

CROATIA

VLATKA TURCIC, M.Sc.

Greetings from Croatia

Beti Rogina-Car, Ph.D. <u>Vlatka Turcic, M. Sc.</u> Ana Budimir, Ph. D. Drago Katovic, Ph.D.

Beti Rogina-Car, Ph.D. <u>Vlatka Turcic, M. Sc.</u> Ana Budimir, Ph. D. Drago Katovic, Ph.D.

This scientific research was conducted for the dissertation of candidate **Beti Rogina – Car** in cooperation with:

- Faculty of Textile Technology Zagreb
- University Clinical Hospital Centre Zagreb, Croatia

The Use of Textiles in Medicine

The Use of Textiles in Sterilization

Cotton undeclared quality microbial barrier - questionable

No data about a range of other characteristics of cotton fabrics required for ensuring microbial barrier

Under appropriate conditions of humidity and temperature, most medical textiles MADE OF natural fibers present an excellent basis for bacterial and fungal growth

20 µm

SEM HV: 10.00 kV WD: 31. SEM MAG: 3.00 kx Det: SE Name: L_L_1B_15

Performance in nanospace

The requirements that must be met by the packaging materials together with the rules of handling are determined by

HRN EN ISO 11607-1:2010 [28].

WRAPPING MATERIAL

- ➢ easy packing
- ➢ effective sterilization
- ➢ reliable storage
- ➤ safe handling
- ➤ maintains sterility
- ➤ aseptic opening

TEST OF RESISTANCE TO PENETRATION OF MICROORGANISMS IN DRY AND WET CONDITION FOR SURGICAL GOWNS

Dry condition HRN EN ISO 22612:2008 Wet condition HRN EN ISO 22610:2008

New medical textiles

Three types of textiles were selected for testing:

- Cotton/PES 50%/50%
- Tencel ® 100%

(lyocell fibres with trade name)

 Three-layer textile laminate PES/PU/PES (known as operating, OP laminate)

All of declared and standardized quality

CHARACTERISTICS OF THE APPLIED TEXTILES

Samples	Raw material content	Weave
Sample I	Polyester fiber/cotton 50%/50%	Cloth
Sample II	Tencel®	Twill 2/1
Sample III	Three-layer textile laminate 1.weft right /right interlock 2.PU membrane, 3.Warp's <i>charmeuse</i> knit (e PES/PU/PES: knit, knitted back)

All samples were tested after multiple washing and sterilization:

For mechanical influences (strength and elongation)

For air permeability

For permeability of microorganisms in dry conditions of extreme contamination

For permeability of microorganisms after storage in controlled storage conditions

Strength and elongation

Each sample was tested on a dynamometer for strength and elongation before washing and sterilization after the 1^{th,} 10th, 20th, 30th and 50th washing and sterilization

RESULTS 1,10, 20, 30, 50 W & S

Mechanical influences (strength and elongation)

CROATIA

(1)

Air and Microorganisms Permeability

Textile material shrinks during washing and sterilization which results that the density of the fabric increases while the penetration of air and microorganisms decreases

Changes in density of PES/cotton

20 um

SEM HV: 10.00 kV WD: 31.5 SEM MAG: 1.50 kx Del: SE Name: PP_10L_2

MIRAN TESCAN SEM HV: 10.00 KV SEM MAG: 1.50 Kx Name: PP_20L_3 20 µm

Det: St

Performance in nanospace

SEM MAG: 1.50 kx Name: PP_30L_2

Changes in density of three-layer textile laminate PES/PU/PES

CROATIA

AIR PERMEABILITY

Air permeability

• Three-layer textile laminate is completely air impermeable due to its polyurethane membrane.

However, it should be noted it is permeable to a sterilization medium which gives it a basic criteria for sterilization

In the PES/cotton and Tencel® blend, it is visible that air permeability continuously decreases after washing and sterilization which can be explained with the fact that the textile shrinks during washing and sterilization

PERMEABILITY OF MICROORGANISMS

In dry conditions of extreme contamination

After storage in controlled storage conditions

PERMEABILITY OF MICROORGANISMS

Constructed and executed device for testing microbial barrier efficiency of medical textiles

STERILIZATION 134 °C/5 min

PERMEABILITY OF MICROORGANISMS IN DRY CONDITIONS OF EXTREME CONTAMINATION

Bacterial endospores *Geobacillus Stearotermophilus* 10⁵ and *Bacillus Atrophaeus* 10⁶ were used

Process of collecting prints from the test samples, using CT3P agar plates

PERMEABILITY OF MICROORGANISMS

CROATIA

PERMEABILITY OF MICROORGANISMS

CROATIA

Tencel®

PERMEABILITY OF MICROORGANISMS

FRONT

BACK

Three-layer textile laminate PES/PU/PES

PERMEABILITY OF MICROORGANISMS

Samples	No. of washing and sterilization processses		CFU on the front of the taxtile	CFU on the back of the taxtile	Front - back ration CFU
	1	W + S	356	11	32:1
Samples I	10	W + S	275	14	20:1
PES/cotton	20	W + S	318	9	35:1
50%/50%	30	W + S	286	7	41:1
	50	W 'S	396	2	198:1
	1	W + S	419	7	60:1
Samples II	10	W + S	359	8	45:1
	20	W + S	294	2	147:1
100% Tencel®	30	W + S	182	3	60:1
	50	W + S	341	2	170:1
Samples III	1	W + S	155	0	-
Three loves (suffle	10	W + S	167	0	-
Inree-layer textile	20	W + S	175	0	-
PES/PU/PES	30	W + S	132	0	-
	50	W + S	464	0	-

PERMEABILITY OF MICROORGANISMS

Regression analysis of how washing and sterilization affects microbial barrier permeability in medical textiles

PERMEABILITY OF MICROORGANISMS IN CONTROLLED STORAGE CONDITIONS

PERMEABILITY OF MICROORGANISMS IN CONTROLLED STORAGE CONDITIONS

Microclimate conditions

Temperature: 15 - 30 °C Relative humidity : 30 - 60%

The material to be stored on shelves must be located:

- 25 cm from the floor,
- 45 cm from the ceiling
- 5 cm from the walls

PERMEABILITY OF MICROORGANISMS IN CONTROLLED STORAGE CONDITIONS

PERMEABILITY OF MICROORGANISMS IN CONTROLLED STORAGE CONDITIONS

Complex	Number of washing and sterilization procedures	Storage time			
Samples		1 month	2 months	3 months	
Samplas I	10 washings & sterilizations	NMG	NMG	NGM	
Samples	20 washings & sterilizations	NMG	NMG	NMG	
PES/cotton	30 washings & sterilizations	NMG	NMG	NMG	
50%/50%	50 washings & sterilizations	NMG	NMG	NMG	
	10 washings & sterilizations	NMG	NMG	NMG	
Samples II	20 washings & sterilizations	NMG	NMG	NMG	
100% Tencel®	30 washings & sterilizations	NMG	NMG	NMG	
	50 washings & sterilizations	NMG	NMG	NMG	
Samples III	10 washings & sterilizations	NMG	NMG	NMG	
Three-layer textile laminate	20 washings & sterilizations	NMG	NMG	NMG	
	30 washings & sterilizations	NMG	NMG	NMG	
	50 washings & sterilizations	NMG	NMG	NMG	

	Strenght	Tencel ®		Cotton/PES	
	Elongation	PES/PU/PES		Tencel ®	
2	Air permeability	Tencel ®	1	PES/PU/PES	0
3	Permeability for microorganisms	Cotton/PES	1	PES/PU/PES	0
4	Permeability for microorganisms after storage				
CROATIA Vlatka Turcic				C	

BETORE THE CONCLUSION

It is evident that Tencel is the most resistant one to tearing, while OP laminate recorded the highest level of elongation.

The most permeable to air is Tencel, while the three-layer laminate is completely impermeable to air and microorganisms. The worst characteristics showed a cotton / PES.

Nevertheless, none of the tested textile material is not permeable for microorganisms after storage of three months.

Electronic microscope recorded damages on membranes of the OP laminate after 50 washings and sterilization, which were not present after 30 procedures.

CONCLUSION

The tested cellulosic textiles and three-layer textile laminate, even in one layer <u>can be used as wrapping</u> <u>material for sterilization under conditions described in</u> <u>the research</u> and provide a microbial barrier after sterilization.

Microbial barrier is safe against contamination during the test period of 3 months and after 50 washing and 50 sterilization procedures.

Thank you for your attention

Have a nice rest of the day

