

Multi-Objective Optimization of a Tube Bundle Heat Exchanger

Vanja Skuric¹, Tessa Uroic¹, Henrik Rusche²

¹ Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia ² Wikki GmbH, Braunschweig, Germany

> 9th OpenFOAM Workshop 23-26 June 2014 in Zagreb, Croatia

Content

- Geometry optimization
- Heat exchanger problem
- Workflow
- Software
- Case setup
- Results
- Work in progress and in the future

Geometry Optimization

Heat exchanger $max(\Delta T)$ and $min(\Delta p)$ Tube position optimization

Airfoil $max(C_L)$ and $min(C_D)$ Shape optimization

Heat Exchanger Problem

- Objective:
 - Find optimal tube positions for maximum temperature increase and minimum pressure drop
- Parameters:
 - Tube positions coordinates ($x_1 \dots x_4, y_1 \dots y_4$)
- Objective Functions:
 - Pressure drop, Δp
 - Temperature increase, ΔT
- Constraints:
 - Tubes cannot be in contact (two different approaches):
 - restricting *x* position (*x*-corridor)
 - nonlinear distance constraints
- 2D case

Workflow

Software

- Dakota (Sandia National Laboratories)
 - A Multilevel Parallel Object-Oriented Framework for:
 - Design Optimization
 - Parameter Estimation
 - Uncertainty Quantification
 - Sensitivity Analysis
 - Here: Evolutionary Algorithm (derivative-free global algorithm)
- Salome (EDF, CEA, OpenCascade)
 - CAD and Post-Processing
 - Graphical user and terminal user interface
 - Here: TUI with python script for cylinder geometry generation

• OpenFOAM

- Meshing (blockMesh and snappyHexMesh)
- Solver (buoyantBoussinesqSimpleFoam)
- Post-processing (swak4Foam): Average pressure drop and temperature increase from inlet to outlet

🕑 FSB WKKI

№ FSB WK

№ FSB WIK

Case setup - Dakota

- Method:
 - Multi-objective genetic algorithm MOGA (JEGA library)
 - Population sizes: 40, 60, 80
 - Number of generations: 5, 10, 15, 20
 - Crossover type shuffle random
 - number of parents = population size
 - number of children = 75% of population
 - Mutation type *offset normal*
 - mutation rate = 100%
 - mutation scale = 10%
 - Replacement type *elitist*
- Variables:
 - 8 variables ($x_1 \dots x_4, y_1 \dots y_4$)
 - Constraints (two approaches):
 - 6 x-corridors: inlet corridor, 4 tube corridors, outlet corridot
 - 3 x-corridors: inlet corridor, tube corridor, outlet corridor minimal tube distance as a constraint
- Response functions:
 - 6 x-corridors 2 response functions: Δp , ΔT
 - 3 x-corridors 8 response functions: Δp , ΔT , 6 distance values between cylinders

№ FSB WK

Case setup - Dakota

• 6 x-corridors

• 3 x-corridors

Case setup - OpenFOAM

- Fluid Air
- Boundary conditions:
 - Inlet velocity inlet
 - U = (0.01 0 0) m/s
 - *T* = 293 K
 - *Re* = 14 (laminar flow, steady state)
 - Top and bottom cyclicAMI
 - Cylinders wall
 - constant temperature, T = 353 K
 - Outflow
 - p = 0 Pa (gauge pressure)
- Post-processing (swak4Foam) Δp_{avg} and ΔT_{avg}

Results

• The result of the bi-objective optimization is the Pareto-front – the line of optimal solutions.

№ FSB WKK

№ FSB WIK

Results

№ FSB WIK

Work in progress and in the future

In progress:

- Uncertainty quantification
- Robustness evaluation of the optimal points

In the future:

- Workflow for obtaining pareto front using the single objective algorithms
- Optimization with gradient based methods

Thank you!