

Abstract: In this paper, an overview of different methods used for
solving a single ring-dimensioning problem is presented. All the
algorithms discussed are implemented in our software tool called,
RingSolver, and are being used in another tool for designing more
complex ring-networks, which is still under development. Since,
majority of algorithms are relatively simple to implement, and they
provide very good solutions in short execution time it is reasonable to
use them when planning and dimensioning larger ring-based networks.
Such networks can contain huge number of rings and therefore it is very
important to have algorithms that can handle problems fast and effective.

Keywords: ring loading problem (RLP), algorithms

Introduction

In design process of today’s high-capacity backbone networks, different
network architectures are used. In order to minimize possible data losses
and service unavailability in case of network failure, all the architectures
must include reliable and fast protection and restoration mechanisms.
One of the concepts used are ring-based networks. Such networks are

built using self-healing rings (SHR). SHRs are very useful and functional
network structures that provide automatic protection and restoration
mechanisms. As in all other network design processes, the objective is to
find cost-optimal or near-optimal network solution that satisfies all the
requirements. Protection requirements are fulfilled by usage of SHRs with
automatic protection mechanisms, so that main problem arising in ring-
network design is ring-dimensioning problem, sometimes also called as ring
loading problem (RLP). Ring-based network is optimized, if each SHR it is
build of, is optimized, plus if all SHR interconnections are selected and
dimensioned so that overall network has lowest costs. This article discusses
only single SHR optimization and dimensioning methods. SHR is said to be
optimized if its capacity is minimal possible to carry all the traffic. There
are many different algorithms developed for SHR optimization. Our article
gives an overview and discusses results obtained by these algorithms. All
described algorithms are implemented in our software tool called
RingSolver, and are being used in some more complex network design tools
under development.

In section 1, ring model used for problem description and solving is
described, together with main formulation of ring loading problem. Section
2 describes different ring dimensioning approaches, distinguishes ring-
loading problems with and without demand splitting, and explains why
there is a need to develop fast and efficient algorithms for solving ring-
loading problems. Section 3 includes overview and short remarks about
different algorithms introduced by other authors, proposes mathematical
formulation of ring loading problem that can be used for solving problem
using linear/integer programming. In section 4, results obtained using
different algorithms are shown and discussed. Section 5 is used for
conclusion, including remarks about usage of implemented algorithms for
solving ring-loading problem in more complex applications.

1. Ring model

Our ring model can be defined as follows: let ring R consists of two sets, V=
{n1,n2... nN}, set of nodes and E={e12,e23... eN1}, set of edges, where N is

Different approaches for solving
ring-dimensioning problem

Mladen Kos, Matija Mikac and Domagoj Mikac

Faculty of Electrical Engineering and Computing,
University of Zagreb,

Unska 3, HR-10000 Zagreb, Croatia
e-mail:{kos,domagoj,matija}@tel.fer.hr

total number of nodes/edges in the ring. Each edge eij represents a link
between two neighbor nodes ni and nj where j = (i + 1) mod N. Set of
traffic demands D consists of traffic demands dij, 1≤ i < j ≤ N that are
defined between node ni and nj. Each demand is routed through a subset
of edges DE ⊂ E, with K<N edges. When defining demand dij i<j is
supposed. Each demand is characterized with amount of traffic (positive
integer value), and with its direction – if demand is routed from node ni
to node nj passing node sequence (ni, ni+1, ... nj) it is said to have a
"clockwise direction", while if demand from node ni to node nj through
node sequence (ni, ni-1... n1, nN,.. nj+1, nj) we say it has a "counter-
clockwise direction".
Simple ring configuration is shown in Figure 1.

n4 n3

n2

n1

n5

e51 e12

e23

e34

e45

Figure 1: Simple ring configuration with 5 nodes

Depending on possible direction of demands routing, rings are classified
into two types – unidirectional and bidirectional rings. In unidirectional
rings (USHR) all demands are routed in the same direction (either
clockwise or counter-clockwise), while in bidirectional rings (BSHR)
demands can be routed in both directions – clockwise and counter-
clockwise. Additionally BSHR can be classified into two subclasses –
rings without demand splitting and rings with allowed demand splitting.

When demand splitting is allowed, one part of demand can be routed in
clockwise, and another in counter-clockwise direction.

Link load is a sum of all demands passing through that link. The ring
capacity is defined as maximum of all link loads. The ring cost is usually
increasingly proportional with its capacity. Therefore, in order to minimize
the ring cost we should try to find minimal ring capacity. In other words,
optimal routing for given demands should be found, so that maximum link
load will be minimized. Problem described previously is usually called Ring
Loading Problem (RLP).

It is obvious that when working with USHR, there is only one possible ring
capacity (all the demands are routed clockwise or counter-clockwise,
resulting the same maximum load through edges). Therefore, it is
reasonable to define RLP only for BSHR rings. However, USHR rings are
also often used in ring-based network design, especially when building
access networks – such protective ring structure replaces standard stars and
trees, and it is sometimes combined with dual homing structures.

2. Ring dimensioning

As described earlier, each demand can be routed through the ring in only
one direction if splitting is not allowed, or in two directions if demand
splitting is allowed. Directions are defined as clockwise and counter-
clockwise. Depending on whether splitting of demands is allowed or not,
there are two classes of RLP – RLP with demand splitting (RLPW), and
RLP without demand splitting (RLPWO). Let us formulate ring
dimensioning problem using previously introduced ring model, which
consists of three sets: set of nodes V = {n1, n2, n3,... nN}, set of edges E =
{e12, e23, e34, ... eN-1N, eN1} and set of demands D = { dij : i<j, dij > 0}. Each
edge from set E which connects nodes ni and nj where j = i + 1 mod N, has
weighted value C(eij), that represent amount of traffic load passing through
this edge. Each demand from set D, represents the amount of traffic that has
to be carried from node ni, to node nj has a routing variable x(dij), 0 ≤ x(dij) ≤
1. Interpretation of routing variable x(dij) is as follows – if x(dij) = 1 then
demand is routed clockwise, if x(dij) = 0 then demands is routed counter-

clockwise. When demand splitting is allowed, variable x(dij) can have
any value between 0 and 1, which representing percentage of demand dij
carried in clockwise direction. In other words, amount dij*x(dij) is routed
clockwise, and amount dij*(1 - x(dij)) is routed counter-clockwise.

In order to mathematically define link load, two subsets of set D for each
edge are defined. Set A(eab) is defined as :

{ }() : () ()ab ijA e d D i a j b= ∀ ∈ ≤ ∪ ≥

and set B(eab) is defined as:

)(\)(abab eADeB =

Let us explain these set definitions. Set A(eab) includes all the clockwise
routed demands from D that are passing edge eab. Set B(eab) includes all
the other demands.

Required capacity of each edge is calculated as the sum of all traffic
routed through that edge:

() () (1 ())
ij ij

ab ij ij ij ij
d A d B

C e d x d d x d
∈ ∈

= ⋅ + ⋅ −∑ ∑

Ring capacity (RC) is defined as the largest edge capacity. All the edges
in the ring are assigned the same capacity, which is equal to RC, or any
higher value available on the market (standard SONET/SDH
transmission capacities).

max ()
abe E abRC C e∈=

In Figure 2 process of simple ring dimensioning is shown. It can be seen,
how demands given in Table 1 are routed (without splitting), and how
edge and ring capacity is calculated. Optimal routing solution for this

example is as follows: demands d14 and d36 are routed counter-clockwise,
while all other demands are routed clockwise. Capacity of each edge is
calculated by summing up all the demands routed through this edge. In this
example edge e45 has the largest capacity and therefore ring capacity
required for this kind of routing is C(e45) = 29.

Figure 2: Simple ring dimensioning example

Table 1: Traffic demands for simple ring dimensioning example

Src. Dest. Demand
n1 n2 5
n1 n3 7
n1 n4 11
n2 n5 4
n3 n5 10
n3 n6 5
n4 n5 4

n4 n3

n2

n6

n5

e56 e12

e23

e34

e45

5

7

4

10

11

29 15

17n1

e61

4

It is clear, that, different solutions are possible for ring dimensioning,
depending on routing of demands. But, since the ring cost is increasingly
proportional to ring capacity, it is reasonable to find smallest possible
ring capacity that could satisfy all the demands.

By finding smaller ring capacity, the cost of the ring is decreased. This is
a reason why RLP is defined as a problem of finding minimum ring
capacity.

In order to find an optimal solution for ring dimensioning we should
alternate all the possible routings for all demands, and pick the solution
giving the best overall ring capacity. That is not a problem for smaller
ring networks, but when we have to dimension larger rings such
processes could take a lot of time, which is often not acceptable.
Therefore, different fast algorithms for solving RLP are developed. It is
not always the case that they are providing an optimal solution, but all
the solutions are near-optimal solutions, so that those algorithms can be
very efficient when used in practice.
For obtaining optimal solutions linear programming approaches can be
used – defined problem can be easily formulated as linear program, and
solved using available software tools for mathematical programming,
such as AMPL/CPLEX [6].

2.1. RLPWO

When demand splitting is not allowed, all the demands can be routed
either clockwise or counter-clockwise. In our problem formulation
routing direction variable x(dij) can be equal to 1 if demand dij is routed
clockwise, or 0 if demand dij is routed counter-clockwise. Each demand
can be routed in only one of two possible directions, which makes the
total number of possible routing solutions 2|D|, where |D| is number of

demands. If we suppose maximum number of demands to be
2
n 

 
 

, which

is the case where all possible demands dij (i<j) are given, we have total

of 22
n 

 
  routing solutions. Our goal is to find the best routing solution out of

all possible routing solutions.

Simplest, but slowest, and in practice not applicable algorithm, is the one
that explores all the possible solutions, and chooses the one with the best
result. Such exact algorithm can be used for smaller rings in order to value
results obtained using other algorithms. However, it is questionable if usage
of such algorithm is reasonable at all.
Another approach for finding optimal RLPWO solution would be the one
using linear programming. It was shown that such process is NP-complete
in case where only one demand is defined between pair of nodes [1]. After
presenting RLP as a linear program, optimal results can be calculated using
available commercial tools like AMPL/CPLEX. RLPWO is a special case
of RLP where variables (x(dij)) can only take the values 0 or 1. Both
described solutions are not very effective for practical usage. First solution
is very slow but easy for implement, while second solution is faster but
unpractical and more complex for implementation.

It is obvious that there is a need for algorithms that should provide all the
expected features – they should be relatively fast, easy to implement and
finally, solutions obtained using them should be as near as possible to
optimal solutions. Basically, there are two common approaches for all the
algorithms – greedy approach and weighted approach. As its name says,
greedy algorithms are quite myopic, and they consider only temporary
optimal solutions. They do not consider a possibility that temporary non-
optimal solution could give better final solution than temporary optimal
solution does. Therefore, there are no guaranties that solutions obtained
using greedy algorithm will be near optimal – there are cases where
solutions are exact the same as optimal solution, but also there are cases
where solutions are not even near the optimal solution.
Unlike greedy algorithms, weighted algorithms define a certain weight for
each edge depending on different criterion. Weighted algorithms generally
give better solutions than greedy algorithms. Example of weighted
algorithm is DualAscent heuristic described in [1].

In the following example of greedy algorithm, we will calculate an
optimal routing for simple ring example introduced in previous section.
We are given seven demands (Table 2) defined on ring built of six
nodes. Simple greedy algorithm will be used.

Table 2: Sorted demands of gready algorithm example

Src. Dest. Demand
n1 n4 11
n3 n5 10
n1 n3 7
n3 n6 5
n1 n2 5
n2 n5 4
n4 n5 4

71 2 3 4 5 6 1

11

10

7

5

4

28 23 21 10 0 5

4

18 18 21 10 0 0

5 5

27 25 14 0 528

s1

s2

e12 e23 e34 e45 e56 e61

Figure 3: Example of greedy RLP approach

First, sort all demands in decreasing order. The largest demand (first in
sorted list) will be routed in direction where it passes the minimal
number of edges. After that, other demands are routed in such manner
that increment in ring capacity is smaller than if the demand has been
routed in another direction. If the ring capacity increment is the same
regardless routing direction, then some additional conditions are
considered. In this case, let us route a demand so that smaller number of
edges will be used. As depicted in Figure 3, there are two decisions to be
made – s1 and s2. s1 occurs when demand d36 is being routed. If demand

would be routed clockwise maximum edge capacity would be at e34, equal
to 26. But, if we route it counter-clockwise maximum edge capacity is 23, at
edges e12 and e23. Next demand, d12 is routed clockwise – if it would be
routed counter-clockwise, maximum edge capacity would be the same, but
here decision was made based on smaller number of edges influenced if
demand is routed clockwise. Another decision s2 is to be made when d25 is
routed. When routed clockwise it does not impact edge e12, so that ring
capacity after finishing dimensioning is equal to 28.

The question that arises here is, how would different sorting of demands
impact final solution? What if demand d12 would be routed before d36, since
both demands have the same traffic amount? In that case, ring capacity
would decrease and at the end of dimensioning its value would be 27. It is
obvious, that greedy algorithm is not reliable, because it depends on many
parameters. For this reason we have implemented many greedy ‘sub-
algorithms’ that take into account different additional considerations. In our
example, even optimal solution can be found (Figure 4) – if first demand
(d14) is routed counter-clockwise instead of clockwise, it is possible to route
other demands based on the same principles and to achieve optimal ring
capacity value 25. In this routing solution, demands d14, d36 and d45 are
routed counter-clockwise, and other demands are routed clockwise.

71 2 3 4 5 6 1

11

10

7

5

4

5 5

20 18 15 2021

e12 e23 e34 e45 e56 e61

4 4

25
Figure 4: Greedy RLP approach with different initial routing

One could notice, that greedy solutions are not very efficient and small
change in algorithm can produce totally different solution. For this reason,
many optimized algorithms were developed by different authors
[1][2][3][4][5], each of them giving excellent results in certain scenarios.

All algorithms were also implemented and compared in our software
tool, and obtained solutions are discussed later.

One approach in finding RLPWO routing solutions is based on solutions
obtained from algorithms used for RLPW. In practice (see results
section) algorithms that use RLPW solutions in order to find RLPWO
solution were found very useful and very effective. One of them is 2-
OPT developed by [3], that is based on EXACT RLPW algorithm.

2.2. RLPW

Ring loading problem with demand splitting can be formulated as a
relaxation of RLPWO. When RLPW is defined, linear program is the
same as for RLPWO, with exception of definition of variable x(dij).
Different than in RLPWO, variable x(dij) can take any value from 0 to 1
(including 0 and 1). Traffic portion dij*x(dij) will be routed clockwise,
and dij*(1 - x(dij)) will be routed counter-clockwise.

Intuitively, RLPW looks more complex than RLPWO, because there are
more possible solutions. For instance if we look back on greedy RLPWO
approach example, we can see that for each demand one-step forward
examination is made whether routing in one direction gives better results
(lower ring capacity) than routing in another direction. But, since we
know temporary edge capacities, we can determine how much additional
traffic can be routed through each edge without unnecessary increasing
ring capacity. After calculating that traffic amount we can easily
determine x(dij). Of course, additional constraints can be set, for instance
only certain splitting modes can be allowed (integer splitting) etc.

Fast and exact algorithms for finding optimal RLPW are much like
greedy algorithms. Simply, temporary ring capacity is explored and
demands are split so that new ring capacity has smallest increase.
Example of such algorithm is EXACT algorithm described in [3].

3. Problem solutions

Previous section gave an introduction and principle description of both RLP
problems arising. Now, let us make a short overview of different algorithms
developed by other authors, including simple descriptions. All described
algorithms are implemented and included in our software tool called
RingSolver (Figure 5). This tool imports data about ring structure (nodes,
edges, demands) and calculates ring capacity using different algorithms,
providing additional results analysis.

Figure 5: RingSolver tool - main screen

All the solutions got using this tool, together with solutions calculated based
on linear program definition of RLP, are discussed later in next section.

As already explained, greedy algorithms for RLPWO can provide majority
of different solutions, depending on mechanisms used in cases where no
direct decision can be made. Our tool includes several greedy algorithms.

Since all of them are quite fast, all the calculations are always performed
and best solution is picked to represent greedy solution. Greedy
algorithms described in [1] are also implemented.
For solving RLPWO two advanced algorithms are included -
DualAscent algorithm as a weighted approach algorithm [1], and 2-OPT
algorithm [3]. Algorithm 2-OPT is based on RLPW solution obtained
using EXACT algorithm. It is very effective and fast.

For solving RLPW two algorithms are included - EXACT algorithm, and
INDES algorithm [2]. While EXACT provides exact solution without
constraints, INDES is used to find integer splitting demand solution. As
it can be seen from results, solutions obtained using them are almost the
same.

In order to find a solutions where all edges in ring network have almost
the same utilization few Split algorithms are implemented. It can be seen
that solutions they provide are not even near optimal, but all edges are
almost equally utilized, meaning that traffic flow through all of them
approximately the same. Optimized solutions often provide solutions in
which some edges are under-loaded.

4. Results

In this section the results obtained by using all the previously described
algorithms are presented. Results are compared with results calculated
using AMPL/CPLEX tool for solving mathematical problems. Also, on
smaller rings optimal solution for RLPWO is calculated using slow
'algorithm' that explores all the possible solutions. All the algorithms are
implemented and executed in our software tool RingSolver (Figure 6).
Traffic demands are supposed to have uniform distribution, within
predefined minimal and maximal values. The obtained results are shown
in Table 3 and Table 4. Table 3 has three sections. First section shows
results for small rings, those with number of demands equal to the
number of nodes. In second section of the table the results for middle-
size rings are shown. Middle-size ring are those with number of
demands approximately two times smaller than maximal number of

demands, which is
2
n 

 
 

, where n is number of nodes in the ring. In third

section results for large rings with maximal possible number of demands,
are shown. For each ring, all the calculations were made 10 times. Demands
were chosen randomly with uniform distribution in interval between 1 and
30. Average value of these 10 calculations is shown in the table.

Figure 6: Results window of RingSolver software tool

First column in the table represents the number of nodes and edges in the
ring. Remaining columns contain results calculated using described
algorithms. Column 3 shows the results obtained by using AMPL/CPLEX
tool. These results are optimal for RLPWO, and are used for validation of
other results. RLPW results are also shown. Since we have different
versions of Greedy and DualAscent algorithm implemented in our tool,
where each version gives slightly different results in different scenarios, in
the table are shown only the best results from each class of algorithms.

Let us discuss results shown in Table 3. It is obvious that both RLPW and
RLPWO rings have smaller capacity than USHR rings. It does not

necessarily means that they are cheaper than USHRs, because USHR
equipment is usually cheaper than equivalent BSHR equipment.

Table 3: RLP results obtained with RingSolver and AMPL/CPLEX

** Result cannot be obtained with a student version of AMPL, which is limited
to 300 variables

RLPWO algorithms provide different solutions, and we cannot point out
any of them saying it is always providing the best solutions. But, based
on the results shown here, some rules can be determined. Greedy

algorithms provide best solutions only with the small rings with small
number of demands. In other cases 2OPT algorithm provides the best
solution - solutions vary from 1% to 6%. It is generally because it is based
on the EXACT algorithm and then degrades the result by eliminating
possible demand splitting. DualAscent approach can be used in some cases,
but only because it his complexity smaller than 2OPT algorithm.
DualAscent can improve solutions calculated using greedy algorithms,
especially in the rings with more demands.
RLPW algorithms are optimal - EXACT gives exactly optimal solution,
while INDES uses only integer splitting, therefore providing slightly
degraded solution from EXACT.

In Table 4, results for demands distributed uniformly between 1 and 100 are
presented. All the regularities appearing in Table 3 are even more obvious
in Table 4. DualAscent algorithm on large networks gives better solutions
than simple Greedy algorithm.

Table 4 RLP results for bigger demands values

 RLPWO
N,K Greedy DAscent 2OPT

20,20 404,7 439,9 401,8
10,22 397,6 426,2 394,6
15,52 885,6 914,9 834,3
20,95 1548,8 1560,9 1443,8
10,45 753,0 734,2 706,6

15,105 1574,5 1545,1 1545,1
20,190 2877,2 2708,1 2708,1

5. Conclusion

In this article an overview of different methods used for solving single ring
dimensioning problem is presented. All the algorithms discussed here are
implemented in our software tool called, RingSolver, and are being used in

 RLPWO RLPW
N,K

USHR CPLEX Greedy DAscent 2OPT EXACT INDES

Small rings
5,5 57,1 41,8 41,8 45,2 42,9 36,4 36,6

10,10 107,8 66,5 67,4 78,4 70,6 61,5 61,9
15,15 143,6 90,2 92,6 103,9 93,3 88,3 88,6
20,20 181,6 114,0 118,4 139,0 119,1 111,7 112,1
40,40 329,0 192,6 207,0 240,7 198,3 189,6 189,7

 Middle-size rings

5,8 79,3 50,4 50,8 52,4 51,1 45,4 45,7
10,22 209,6 120,2 128,8 139,0 122,3 116,4 116,8
15,52 468,8 255,6 273,7 283,7 263,8 255,8 256,1
20,95 819,5 442,2 487,3 481,0 449,2 439,9 440,5

40,390 3239,6 ** 1821,7 1793,8 1717,9 1706,3 1706,6

 Large rings
5,10 96,2 59,3 59,8 61,7 60,7 53,6 54,0

10,45 418,6 218,2 238,6 233,5 222,6 215,1 215,4
15,105 917,4 486,2 504,5 504,5 494,3 484,1 484,6
20,190 1575,6 821,6 878,3 858,9 830,1 820,5 820,8
40,780 6201,4 ** 3303,7 3250,5 3189,4 3177,0 3177,5

another tool for designing more complex ring-networks, which is still
under development. Since, majority of algorithms are relatively simple
to implement, and they provide very good solutions in short execution
time it is reasonable to use them when planning and dimension larger
ring-based networks. Such networks can contain huge number of rings
and therefore it is very important to have algorithms that can handle
problems fast and effective.
Additional research and improvement of algorithms is required, since it
is obvious from the results that there is no universal algorithm, which is
superior in all scenarios. Even though results are quite close to optimal
(within 6%), still no RLPWO algorithm can reach the results obtained by
AMPL/CPLEX. For the RLPW case, EXCAT algorithm gives optimal
results in very short execution time.

Literature

[1] S.Cosares, I. Saniee, “An optimization problem related to balancing

loads on SONET rings”, Telecommunication Systems, 3 (1994), pp.
165-181.

[2] C.Y.Lee, S.G.Chang, “Balancing loads on SONET rings with
integer demand splitting”, Computers Ops. Res., Vol. 24, No. 3. pp.
221-229, 1997.

[3] Y-S.Myung, H-G.Kim, D-W.Tcha, “Optimal load balancing on
SONET bidirectional rings”, Operations Research, Vol. 45, No.1,
January-February 1997.

[4] Wu, T.H, “Fiber Network Service Survivability”, Artech House,
Massachusetts, 1992.

[5] A. Schrijver, P. Seymour, P. Winkler, “The Ring Loading Problem”,
SIAM J. Descrete Math., Vol. 11, No. 1, pp. 1-14, February 1998.

[6] AMPL: A Modeling Language for Mathematical Programming,
www.ampl.com

http://www.ampl.com/

	Introduction
	Ring model
	Ring dimensioning
	RLPWO
	RLPW

	Problem solutions
	Results
	Conclusion
	
	
	Literature

