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Abstract. In the last few years, several practitioners have proposed a
wide range of approaches for reducing the implementation area of the
AES in hardware. However, an area-throughput trade-off that under-
mines high-speed is not realistic for real-time cryptographic applications.
In this manuscript, we explore how Genetic Algorithms (GA) can be used
for pipelining the AES substitution box based on composite field arith-
metic. We implemented a framework that parses and analyzes a Verilog
netlist, abstracts it as a graph of interconnected cells and generates cir-
cuit statistics on its elements and paths. With this information, the GA
extracts the appropriate arrangement of Flip-Flops (FFs) that maximizes
the throughput of the given netlist. In doing so, we show that it is pos-
sible to achieve a 50 % improvement in throughput with only an 18 %
increase in area in the UMC 0.13 µm low-leakage standard cell library.

Keywords: Real-time cryptography, Genetic Algorithms (GAs), S-boxes.

1 Introduction

Implementations of cryptography are of constant interest for companies making
security products. The challenges vary from very compact, low-power/energy to
high-speed implementations of both symmetric and asymmetric cryptographic
algorithms. Ever growing applications require security services, introduce more
constraints and real-time crypto has become of paramount importance.

This race for the fastest implementations in both hardware and software
is especially difficult for algorithms that feature endless implementation options
such as Elliptic Curve Cryptography (ECC) and the AES standard. For example
AES can be implemented with table look-ups or via multiple composite field
representations, each of which has certain advantages for area, performance and
security [1–4]. Moreover, other practitioners have relied on resource sharing and
folded architectures for reducing the implementation area [5, 6]. However, when
considering fast hardware implementations, pipelining is an obvious choice to
increase the throughput. Nevertheless, as pipelining implies adding FFs, it also
increases the area.

An interesting research challenge is to optimize throughput, while keeping
the area under control. More precisely, considering compact options for the AES
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S-box, namely those relying on composite field arithmetic, which are the best
pipelining solutions to maximize the throughput? Strategies for solving this prob-
lem typically involve hardware tools and rely mostly on good hardware design
practice, but are generally far from straightforward. The goal of this research
is to investigate this problem of optimizing the performance via pipelining such
that the best throughput is found for a given composite field S-box. For this
purpose we use genetic algorithms that have already found their place in other
cryptographic applications.

Our contribution is in comprehensively evaluating how to boost the perfor-
mance of AES implementations based on composite field arithmetic. To this end,
we consider a hardware implementation where the S-box is implemented using
a polynomial basis in GF (((22)2)2) as used for example by Satoh et al. [2] and
Mentens et al. [3]. We deploy genetic algorithms to find a good solution for the
position of the pipelining FFs in order to reduce the critical path as much as
possible.

Through our methodology we find a solution that adds one level of pipelining
registers in order to increase the throughput of the S-box with 50 % while the
extra FFs only increase the area with 18 %. To underline the added value of our
approach, we add some statistics on the circuit under investigation, which show
that it is far from straightforward to find this solution.

The remainder of this paper is organized as follows. First, in Section 2, we
describe how GAs have been coupled with cryptographic applications in the
literature as well as different alternatives for exploring the design space of an
AES implementation. In Section 3 we illustrate the initial design of the AES
S-box based on composite fields that we have selected for this work. Then, in
Section 4, we present the framework that we have developed for analyzing Verilog
netlists, generating an appropriate input for the GA, evaluating the correctness
of the resulting netlist and synthesizing our solution. In Section 5, we describe
our results and end in Section 6 with some conclusions.

2 Related Work

Considering previous works on hardware implementations of AES, numerous
papers appeared optimizing various implementation properties i.e. throughput,
area, power, energy etc. Here we remind the reader to some of those that are using
a design choice that is similar to ours. The main focus is on implementations
using composite field arithmetic to boost compactness and/or speed.

Satoh et al. were the first to introduce a new composite field GF (((22)
2
)
2

)-
based implementation which resulted in the most compact S-box at the time
with a gate complexity of 5.4 kgates. Wolkerstorfer et al. used arithmetic in

GF ((24)
2
) to achieve an implementation with a gate count comparable to the

one presented by Satoh et al. (5.7 kgates). Mentens et al. [3] and Canright [4]
found the best choice of polynomials and representation to optimize the S-box
area for polynomial and normal basis respectively. However, Moradi et al. have
recently published the most compact AES implementation [7] of the size of only
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2.4 kgates. This result is obtained by optimizing AES encryption on all layers
and pushing the area to this minimum.

Macchetti and Bertoni [8] have described an ASIC implementation for the

same composite field GF ((24)
2
) as Wolkerstorfer et al., but with a different

representation. One of the more recent works is from Kumar et al. [9] considering
an FPGA implementation of AES based on inversion in GF (28). The critical
path they obtain is 4.6 ns, which is substantially slower than our best result (2.6
ns). In general, hardware design tools consist of algorithms that focus on the
optimization of area, speed and/or power/energy consumption, but none of the
tools handles automatic pipelining to the extend that we do in this paper.

The literature is rich in examples where researchers have been relying on GAs
for solving cryptographic problems. For instance, Jhajharia et al. and Sokouti
et al. proposed the utilization of GAs for generating cryptographic keys [10,11].
Further, Zarza et al. and Park et al. utilized GAs in the context of cryptographic
protocol design [12,13]. Carpi et al. studied the selection of security parameters
for protecting smart cards against fault attacks via GAs [14]. Moreover, there
are many successful applications of evolutionary computation when evolving S-
boxes. Clark et al. used the principles from the evolutionary design of Boolean
functions to evolve S-boxes with desired cryptographic properties [15]. They used
the Simulated Annealing (SA) heuristic coupled with the hill-climbing algorithm
to evolve bijective S-boxes with high non-linearity. On the other hand, Burnett
et al. used heuristic methods to generate MARS-like S-boxes [16]. Picek et al.

used genetic algorithms to evolve S-boxes that have better resistance to DPA
attacks [17].

In this work, we use GAs to explore the design space of a standard cell netlist
that has many unbalanced and partially overlapping paths from input to output.
In order to achieve high throughput, GAs are used to choose the position of the
pipelining FFs.

3 S-box Implementation

In this section we describe the implementation options for the AES S-box that we
experiment with for this study. It was shown before in the works of Canright [4]
and Mentens et al. [3] that the most compact solutions rely on composite field
arithmetic.

Considering various arithmetic options in binary extension fields to optimize
the inversion operation in the AES S-box, there are basically two implementation
options. We can either perform the subfield operations directly in GF (24) or we

can perform computations in the tower field GF (((22)
2
)
2

), i.e. working in all
subfields and using the fact that inversion is linear in GF (22). The latter option
is the one we choose.

The fieldGF (((22)
2
)
2

) is considered as an extension of degree 2 overGF ((22)
2
)

constructed using the irreducible polynomial P (x) = x2 + p1x + p0, where

p1, p0 ∈ GF ((22)
2
). GF ((22)

2
) is a field extension of degree 2 over GF (22) using
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the irreducible polynomial Q(y) = y2 + q1y + q0 with q1, q0 ∈ GF (22). GF (22)
is a field extension of degree 2 over GF (2) using the irreducible polynomial
R(z) = z2 + z + 1. The constants are given in Appendix A.

In this case, inversion in GF (22) requires only one addition:

d = t1z + t0 ∈ GF (22) : d−1 = t1z + (t1 + t0). (1)

These operations are implemented as depicted in Fig. 1.

Unlike the inversion in GF ((24)
2
), the building blocks are not implemented

as 4-bit look-up tables, but as operations in GF ((22)
2
), which can be computed

as follows (with a1, a0, b1, b0 ∈ GF (22)):

– (a1y + a0) · (b1y + b0) = (a1b1 + a1b0 + a0b1)y + (a1b1φ+ a0b0);
– (a1y + a0)

2 = a1y + (a1φ+ a0);
– (a1y + a0) · λ = (a1y + a0)ωy = (a1 + a0)ωy + a1ωφ.

These equations consist of operations in GF (22) that can be computed as
follows (with g1, g0, h1, h0 ∈ GF (2)):

– (g1z + g0) · (h1z + h0) = (g1h1 + g0h1 + g1h0)z + (g1h1 + g0h0);
– (g1z + g0)

2 = a1z + (a1 + a0);
– (g1z + g0) · φ = (g1z + g0) · z = (g1 + g0)z + g1;
– (g1z + g0) · ω = (g1z + g0) · (z + 1) = g0z + (g1 + g0).
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Fig. 1. Schematic of the S-box by Satoh et al. [2], where the building blocks are oper-

ations in GF ((22)
2

), which are decomposed into operations in GF (22).

4 Methodology

In this section we provide an explanation of the framework that we have devel-
oped for interfacing the GA with different modules for analyzing, simulating and
synthesizing evolved netlists (Figure 2). First, we parse a Verilog description of
a certain circuit, which is, in our case, the S-box design described in Section 3.

This step provides us with different statistics of the target design such as the
number of standard cells (referred to as elements), cell inputs and paths in the
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Fig. 2. Workflow of our approach for pipelining the AES S-box

circuit. Then, an appropriate input for the GA is generated according to the delay
of each element of the netlist. From the GA, we receive a certain arrangement
of FFs that maximizes the throughput of the substitution box. The FFs are
inserted in a new netlist, simulated and synthesized (Steps 3–5 in Figure 2). In
the following sections, we first describe our optimization problem and then we
continue on each step and relate our results using the design described in Section
3.

4.1 Pipelining as an Optimization Problem

The task at hand is to insert a combination of FFs in order to increase throughput
through a certain number of pipeline stages. A valid solution to this problem
requires that all the paths in the circuit contain the same number of FFs, which
are placed in a way that minimizes the delay in each pipeline stage. For a given
number of stages, the number of FFs at every path is one less than the number
of stages (i.e. one FF per path in a two-stage pipeline).

To define this as an optimization problem, we encode each possible solution
as a bitstring (a sequence of bits) where each bit represents every input location
for all circuit elements. In this encoding, a bit is set to the value “0” if the
corresponding input does not have an associated FF and to the value “1” if
there is a FF preceding that input (the unmodified circuit is represented with
all zeros). The total bitstring length is equal to the sum of all the inputs in the
circuit, which in this case amounts to 432. A potential solution is therefore a
sequence of bits of length 432, which defines a search space of 2432.

The quality (also called the fitness value) of each potential solution is de-
termined by the delay of the pipeline stage with the greatest delay among all
the stages. However, since the optimization algorithm operates with any com-
bination of bits in the search process, a great number of potential solutions are
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expected to be infeasible, because they will represent a circuit with a different
number of FFs in all the paths. To handle that constraint, a penalty factor can be
included in the quality estimate to differentiate between feasible and infeasible
solutions. The penalty should be great enough such that each feasible solution
(a circuit with the same number of FFs in every path), regardless of the delay,
is still better than any infeasible solution, to guide the search to valid solutions.

Based on the previous, we define the following fitness function that represents
the optimization problem:

fitness = max delay time+ (1, 000 ∗ number invalid paths) (2)

Here, max delay time presents the longest delay for every pipeline stage and
invalid paths are all those that do not have a correct number of FFs. We ex-
perimentally set the weight to be 1,000 in the formula above. Intuitively, the
weight needs to be large enough such that even in the case that there is only
one invalid path, the total fitness should be worse than for the solution without
FFs. For that same reason, every larger weight factor would work the same.
The optimization objective is the minimization of the fitness function. Note that
to calculate the maximum delay, all possible paths in the network need to be
traversed, which poses a fairly large computational demand.

In the next section we describe the first step in Figure 2, focused on the
analysis of netlists.

4.2 Analysis of Verilog Netlists

Our framework generates statistical information about a circuit represented as
a Verilog netlist. In Table 1 we show the statistical details related to our choice
of representation. These parameters are extracted using the framework we de-
veloped for pipelining the AES substitution box. The number of elements in
the table denotes the number of standard cells. The number of inputs refers to
the number of inputs to all standard cells. Finally, the number of paths denotes
the number of different possible paths through the circuit from an input to an
output.

Table 1. Statistics of the preliminary S-box design

Number of elements Number of inputs Number of paths Shortest path Critical path (ps)

165 432 8,023,409 4 3,884.52

As depicted, there are too many possible paths to encode all of them into one
solution. Since the total number of elements as well as the total number of inputs
is relatively small, we decided to encode the possible solutions as bitstrings where
each bit represents every input location for all elements.
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Given a netlist of the S-box in Verilog, our framework first parses it according
to a predefined grammar and then, each element from the UMC 0.13 µm low
leakage standard cell library is identified [18]. This is done using a framework
developed in python 2.7.5-5 in combination with the pyparsing 2.0.1 library
1.

Relying on that library, we have defined a grammar that deconstructs each
entry of a Verilog netlist into a set of cells and their connections. For instance, a
NAND gate defined in the standard cell library can appear in a given netlist as
“ND2CLD U181 ( .I1(\input [0]), .I2(\input [1]), .O(n1) );”. Hence,
the parser must identify that element as a NAND gate (ND2CLD) associated to
the U181 identifier. Moreover, it must detect that is connected to the first two
inputs of the S-box and that the n1 wire routes its output.

This process is performed by creating a grammar that expects a set of entries
consisting of:

– The name of the cell.
– The cell identifier.
– A comma-separated list of inputs and outputs (i.e. I1, I2 and O in the
example) connected to the circuit inputs, outputs or internal Verilog wires
(i.e. \input [0], \input [1], and n1).

Each element of the netlist is abstracted in a data structure that stores the
cell type, the cell identifier, the number of inputs of the cell and all the elements
that are connected to their inputs i.e. their adjacent elements. Moreover, the
delay associated to each element according to the standard cell library is also
stored. This information is later used as an input for the optimization algorithm.

The resulting list contains all the circuit cells together with their number of
inputs and their adjacent nodes (that is, the cells that are connected to their
inputs) as well as the delay of each element. A small example of the parser output
is given below:

U163 2 U251 U248 146.8

U164 3 U198 U256 U163 86.471

U165 4 U198 U163 U256 U164 98.369

U166 1 U207 59.39

U167 4 U207 U209 U210 U166 114.406

This example describes the number of inputs for the cells U163-U167 (i.e. 2,
3, 4, 1, 4 respectively) together with the cells that are connected to those inputs
and the respective delay of the cell according to the standard cell library.

These values are obtained as average values for all possible combinations
(transitions from low to high and from high to low) for each element. For each
FF element that will be inserted in order to maximize the throughput, we use a
D-FF with a single output and no clear, set or enable (QDFFCLD) with an average
delay time of 320.35 ps. All delay times are given for a temperature of 25 degrees
Celsius, a core voltage of 1.2 V and a load capacitance of 1.5 fF.

1 http://pyparsing.wikispaces.com/
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Taking the average of low-to-high and high-to-low delays and assuming a low
load capacitance of 1.5 fF is an approximation that gives good results. Never-
theless, to improve our methodology, the actual delay information based on the
load of each standard cell should be taken into account.

Next, we present the optimization algorithm we used to generate pipelined
circuits.

4.3 Genetic Algorithms

In accordance with the given representation, we selected genetic algorithms
(GAs) as the optimization method to be used in our experiments.

Prior into going to the details about genetic algorithms, first we offer a short
rationale behind the choice of them. Since there is no previous work that uses
any kind of heuristics to evolve the optimal arrangement of FF elements in
a combinatorial circuit, we believe we should start with some well-researched
algorithm that can be easily adapted.

Genetic algorithms are an evolutionary computation technique that has been
successfully applied to various optimization problems. Additionally, bitstring
representation is one of several standard representations of GAs [19]. Naturally,
there are other heuristic algorithms that also use bitstring representation (e.g.
Particle Swarm Optimization [20], Genetic Annealing [21]) that could be used
here. In accordance with that, it is not possible to stipulate what algorithmwould
perform the best. The “No Free Lunch” theorem states that there is no single
best algorithm for all the problems, i.e. when averaged over all search problems,
all algorithms behave the same [22]. Therefore, only thorough experimental work
can give insight into more appropriate algorithms. Further details about genetic
algorithms are given in Appendix B.

Common Parameters. The parameters used in each run of the algorithm are
the following: the number of independent runs for each evolutionary experiment
is 30 and the population size is 30. The tournament size in the tournament
selection is equal to 3. Mutation probability is set to 0.45 per individual where
we choose it on a basis of a small set of tuning experiments where it showed the
best results on average.

Further, our setting has one more important parameter that needs to be set
i.e. the number of pipeline stages. With this parameter we control how many
levels of FF elements we want in our circuit. From Table 1 we see that the
number of elements in the shortest path is 4. Therefore, this path can have only
3 levels of FFs and that is the maximum number of FFs our circuit can have in
order to produce a correct output.

Evolutionary Process. After the parameters are set, the GA starts with the
generation of the initial population. In this part, the genetic algorithm reads
all the elements of the parser output file and for each cell input it reserves one
position in the bitstring representation. Notice that our bitstring size is fixed for
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a given circuit and it can not be dynamically changed during the evolutionary
process. This results in the fact that our current setting does not support multiple
FF elements one after the other. The initial population is built by creating
random bitstrings of the designated length corresponding to randomly setting
FFs in the preliminary netlist.

When the initial population is generated, the genetic algorithm starts with
the evolution process. In each iteration it randomly chooses k possible solutions
(the k tournament size) and eliminates the worst solution among those (this
is also to ensure elitism i.e. the best solutions are always propagated to the
next generation). The remaining solutions are used as parents which create one
offspring via variation operators. The offspring (new solution) then replaces the
worst individual in the population and additionally undergoes a mutation with
a given probability.

For each offspring, a genetic operator is selected uniformly at random between
all operators within an operator class (mutation or crossover).We use simple and
mix mutations and uniform [23] and one-point [19,24] crossover operators. These
variation operators are selected among those that are commonly used nowadays.

The evolution process repeats until the stopping criterion is met. In our case,
the stopping criterion is based on 50 generations without improvement of the
best solution.

Improving GA. When using random initialization of the population, the fitness
equals to 8.02·109 when averaged over all individuals and 30 independent runs
of the algorithm. As evident from that value, random solutions (individuals)
have a large number of incorrect paths (Equation 2). Therefore, depending on
the particular individuals in any run of the algorithm, it can be very difficult
for the GA to converge to the correct solution (especially when considering high
quality solutions). In order to improve the convergence capability of GA, we
added the option of seeding the initial population with individuals that have
FFs and therefore smaller maximum delay paths. Naturally, first we need to use
GA to find those individuals, before we can use them in a next GA run. To
support such a design, we added a mechanism of “protected” locations inside an
individual. Protected locations are those that have FFs and which should not
be changed during the run of the GA.

4.4 Reconstructing Evolved Individuals to the Netlist

Using a list of structures described in Section 4.2 it is possible to compute all the
paths of the circuit based on all the possible combinations for the eight inputs
and outputs of the AES substitution box. This is done by transforming the list
of cell structures described above into a non-directed graph, where the cells are
represented by nodes and their connections by edges. Then, it is possible to
extract the connections in the circuit and identify all the paths for all the input-
output combinations using a graph exploration algorithm such as the breadth-
first search (cf. [25]). We have depicted in Figure 3 how our framework abstracts
a Verilog netlist.
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Fig. 3. Graph representation of the S-box connections for each cell identifier

From the GA, we obtain the precise arrangement of FFs that will be inserted
in the new netlist in order to maximize its throughput as described in Section
4.1. Given the internal structure that we created from a Verilog netlist, now it is
possible to reconstruct the circuit according to the output from the GA (Step 3
in Figure 2). Our framework first splits the binary string from the GA in different
chunks according to the number of inputs of each element. Then, it associates
the respective FFs to each cell input. Moreover, the required Verilog wires that
connect each FF to the input/output of the cell are added. For instance, for an
XOR gate with two inputs (e.g. XOR2ELD) and an output “11” from the GA, this
element would be reconstructed with two FFs attached to their inputs using two
wires (e.g. ff 9 q, ff 10 q) as:

QDFFCLD FF9 ( .CK(clk), .D(n180), .Q(ff_9_q) );

QDFFCLD FF10 ( .CK(clk), .D(n198), .Q(ff_10_q) );

XOR2ELD U212 ( .I1(ff_9_q), .I2(ff_10_q), .O(n201) );

Finally, a test bench with assertions for all the 256 possibilities of the S-box
is created for the regenerated netlist. This is used in Mentor Graphics ModelSim
6.5c to guarantee the correctness of the new circuit. The resulting circuit is
then synthesized using Synopsys Design Compiler in order to get pre-layout
implementation results for the critical path delay and the area.

5 Results

In this section, we present our performance figures for the developed framework
that analyzes and reconstructs Verilog netlist. We also show the synthesis results
for our best candidates i.e. those substitution boxes that obtained the maximum
throughput.
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5.1 Analysis framework

In our S-box design, based on 165 cells (Table 1), we required 0.465 seconds for
generating the input for the GA using the described framework in a Intel Core
i5-3230M CPU clocked at 2.60GHz (Step 1, Figure 2). The evaluation of one
generation consisting of 100 individuals requires 3.5 min. on average (Step 2,
Figure 2). All the experiments carried out with GAs were conducted in an Intel
i5-3470 CPU equipped with 6 GB of RAM.

In Table 2 we give an overview of the total number of paths sorted into
classes according to the maximum delay time. Each initial circuit represents a
certain solution without FFs whereas the evolved circuit is the solution with the
maximum delay time (2,793.62 as given in Table 3). Additionally, in Table 3 we
present different statistics for several evolved circuits.

Table 2. Number of paths per length class

Class Initial circuit Evolved circuit

0 – 500 2 5,570
500 – 1,000 2,164 78,5432
1,000 – 1,500 149,944 3,751.897
1,500 – 2,000 2,026.442 2,639.751
2,000 – 2,500 3,580,150 816,636
2,500 – 3,000 1,899,675 26,411
3,000 – 3,500 361,708 0
3,500 – 4,000 3,324 0

Table 3. Maximum delay times

Max. delay time (ps) Number of stages Number of FFs Number of generations

2,793.62 2 73 587
2,826.52 2 68 15
2,942.42 2 66 691
3,155.11 2 49 482
3,223.02 2 64 4452
3,247.64 2 42 1434
2,918.92 3 100 618

5.2 Synthesis

As can be seen from Table 3, the best solution the GA finds when dividing the
circuit into two stages (i.e. inserting one layer of pipelining FFs) has an estimated
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critical path of 2,793.62 ns. The best solution with two layers of pipelining FFs
to have the shortest critical path is 2,918.92 ns. Intuitively, we would expect the
solution with two layers of pipelining to have the shortest critical path. However,
because the number of possible solutions is much bigger for a 3-stage circuit than
for a 2-stage circuit, the optimal solution found by the GA for the 3-stage circuit
is worse than the optimal solution it finds for the 2-stage circuit. Nevertheless,
we know that there should exist a better solution for 3 than for 2 when a longer
search is performed.

We synthesized both solutions, resulting in Table 4. In order to evaluate
the critical path properly, we inserted flip-flops at the inputs and outputs of
all the S-boxes. The netlist with 1 stage only contains these input and output
flip-flops. The netlists with 2 and 3 stages contains 1 and 2 layers of pipelining
flip-flops, respectively. Because of these input and output flip-flops, the netlist
with only one stage is larger in area than the composite field S-boxes reported
in literature (they do not contain any flip-flops). The table shows that the 2-
stage S-box introduces a 50 % improvement in throughput, which is equal to the
number of bits at the output (8 in our case) divided by the delay of the critical
path. The increase in area is only 18 %. The synthesis results for the critical
path are even slightly better than the estimate of the GA. The reason is that
the synthesis tool optimizes the generated pipelined netlist again, which leads
to further improvements. For the 3-stage S-box, the synthesis results are worse
than the estimate of the GA. This is probably due to the fact that there is less
room for optimization with two layers of pipelining flip-flops and thus less logic
in between the layers.

Table 4. Pre-layout synthesis results of the netlist with 1, 2 and 3 stages.

Number of stages Critical path (ns) Throughput (Gbits/s) Area (µm2) Gate count

1 3.9 2.05 2,450 612.50
2 2.6 3.07 2,901 725.25
3 3.2 2.50 3,433 858.25

6 Conclusion

This paper presents a methodology for pipelining composite field AES S-boxes to
maximize the throughput using Genetic Algorithms. The best trade-off between
throughput and area results in a throughput of 3.07 Gbits/s and an area of 2,901
µm2 in a UMC 0.13 µm standard cell library. This comes down to a throughput
increase of 50 % with an area overhead of 18 % in comparison to an S-box
without pipelining. In order to improve the throughput even more, the design
space should be increased with more composite field representations. The GA
could also still be optimized, e.g. by making a more intelligent choice of the seed.
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Appendix A

Here we give the details of the constants used for our composite field implemen-
tations of the AES S-box.

In [2], Satoh et al. made the following choices for the coefficients of the
irreducible polynomials:

p1 = 1 = {0001}2 ,

p0 = λ = ωy = (z + 1)y = {1100}2 ,

q1 = 1 = {01}2 ,

q0 = φ = z = {10}2 .

The inverse operation is implemented as

∆ = δ1x+ δ0 ∈ GF (((22)
2

)
2

) :

∆−1 = (δ1x+ (δ1 + δ0)) · (λδ
2

1
+ (δ1 + δ0)δ0)

−1 , (3)

δ = d1y + d0 ∈ GF ((22)
2

) :

δ−1 = (d1y + (d1 + d0)) · (φd
2

1
+ (d1 + d0)d0)

−1 .

Inversion in GF (22) requires only one addition:

d = t1z + t0 ∈ GF (22) : d−1 = t1z + (t1 + t0) . (4)



15

Appendix B

Genetic algorithms belong to the evolutionary family of algorithms where the
elements of the search space S are arrays of elementary type [26]. We give a
short pseudocode for a genetic algorithm (this is also a pseudocode for any
evolutionary algorithm) in Algorithm 1.

Algorithm 1 Genetic algorithm

Input : Parameters of the algorithm

Output : Optimal solution set

t← 0
P (0)← CreateInitialPopulation

while TerminationCriterion do

t← t+ 1
P ′(t)← SelectMechanism (P (t− 1))
P (t)← V ariationOperators(P ′(t))

end while

Return OptimalSet(P )

In order to produce new individuals (solutions), the GA uses mutation and
crossover operators. Mutation operators use one parent to create one child by
applying randomized changes to the parent. The mutation depends on the mu-
tation rate pm which determines the probability that a change will occur within
an individual. Crossover operators modify two or more parents in order to create
an offspring via the information contained within parent solutions. Recombina-
tion is usually applied probabilistically according to a crossover rate pc. In this
work, we use only operators that work with two parents. Additionally, GAs use
selection methods to choose the individuals that will continue to the next gener-
ation. We opted here for the steady-state tournament or k-tournament selection
method [26]. In this selection from k randomly selected individuals, two with
the best fitness values are chosen to evolve and create one offspring, replacing
the worst from the tournament [24, 27].

Next, we give a short description of crossover and mutation operators that
we use.

One Point Crossover. When performing one point crossover, both parents
are splitted at the same randomly determined crossover point. Subsequently, a
new child genotype is created by appending the first part of the first parent with
the second part of the second parent [19, 24].

Uniform Crossover. Single and multi-point crossover defines cross points as
places between positions where an individual can be split. Uniform crossover gen-
eralizes this scheme to make every place a potential crossover point. A crossover
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mask, the same length as the individual structure is created at random and the
parity of the bits in the mask indicate which parent will supply the offspring
with which bits. The number of effective crossing points in uniform crossover is
not fixed, but will average to l/2 where l represents string length.

Mix Mutation. Mix (or mixing) mutation randomly chooses one area inside
the individual where it will change the bits. First, in that area number of ones
and zeros is counted and then random bits are set while preserving the respective
number of values [19].

Simple Mutation. In simple mutation every bit is inverted with a predefined
mutation probability pm [19].


