 0xde, 0xe7, 0 x9e, 0x4f, 0x97,
0xf7, 0x2d, 0x2e, 0xbe, 0xab, 0x2b, 0x91, 0x87, 0x36 , 0x1c, 0x81, 0x9d, 0xe5, 0x1a,
0xac, 0x1e, 0x5b, 0x86, 0x8c, 0x74, 0x6a, 0x8a, 0x5f, 0x65, 0xd5, 0x3f, 0xfe, 0xd9, 0xf,
0x37, 0xdd, 0x7d , 0xf2, 0xec, 0xf6, 0xe2, 0xb3, 0xaf, 0x77, 0x99, 0xca, 0xb9, 0xbb,
0xd0, 0x6c, 0xa7, 0x3d, 0xcb, 0x17, 0x75, 0x76, 0x4d, 0xad, 0xcf, 0x5 0, 0x68, 0x16,
0x2, 0x12, 0x78, 0x56, 0x1, 0xb0, 0x71, 0x5a, 0x29, 0 x6, 0x69, 0x58, 0x88, 0x8b, 0x6b,
0xe9, 0x8e, 0xc1, 0xc7, 0x6e, 0x63, 0x13, 0xbc, 0x2f, 0x38, 0x96, 0xbd, 0xdc, 0x62,
0xa8, 0x82, 0x24, 0 xa1, 0xb8, 0x0, 0x80, 0x61, 0xcc, 0x83, 0x22, 0x2c, 0xc2, 0xc0,
0xa0, 0x90, 0xf0, 0xdf, 0xdb, 0xba, 0xe8, 0xf9, 0xbf, 0x7c, 0x59, 0x7b, 0 xeb, 0xd8,
0xa3, 0xff, 0xf3, 0xf8, 0xc8, 0x5, 0x64, 0x66, 0xaa, 0xa9, 0xe, 0xb2, 0xd2, 0x19, 0x10,
0x70, 0x45, 0xc, 0x2a, 0x79, 0x3e, 0x5 d, 0x6d, 0xfa, 0xed, 0xda, 0xe1, 0x9a, 0x7f, 0x4e,
0x8d, 0xf5, 0xfc, 0x7a, 0x57, 0xfd, 0xd, 0xe4, 0x95, 0x18, 0xb4, 0xb5, 0x1d, 0x26, 0x4
8, 0x93, 0x67, 0x7, 0x51, 0xd4, 0x34, 0x43, 0x84, 0x9b, 0x92, 0x60, 0x28, 0x49, 0xc6,
0xc4, 0x8, 0x54, 0xa5, 0x41, 0x40, 0xea, 0xa4, 0x44 , 0x35, 0x15, 0x3b, 0xce, 0xf4,
0xd3, 0x33, 0xb6, 0x8f, 0xcd, 0x25, 0xef, 0xb7, 0x3c, 0x46, 0xee, 0x85, 0x32, 0x3, 0xc3,
0x31, 0xb, 0x30, 0x72, 0xd1, 0x20, 0x4, 0xa6, 0xc9, 0x21, 0x89, 0x47, 0x52, 0x7e, 0x
6f, 0x11, 0xc5, 0xf1, 0xd7, 0x39, 0x94, 0x1f, 0xe3, 0x9c, 0xe0, 0x73, 0xe6, 0x42)
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Affine transformation of AES S-box with improved confusion coefficient vari-
ance of 0.149357 is given next.

S-box = (0x92, 0x21, 0xd1, 0x6c, 0x5c, 0xf2, 0xf5, 0x86, 0xdd, 0x43, 0x8a, 0x2 8,

0xb8, 0xa3, 0x8b, 0xcf, 0x12, 0xca, 0x23, 0x37, 0xa6, 0xb7, 0x3b, 0xc0, 0x20, 0x4b,

0x5b, 0x22, 0xa4, 0x8, 0x96, 0xff, 0xb2, 0x56, 0xe 9, 0xcd, 0x17, 0x13, 0x57, 0x76,

0x19, 0x18, 0x1d, 0x25, 0xa0, 0x70, 0xec, 0x26, 0xef, 0x1e, 0x8e, 0x29, 0x39, 0x78,

0x6b, 0x4d, 0x60, 0x 95, 0x44, 0xfa, 0xab, 0xcb, 0xc8, 0xe, 0xae, 0xf4, 0x79, 0x46, 0xc,

0x85, 0x7c, 0xbf, 0x40, 0x81, 0xd7, 0x3a, 0xf3, 0xbd, 0x2b, 0x27, 0x5 5, 0x90, 0x61,

0x10, 0xde, 0x82, 0xb6, 0xe0, 0x72, 0x4e, 0x35, 0xea, 0x8c, 0xac, 0x77, 0x52, 0xd5,

0x88, 0xdf, 0x64, 0xc1, 0x65, 0x42, 0x 9c, 0x16, 0x15, 0x33, 0x0, 0x7d, 0x4f, 0x98, 0x9f,

0x45, 0xa2, 0x67, 0x69, 0xd6, 0xcc, 0xd0, 0x5e, 0xbb, 0x73, 0x87, 0x6d, 0x74, 0x3f, 0x

ad, 0x7, 0x50, 0x7f, 0x4a, 0x1b, 0x68, 0x71, 0xe2, 0x2, 0x3d, 0xc2, 0x38, 0xba, 0xd9,

0xa, 0x32, 0x31, 0x97, 0xda, 0x99, 0x8f, 0xd8, 0x9d , 0xd3, 0x2e, 0x2d, 0x5d, 0xc4,

0x54, 0x58, 0x91, 0x6, 0x6e, 0x51, 0 x3c, 0x6f, 0xfd, 0xf6, 0xf, 0x48, 0x34, 0x4, 0xf7,

0xc6, 0xa7, 0xf1, 0xaa, 0x47, 0x5a, 0x3e, 0x66, 0xdc, 0x6a, 0x3, 0xb3, 0x63, 0xfc, 0x1

a, 0x49, 0x2c, 0xf0, 0xce, 0x36, 0x7e, 0xe7, 0xe5, 0xb5, 0xa1, 0x7a, 0xc9, 0xee, 0x1c,

0xa5, 0x7b, 0xd4, 0x9b, 0x41, 0xd, 0xa8, 0x5, 0x84 , 0xb1, 0x93, 0x2f, 0xbe, 0xc5, 0xb,

0xeb, 0xe1, 0xaf, 0x9a, 0x80, 0 x8d, 0x4c, 0xe4, 0xfb, 0x9e, 0x89, 0x24, 0x2a, 0x83,

0x9, 0x94, 0x53, 0xbc, 0x5f, 0xa9, 0xc7, 0x75, 0xb0, 0x30, 0x1f, 0xb4, 0xdb, 0xf8, 0

xc3, 0xb9, 0xd2, 0xfe, 0x11, 0xed, 0x59, 0xf9, 0xe8, 0x1, 0xe3, 0xe6, 0x62, 0x14)

C Variation Operators

PMX Crossover. First, two crossover positions are chosen randomly, and the
segment between them from the first parent is copied to the offspring. Then,
starting from the first crossover position check elements in that segment of second
parent that have not been copied. For each of those elements i, check the offspring
to see what elements j has been copied in its place from first parent.Place those
values i into the positions occupied j in parent 2. If the place occupied by j in
parent 2 has already been occupied in the offspring by an element k, put i in the
position occupied by k in parent 2. After all the elements in crossover segment
are finished, the rest of the offspring is filled from parent 2 [31].

PBX Crossover. In this operator first the values in random positions from
the first parent are copied to the same positions in the offspring. Next, values
from the second parent that are not present in the offspring are copied to it
starting from the beginning of the offspring [31].

OX Crossover. Two crossover positions are chosen at random, and the
segment between those positions is copied from the first parent to the offspring.
Starting from the second crossover point in the second parent, copy unused values
to the offspring in the order they appear in the second parent, wrapping around
at the end of the list [31].

Inversion Mutation. In this operator, first two positions are chosen at ran-
dom. Then, the segment between those 2 values are written in reverse order [31].



17

Insert Mutation. In this operator two positions are selected at random
and then the value from one of those position is moved to be next to the other
position. Values in the segment between are shuffled to make room for value to
be moved [31].


