Adaptive observation scheduling

D. Dominis Prester, A. Babić, M. Bervida, M. Doro, L. Font, C. Fruck, M. Gaug, T. Terzić, M. Will

MAGIC Collaboration Physics Meeting, Zeuthen, 17 June 2015

Outline

- Why should we apply Adaptive Observation Scheduling?
- Effects of the atmospheric transmission on our data
- Data quality classes (LIDAR)
- Plan for the next 3 years

Motivation

- How much of the data observed by MAGIC is actually analyzed?
- What percentage of data is being rejected for different types of sources, due to the low atmospheric transmission?
- >20% of our observations can be corrected!
- We should optimize the usage of our observing time!

Different sources produce different spectra

- "Hard" and "Soft" VHE gamma spectra
- EBL absorption (depending on the *z*)
- High-state (Flare) -> harder spectra
- Different energy thresholds needed for observations of different targets
- How does the atmospheric transmission change the observed spectra?

Energy Threshold

Garrido, Gaug, Font, Moralejo (MAGIC Coll.), 2014

Energy correction

Garrido, Gaug, Font, Moralejo (MAGIC Coll.), 2014

Variable atmosphere

Data quality classes: Preliminary MAGIC 2 year statistics

Data quality class	LIDAR T (9 km)	Without calima cut (% of time)	With calima cut
1. (no corrections)	1.00-0.85	69	85
2. (corrections)	0.85-0.70	17	9
3. (corrections)	0.70-0.55	6	2
4. ("garbage")	0.55-0.00	8	4

Lidar statistics plot (calima cut)

Cycle 10 (ongoing, 2015)

- Test data quality classes (evaluation of proposal times)
- LIDAR vs. Pyrometer relation
- Define Dark vs. Moon limit
- Implement shifter-user-friendly LIDAR flags for different data quality classes in the operations
- Take more "Crap Crab" data
- Simulations of source visibilities for different sources including probable transmission ranges
- PI-s, Conveners, Schedulers: exchange the ideas on the E_th limits for different sources

Cycle 11 (2015-2016)

- Moderate application of adaptive scheduling -TESTING
- Crab in different data quality classes
- Observe Mrk421 and Mrk501 during moderate transmission? (hard sources, complementary in visibility to Crab)
- Shifters learn switching between the 2 schedules (for high vs. Low transmission)
- Schedulers learn producing adaptive schedules
- Software development, testing CTA scheduling sofware on MAGIC
- Final definition of data quality classes

Cycle 12 (2016-2017)

- Proposals submitted and graded for different data quality classes (E_th limit)
- Conveners reccommend classes for different sources
- TAC decides
- Analyzers apply corrections
- Testing of the method in paralel on MAGIC and LST1 prototype (if ready)

Cycle 13 (2017-2018)

- Proposals submitted and graded for different data quality classes (E_thr limit)
- Application on both MAGIC, and the LST1 prototype on La Palma
- Comparison of the two methods: transmission ranges (MAGIC) and continuous variables (CTA)
- Commission LST1, test and prepare for the CTA

Conclusion

- We can recover most of the 30% accounted time (otherwise removed during analysis)
- Tight collaboration among conveners, schedulers, analyzers and the ATCA experts needed for this task

=> analyzers will finally have **more** time of **useful data** for the analysis

- Test and commission LST1 prepare for the CTA
- If we learn to understand how to deal with the atmospheric conditions, they become a less important factor!

"I love the clouds, the clouds that pass up there. Up there, the wonderful clouds!"

Charles Baudelaire: "The Stranger"

Backup slides

Spectral index change

Garrido, Gaug, Font, Moralejo (MAGIC Coll.), 2014

Flux at 300 GeV

Garrido, Gaug, Font, Moralejo (MAGIC Coll.), 2014

