
Evolutionary Methods for the Construction of
Cryptographic Boolean Functions

No Author Given

No Institute Given

Abstract. Boolean functions represent an important primitive when
constructing many stream ciphers. Since they are often the only nonlin-
ear element of such ciphers, without them the algorithm would be trivial
to break. Therefore, it is not surprising there exist a substantial body of
work on the methods of constructing Boolean functions. Among those
methods, evolutionary computation (EC) techniques play a significant
role. Previous works show it is possible to use EC methods to generate
high-quality Boolean functions that even surpass those built by algebraic
constructions. However, up to now, there was no work investigating the
use of Cartesian Genetic Programming (CGP) for producing Boolean
functions suitable for cryptography. In this paper we compare GP and
CGP algorithms in order to reach the conclusion which algorithm is bet-
ter suited to evolve Boolean functions suitable for cryptographic usage.
Our experiments show that CGP performs much better than the GP
when the goal is obtaining as high as possible nonlinearity. Our results
point that CGP should be further tested with different fitness objectives
in order to check the boundaries of its performance.

Keywords: Boolean Functions, Genetic Programming, Cartesian Genetic Pro-
gramming, Cryptographic Properties, Comparison

1 Introduction

Most cryptographic systems in use today are built as hybrid cryptosystems. In
these systems asymmetric-key cryptography is used to exchange the keys and
symmetric-key cryptography is used to encrypt and decrypt data. This separa-
tion is due to the fact that symmetric-key cryptography is much faster than the
asymmetric-key [1]. The name symmetric-key denotes the fact that the same key
is used for both data encryption and decryption.

One usual division of symmetric-key cryptography is to block and stream ci-
phers [1]. In block ciphers algorithm encrypts and decrypts data in blocks of cer-
tain size and in stream ciphers this is done bitwise. In both of those cipher types
often the only nonlinear elements are Boolean functions and vectorial Boolean
functions (vectorial Boolean functions are better known as Substitution boxes
or S-boxes). Boolean functions are in general used in stream ciphers whereas
S-boxes are used in block ciphers. In the rest of this paper we concentrate only
on Boolean functions suitable for cryptographic usage in stream ciphers.

2

There exist three main approaches to generate Boolean functions for crypto-
graphic usage: algebraic construction, random generation and heuristic construc-
tion [2]. In algebraic construction one usually uses some mathematical procedure
that gives very good results like in cipher RAKAPOSHI [3]. One of the most
famous constructions is a finite field inversion [4]. However, although finite field
inversion can be used to generate S-boxes with highest possible nonlinearity
levels, for Boolean functions that is not true. Furthermore, such constructions
cannot give optimal results when considering side-channel attack resistance [5].

Random generation of Boolean functions has its strong points, the most
prominent being that it is easy and fast, but the resulting Boolean functions
usually have suboptimal properties for cryptography [6].

Heuristic methods offer easy and efficient way of producing large number
of Boolean functions with very good cryptographic properties [7]. Among other
heuristic methods, evolutionary computation (EC) offers highly competitive re-
sults when generating Boolean functions [8]. More details about different meth-
ods for evolving Boolean functions are given in Section 1.1. However, as far as the
authors know, Cartesian Genetic Programming (CGP) has never been used for
constructing Boolean functions suitable for cryptography. Since CGP is recog-
nized as a suitable option when generating Boolean functions [9,10], its absence
in the evolution of cryptography-suitable Boolean function creation is somewhat
surprising.

In this paper we concentrate only on Boolean functions with 8 inputs since
that represents the size most used in practical scenarios (e.g. cipher RAKA-
POSHI [3]). Evolving Boolean functions with 8 inputs is a challenging task since
there exist 22

n

possible functions of n inputs (i.e. for 8 inputs this gives 2256

candidate solutions).
To serve as a benchmark problem when comparing the algorithms, we look

for a balanced Boolean function with maximum nonlinearity. However, this prob-
lem should not be only be considered as a benchmark, but rather as a difficult
problem that has practical implications. It is a well known fact among the cryp-
tography community that there should exist an 8-bit balanced Boolean function
with nonlinearity 118 [11]. However, no one has been able to find such a func-
tion. Indeed, finding it would represent not only a significant result from the
cryptographic perspective but also from the EC perspective since it would help
profile EC methods as the truly viable option for cryptographic usages.

1.1 Related Work

As previously stated, there have been several applications of heuristic methods
to the generation of Boolean functions for cryptography. Here we give only a few
representative examples of work related to our research.

Millan et al. used Genetic Algorithms to evolve Boolean functions that have
high nonlinearity [12]. Clark et al. used Simulated Annealing when evolving
Boolean functions with cryptography-relevant properties [13]. Burnett in her
thesis used Genetic Algorithms in a combination with hill climbing to evolve
Boolean functions and S-boxes [7]. McLaughlin and Clark on the other hand

3

used Simulate Annealing to evolve Boolean functions that have several cryp-
tographic properties with optimal values [14]. Picek et al. experimented with
Genetic Programming and Genetic Algorithms to find Boolean functions that
possess several optimal properties [8]. Several evolutionary algorithm methods
are used by Picek et al. to evolve Boolean functions that have better DPA-
related properties [15]. With the goal of finding maximal nonlinearity values of
Boolean functions Picek et al. have experimented with a handful of evolutionary
algorithms and approaches [16].

1.2 Our Contributions

To our best knowledge we are the first to consider CGP when evolving Boolean
functions suitable for cryptographic usage. Furthermore, we experiment with dif-
ferent genotype sizes and mutation rates to investigate its influence on the ability
of CGP to find good solutions. Since there is no prior experimental work, this
should also be regarded as a guideline for future research. When experimenting
with Genetic Programming (GP), we also investigate the influence of tree depth
on the quality of the obtained solutions. We compare GP and CGP algorithms
on a real-world difficult cryptographic problem to investigate their suitability.

The remainder of this paper is organized as follows: in Section 2 we describe
relevant cryptographic properties and representations of Boolean functions. In
Section 3 experimental setup and algorithms are described, while results and
short discussion are given in Section 4. Finally, Section 5 concludes with some
suggestions for future work.

2 Boolean Functions and Their Properties

In this section we give a short overview of relevant cryptographic properties of
Boolean functions. For further details we refer interested readers to [17,18].

The inner product of vectors a and b is denoted as a · b. It is defined as
⊕n

i=1aibi, where “⊕” represents addition modulo 2 (bitwise XOR). The Hamming
weight HW (f) of a Boolean function f is the number of ones in its binary truth
table representation [17].

A Boolean function f on Fn
2 can be uniquely represented by a truth table

(TT), which is a vector (f(0), ..., f(1)) that contains the function values of f ,
ordered lexicographically [17].

The second unique representation of Boolean function is the Walsh transform.
It measures the similarity between f(x) and the linear function a · x [17]. The
Walsh transform of a Boolean functions f equals:

WF (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x. (1)

A Boolean function is balanced (denoted “BAL” throughout the paper) if
its Hamming weight is equal to 2n−1 [17].

4

The nonlinearity NLf of a Boolean function f can be expressed in terms
of the Walsh coefficients as [17]:

NLf = 2n−1 − 1

2
maxa∈Fn

2
|Wf (a)|. (2)

A Boolean function f is t-resilient if it is balanced and with correlation
immunity of degree t [17].

A Boolean function f is correlation immune of order t - CI(t) if the
output of the function is statistically independent of the combination of any t of
its inputs [17]. For the Walsh spectrum it holds that

Wf (a) = 0, for 0 ≤ HW (a) ≤ t. (3)

Due to the lack of space, we do not explain the roles of each property in
the security application of Boolean function, but we rather refer to relevant
literature.

2.1 Balanced Boolean Functions and Maximal Nonlinearity

Sarkar and Maitra showed that if a t-resilient Boolean function f has an even
number of inputs n and t+ 1 ≤ n

2 − 1 then its nonlinearity NLf is bounded as
follows [11]:

NLf ≤ 2n−1 − 2
n
2−1 − 2t+1. (4)

Since we are looking for a Boolean function that has maximal nonlinearity,
we can see that the resilience needs to be 0 which then simplifies the equation
to the following one:

NLf ≤ 2n−1 − 2
n
2−1 − 2. (5)

From the formula it follows that the maximum nonlinearity for n = 8 and
t = 0 equals 118.

3 Algorithms and Experimental Setup

We remind the reader that we focus on the evolution of Boolean functions that
are balanced and with as high nonlinearity as possible. Naturally, the end goal is
to find such a function that has nonlinearity 118, but even lower values can help
us to reach the conclusion about the strength of a certain method. Moreover, such
Boolean functions can have also practical applications in the design of stream
ciphers.

To conclude, the goals of our experiments can be stated through the following
questions.

– Is CGP suitable for evolving Boolean functions when the focus is on the
cryptographic usage?

– What is the influence of the genotype size on the quality of the solutions
obtained?

5

– How does the performance of CGP compare with GP?

– What is the influence of tree depth in GP when evolving cryptographically
suitable Boolean functions?

Additionally, we experiment with Genetic Algorithm (GA) which serves as a
basic case scenario to determine a reference performance of the algorithm.

3.1 Genetic Algorithm

Our GA implementation uses the function truth table as chromosome represen-
tation, which is an array of bits of length 2n, where n is the size of a Boolean
function (therefore, in this research the chromosome length is 256 bits). For GA
we use a steady state tournament selection with tournament size k equal to 3
and population size 100. In steady state tournament selection mechanism the
worst of k randomly selected individuals is identified and replaced with a new
individual. The new individual is constructed with the crossover of two random
surviving parents from the tournament. After crossover, each new individual
undergoes a mutation with a given probability.

We experimented with many genetic operators, but the best results were
obtained with one-point crossover and simple mutation which inverts a randomly
selected bit.

3.2 Tree-based Genetic Programming

In Genetic Programming a function is represented as a tree of a certain depth.
The inner nodes (function set) of a tree are Boolean primitives (such as AND,
OR, NOT), while the leaves (terminals) may be a single input Boolean vari-
able (v0..v7). We use the same function set, which is given below, for both GP
and CGP. In GP experiments, the mutation probability is set to 0.3 per indi-
vidual, and the population size is 500. Steady-state tournament selection with
tournament size of 3 is used.

A small number of experiments were also conducted to select the appropriate
operators, and based on that we used a simple tree crossover with 90% bias for
functional nodes and a subtree mutation.

The maximum tree depth is a parameter that is selected by the user and
influences the available genotype size. When GP/CGP is used, one is effectively
evolving a digital circuit and then examining its truth table to assess whether the
function has the desired properties (e.g. balancedness or nonlinearity). However,
with a GA approach one is directly evolving a truth table, so that the question
of how it is implemented is not involved. Indeed the size of the truth table
determines the size of the GA genotype (bitstring) whereas in the GP/CGP
approaches, the size of the genotype is not directly related to the size of the
desired truth table.

6

3.3 Cartesian Genetic Programming

In Cartesian Genetic Programming (CGP) a program is represented as an in-
dexed graph. The graph is encoded in the form of a linear string of integers [19].
Terminal set (inputs) and node outputs are numbered sequentially. Node func-
tions are also numbered separately [19].

CGP has three parameters that are chosen by the user; number of rows nr,
number of columns nc and levels-back l [10]. The number of rows and num-
ber of columns make the two-dimensional grid of computational nodes and their
product gives the maximum number of computational nodes. The levels-back pa-
rameter controls the connectivity of the graph, i.e. it determines which columns
a node can get its input from [10].

In CGP the genotype is a list of integers that represents the program primi-
tives and how they are connected together [20]. The genotype is mapped to the
directed graph that is executed as a program. Genotypes are of fixed length while
phenotypes have variable length in accordance with the number of unexpressed
genes.

The maximal length of the genotype is given by the following formula:

max length = nrnc(nn + l) + no. (6)

In this application the number of node input connections nn is 2 and the
number of program output connections no is 1. The population size for CGP
equals 5 in all our experiments. For CGP individual selection we use a (1 +
4)-ES evolution strategy in which offspring are favored over parents when they
have a fitness less than or equal to the fitness of the parent. The mutation
operator is one-point mutation where the mutation point is chosen with a fixed
probability. The number of genes mutated is defined as fixed percentage of the
total number of genes. Note, the single output gene is not mutated and is taken
from the last node in the genotype. The genes chosen for mutation might be
a node input connection or a function. For more details about CGP we refer
readers to [9, 10,19,20].

3.4 Fitness Functions

When searching for a balanced function with the best possible nonlinearity, we
use experimented with two fitness functions, both to be maximized. The first
fitness function simply adds the balancedness penalty and nonlinearity values.

fitness = BAL+NLf . (7)

When a Boolean function is balanced we assign the BAL component a value
of 0, and when it is unbalanced we assign it the negative difference up to the
balancedness (i.e. the number of bits that need to be changed to reach bal-
ancedness) multiplied with a constant c. Based on the results from [8, 16] we
set that constant to 5 so that the unbalancedness penalty exceeds the values of
nonlinearity.

7

For the second fitness function, we have used a two stage fitness in which
a fitness bonus equal to the nonlinearity is awarded only to a genotype that is
perfectly balanced (this occurs when BAL = 0); otherwise, the fitness is only the
balancedness penalty. This is given in Eqn. 8. The delta function δBAL,0 takes
the value one when BAL = 0 and is zero otherwise.

fitness = BAL+ δBAL,0NLf . (8)

Two stage fitness functions are commonly used in CGP when one is trying
to optimize one quantity under a strict constraint; for instance, when trying to
evolve a Boolean function that exactly matches a given truth table but which has
the minimum number of gates [21]. Note that when Eqn. 8 is used, one does not
have to assign weights to the relative importance of different objectives. In Eqn. 7
a nearly balanced Boolean function with high nonlinearity could receive the same
fitness score as a fully balanced Boolean function with a lower nonlinearity. In
the two stage fitness function described in Eqn. 8 unbalanced Boolean functions
are not assessed for nonlinearity at all.

An observant reader can easily notice that in Eqn. 4 there is a resilience
term which we know needs to be 0 so we disregard it and proceed to Eqn 5.
The question is, should we disregard this property so readily? It is clear from
those two formulas that the nonlinearity property changes in jumps of two and
it always has an even value for Boolean functions with even number of inputs
(and odd value for Boolean functions with odd number of inputs).

This means, if we reach the nonlinearity of 116, to move to the value of
118 actually a random search is performed - since there are no values between
those two, the evolutionary algorithm has no means of differentiating different
solutions with nonlinearity 116. To add this missing information, we may include
the resilience property in the fitness function.

However, the problem is that we do not know what resilience values can lead
to nonlinearity 118. It is plausible to consider it better to have the resilience as
small as possible, since we know that for the best nonlinearity the resilience must
be 0. However, it is possible that Boolean functions with resilience larger than
0 can lead the search towards new, unexplored areas which can eventually lead
to nonlinearity 118. Since there is no research investigating those conditions at
this moment, all that researchers can do is use their intuition to decide on the
best approach. We take into account the first option where we add to the fitness
function the constraint that the resilience must be 0 and carry out empirical
experiments.

3.5 Experimental Setup

Since there are no previous results when using CGP to evolve Boolean functions
with good cryptographic properties, first we need to consider how to set CGP
parameters. Setting the number of rows to be 1 and levels-back to be equal to
the number of columns is regarded as the best and most general choice [10]. This
choice should be used when there is no specialist knowledge about the problem.

8

However, this still leaves open the question what should be the size of the
number of columns parameter. Furthermore, CGP usually uses small population
sizes and has no crossover operator [10]. Determining the best combination of
maximum number of nodes (gates in this case) and mutation rate is an important
step in hitting the parameter sweet spot for CGP. Indeed, it has been shown that
generally very large genotypes and small mutation rates perform very well [22].
Thus some experiments were performed varying these two parameters.

Common Parameters. The following parameters of the experiments are
common for all algorithms: the size of Boolean function is 8 (the size of the truth
table is 256) and the number of independent runs for each experiment is 50. The
function set nf for both GP and CGP in all the experiments consists of binary
Boolean primitives OR, XOR, AND, XNOR and AND with one input inverted.
For the stopping condition we use the number of evaluations which we set to
500 000.

4 Results and Discussion

First we note that for the GA case, the best obtained result are balanced func-
tions with nonlinearity value of 112 with the average over 50 runs of 111.8. This
is considerably worse than the best (and most average) solutions obtained with
CGP, as shown below.

Furthermore, in all the experiments so far, we have been unable to obtain the
nonlinearity of 118; only the value of 116 could be found for balanced functions.
While not the maximum, this nonlinearity level is still very high for practical
purposes, so we used the number of runs with 116 solution occurrences as a
secondary criteria of algorithm quality.

In Tables 1 and 2 we give results for CGP with fitness functions as in Eqn. 7
and 8 respectively, for different genotype sizes and mutation probabilities. The
first value in each column represents the average value over all runs and the
second value, in brackets, represents the number of obtained 116 nonlinearity
solutions over all runs (higher is better for both values). The results for both
fitness versions with GP for various tree depths are given in Table 3.

As it can be seen from the tables, CGP outperforms GA and GP quite
easily. It should be noted that many additional GA and GP combinations were
already experimented with in our previous research that are not shown here,
which exhibit the same or worse performance than the configurations used in this
work. Thus, we concentrate on the CGP efficiency which has not been previously
investigated.

In addition, we can compare the weighted fitness and two-stage fitness. In
Fig. 1 we plot the one-stage and two-stage fitness data shown in Tables 1 and 2
as a scatter graph showing the average fitness versus the genotype length for all
mutation rates. We also show the number of nonlinearity 116 solutions found in
both cases.

The results for the weighted fitness outperforms two-stage fitness in many
cases. This is a surprising result as a two-stage fitness is often used in CGP, ever

9

Table 1. Results for Eqn. 7 and CGP.

Genotype/pm 1 3 5 7 9 11 13

100 101.58 (0) 105.78 (1) 100.9 (0) 105.52 (0) 105.94 (2) 105.68 (1) 104.58 (0)

300 110.86 (2) 110.62 (14) 111.22 (13) 111.5 (16) 109.98 (12) 112.12 (16) 111.36 (10)

500 111.26 (11) 112.94 (20) 113.04 (24) 113.5 (24) 114.18 (25) 113.16 (21) 112.42 (20)

700 112.92 (15) 112.7 (23) 113.24 (26) 113.76(27) 113.98 (29) 113.54 (29) 113.16 (30)

900 110.72 (11) 114.38(31) 114.16 (28) 114.48 (31) 114.28 (30) 114.32 (31) 114.7 (34)

1100 112.4 (10) 114.28 (29) 114.82 (35) 114.56 (33) 114.14 (27) 114.44 (34) 114.74 (36)

1300 112.76 (12) 114.38 (30) 114.76 (35) 114.3 (30) 114.3 (32) 114.98 (37) 114.58 (34)

1500 112.58 (12) 114.56 (34) 114.58 (33) 115.08 (40) 114.44 (35) 114.96 (37) 115.16 (39)

1700 112.88 (15) 113.96 (27) 114.8 (35) 113.7 (29) 114.2 (32) 113.94 (29) 115.12 (40)

1900 112.52 (12) 114.12 (31) 114.32 (33) 114.48 (31) 114.8 (36) 114.22 (29) 113.38 (25)

Table 2. Results for Eqn. 8 and CGP.

Genotype/pm 1 3 5 7 9 11 13

100 94.16 (0) 96.8 (2) 92.96 (0) 96.32 (0) 94 (1) 99.76 (0) 96.32 (0)

300 108.28(0) 108.00 (8) 107.6 (3) 109.68 (9) 102.56 (6) 104.72 (7) 107.36 (6)

500 106.64(1) 110.8 (7) 108.92 (7) 110.4 (6) 110.64 (13) 107.28 (9) 109.84 (9)

700 111.92 (5) 109.96 (11) 111.6 (15) 110.64 (15) 110.68 (9) 111.52 (14) 110.48 (7)

900 110.8 (5) 112.32 (13) 112.76 (20) 112.08 (17) 112.72 (17) 110.96 (15) 112.92 (16)

1100 111.64 (8) 112.96 (17) 112.96 (19) 113.36 (17) 111.84 (11) 111.40 (13) 112.72 (12)

1300 110.88 (2) 112.84 (19) 113.28 (17) 112.96 (20) 111.72 (12) 112.48 (13) 112.56 (12)

1500 111.48 (2) 112.48 (9) 112.20 (13) 113.60 (20) 113.12 (19) 112.76 (14) 112.52 (11)

1700 112.16 (8) 111.6 (15) 112.88 (15) 111.88 (17) 112.92 (16) 113.04 (20) 113.20 (17)

1900 111.0 (5) 112.96 (15) 112.76 (17) 112.6 (14) 112.64 (23) 112.8 (15) 112.36 (10)

since it was first described [10,21]. It implies that more work should be done on
a variety of problems to establish the relative merits of the two approaches. In
addition in [22] it was suggested that optimal mutation rates should decrease as
genotype length increases. However, the results here indicate that for the cryp-
tographic problem studied this is not the case. Indeed fairly high mutation rates
produced the best results. This is also surprising and merits further investigation.

When adding the resilience constraint to the fitness function, we observe that
all Boolean functions within several generations obtain the resilience value of 0.
This suggests that this condition is not hard enough objective to lead the search

Table 3. Results for GP.

Tree depth 5 7 9 11 13

Eqn. 7 112.13 (1) 112.2 (2) 111.36(0) 111.64 (0) 111.22 (0)

Eqn. 8 112.13 (1) 112 (0) 111.76 (1) 111.72 (0) 111.58 (0)

10

(a) One-stage average fitness (b) Two-stage average fitness

(c) Number of 116 solutions found with
one-stage average fitness

(d) Number of 116 solutions found with
two-stage average fitness

Fig. 1. Comparative results for one-stage 1(a) and two-stage 1(b) fitness functions
showing average fitness achieved and the number of 116 solutions found against geno-
type length for all mutation rates.

towards very high nonlinearity values in different parts of search space when
compared with fitness functions without that objective.

When considering phenotype length for CGP we give average lengths for the
best set of parameters and both fitness functions in Table 4. Notice that we
selected best algorithm on the basis of the number of achieved 116 nonlinearity
values. In the case that two algorithms have the same number of 116 values,
then we consider the average value as the second condition.

Table 4. Phenotype length.

Algorithm CGP,Eqn 7 CGP,Eqn 8 CGP,Eqn 7,long run CGP,Eqn 8,long run

Genotype, pm 1700, 13 1900, 9 1500, 7 1900, 9

Value 84. 24 76.62 76.1 86.3

We carried out longer runs of 10 million evaluations for the best combinations
of CGP parameters considering the total number of obtained 116 nonlinearity
values. We do not give similar comparison for GP since it is much slower and
from that perspective is not competitive with CGP for such large number of
evaluations.

Figure 2 shows a boxplot comparison of best parameter combinations for
GA, GP and CGP with fitness functions Eqn. 7 and Eqn. 8. Furthermore, we

11

present best parameter combination for CGP with 10 million of runs. Note that
the same parameter combination for CGP are presented in Table 4.

Fig. 2. Boxplot comparison of the most successful algorithms.

5 Conclusion and Future Work

This paper describes an application of GA, GP and CGP in an evolution of cryp-
tography relevant Boolean functions. The main contribution is the application
of CGP, whose efficiency has not been previously investigated for this problem,
and a comparison with two other methods. The results show that CGP is able to
produce results that are clearly better than previous approaches, and is at the
same time a valid choice for this kind of problem. Additionally, the described
optimization problem may be considered a viable candidate as a benchmark
problem for GP-related algorithms, both for its hardness as well as its real-world
applicability.

References

1. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, Boca Raton (2008)

2. Goossens, K.: Automated Creation and Selection of Cryptographic Primitives.
Master’s thesis, Katholieke Universiteit Leuven (2005)

3. Cid, C., Kiyomoto, S., Kurihara, J.: The RAKAPOSHI Stream Cipher. In Qing, S.,
Mitchell, C., Wang, G., eds.: Information and Communications Security. Volume
5927 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2009)
32–46

4. Nyberg, K.: Perfect Nonlinear S-Boxes. In: Advances in Cryptology - EURO-
CRYPT ’91, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Brighton, UK, April 8-11, 1991, Proceedings. Volume 547 of Lecture Notes
in Computer Science., Springer (1991) 378–386

5. Prouff, E.: DPA Attacks and S-Boxes. In: Fast Software Encryption: 12th In-
ternational Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised

12

Selected Papers. Volume 3557 of Lecture Notes in Computer Science., Springer
(2005) 424–441

6. Millan, W., Fuller, J., Dawson, E.: New concepts in evolutionary search for Boolean
functions in cryptology. Computational Intelligence 20(3) (2004) 463–474

7. Burnett, L.D.: Heuristic Optimization of Boolean Functions and Substitution
Boxes for Cryptography. PhD thesis, Queensland University of Technology (2005)

8. Picek, S., Jakobovic, D., Golub, M.: Evolving Cryptographically Sound Boolean
Functions. In: GECCO (Companion). (2013) 191–192

9. Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions
using a Cartesian Genetic Programming Approach. In Banzhaf, W., Daida, J.M.,
Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M.J., Smith, R.E., eds.: GECCO,
Morgan Kaufmann (1999) 1135–1142

10. Miller, J.F., ed.: Cartesian Genetic Programming. Natural Computing Series.
Springer Berlin Heidelberg (2011)

11. Sarkar, P., Maitra, S.: Nonlinearity Bounds and Constructions of Resilient Boolean
Functions. In Bellare, M., ed.: CRYPTO. Volume 1880 of Lecture Notes in Com-
puter Science., Springer (2000) 515–532

12. Millan, W., Clark, A., Dawson, E.: Heuristic Design of Cryptographically Strong
Balanced Boolean Functions. In: Advances in Cryptology - EUROCRYPT ’98.
(1998) 489–499

13. Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean
Functions Satisfying Multiple Criteria. In: Progress in Cryptology - INDOCRYPT
2002. (2002) 246–259

14. McLaughlin, J., Clark, J.A.: Evolving balanced boolean functions with opti-
mal resistance to algebraic and fast algebraic attacks, maximal algebraic degree,
and very high nonlinearity. Cryptology ePrint Archive, Report 2013/011 (2013)
http://eprint.iacr.org/.

15. Picek, S., Batina, L., Jakobovic, D.: Evolving dpa-resistant boolean functions. In:
Parallel Problem Solving from Nature - PPSN XIII - 13th International Conference,
Ljubljana, Slovenia, September 13-17, 2014. Proceedings. (2014) 812–821

16. Picek, S., Marchiori, E., Batina, L., Jakobovic, D.: Combining evolutionary compu-
tation and algebraic constructions to find cryptography-relevant boolean functions.
In: Parallel Problem Solving from Nature - PPSN XIII - 13th International Con-
ference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings. (2014) 822–831

17. Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven (2006)

18. Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering. 1st edn. Cambridge University Press, New York,
NY, USA (2010)

19. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J.F., Nordin, P., Fogarty, T.C., eds.: EuroGP. Volume
1802 of Lecture Notes in Computer Science., Springer (2000) 121–132

20. Miller, J.F., Harding, S.L.: Cartesian Genetic Programming. In: Proceedings of the
10th Annual Conference Companion on Genetic and Evolutionary Computation.
GECCO ’08, New York, NY, USA, ACM (2008) 2701–2726

21. Kalganova, T., Miller, J.F.: Evolving More Efficient Digital Circuits by Allow-
ing Circuit Layout Evolution and Multi-Objective Fitness. In: Proc. NASA/DoD
Workshop on Evolvable Hardware, IEEE Computer Society (1999) 54–63

22. Miller, J., Smith, S.: Redundancy and computational efficiency in Cartesian genetic
programming. Evolutionary Computation, IEEE Transactions on 10(2) (April
2006) 167–174

