
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract: In this paper, an overview of different methods used for 
solving a single ring-dimensioning problem is presented. All the 
algorithms discussed are implemented in our software tool called, 
RingSolver, and are being used in another tool for designing more 
complex ring-networks, which is still under development. Since, 
majority of algorithms are relatively simple to implement, and they 
provide very good solutions in short execution time it is reasonable to 
use them when planning and dimensioning larger ring-based networks. 
Such networks can contain huge number of rings and therefore it is very 
important to have algorithms that can handle problems fast and effective. 
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Introduction 
 
In design process of today’s high-capacity backbone networks, different 
network architectures are used. In order to minimize possible data losses 
and service unavailability in case of network failure, all the architectures 
must include reliable and fast protection and restoration mechanisms. 
One of the concepts used are ring-based networks. Such networks are 

built using self-healing rings (SHR). SHRs are very useful and functional 
network structures that provide automatic protection and restoration 
mechanisms. As in all other network design processes, the objective is to 
find cost-optimal or near-optimal network solution that satisfies all the 
requirements. Protection requirements are fulfilled by usage of SHRs with 
automatic protection mechanisms, so that main problem arising in ring-
network design is ring-dimensioning problem, sometimes also called as ring 
loading problem (RLP). Ring-based network is optimized, if each SHR it is 
build of, is optimized, plus if all SHR interconnections are selected and 
dimensioned so that overall network has lowest costs. This article discusses 
only single SHR optimization and dimensioning methods. SHR is said to be 
optimized if its capacity is minimal possible to carry all the traffic. There 
are many different algorithms developed for SHR optimization. Our article 
gives an overview and discusses results obtained by these algorithms. All 
described algorithms are implemented in our software tool called 
RingSolver, and are being used in some more complex network design tools 
under development.  
 
In section 1, ring model used for problem description and solving is 
described, together with main formulation of ring loading problem. Section 
2 describes different ring dimensioning approaches, distinguishes ring-
loading problems with and without demand splitting, and explains why 
there is a need to develop fast and efficient algorithms for solving ring-
loading problems. Section 3 includes overview and short remarks about 
different algorithms introduced by other authors, proposes mathematical 
formulation of ring loading problem that can be used for solving problem 
using linear/integer programming. In section 4, results obtained using 
different algorithms are shown and discussed. Section 5 is used for 
conclusion, including remarks about usage of implemented algorithms for 
solving ring-loading problem in more complex applications. 
 
 

1. Ring model 
 
Our ring model can be defined as follows: let ring R consists of two sets, V= 
{n1,n2... nN}, set of nodes and E={e12,e23... eN1}, set of edges, where N is 
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total number of nodes/edges in the ring. Each edge eij represents a link 
between two neighbor nodes ni and nj where j = (i + 1) mod N. Set of 
traffic demands D consists of traffic demands dij, 1≤ i < j ≤ N that are 
defined between node ni and nj. Each demand is routed through a subset 
of edges DE ⊂ E, with K<N edges. When defining demand dij i<j is 
supposed. Each demand is characterized with amount of traffic (positive 
integer value), and with its direction – if demand is routed from node ni 
to node nj passing node sequence (ni, ni+1, ... nj) it is said to have a 
"clockwise direction", while if demand from node ni to node nj through 
node sequence (ni, ni-1... n1, nN,.. nj+1, nj) we say it has a "counter-
clockwise direction".  
Simple ring configuration is shown in Figure 1. 
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Figure 1: Simple ring configuration with 5 nodes 

 
Depending on possible direction of demands routing, rings are classified 
into two types – unidirectional and bidirectional rings. In unidirectional 
rings (USHR) all demands are routed in the same direction (either 
clockwise or counter-clockwise), while in bidirectional rings (BSHR) 
demands can be routed in both directions – clockwise and counter-
clockwise. Additionally BSHR can be classified into two subclasses – 
rings without demand splitting and rings with allowed demand splitting. 

When demand splitting is allowed, one part of demand can be routed in 
clockwise, and another in counter-clockwise direction. 
 
Link load is a sum of all demands passing through that link. The ring 
capacity is defined as maximum of all link loads. The ring cost is usually 
increasingly proportional with its capacity. Therefore, in order to minimize 
the ring cost we should try to find minimal ring capacity. In other words, 
optimal routing for given demands should be found, so that maximum link 
load will be minimized. Problem described previously is usually called Ring 
Loading Problem (RLP). 
 
It is obvious that when working with USHR, there is only one possible ring 
capacity (all the demands are routed clockwise or counter-clockwise, 
resulting the same maximum load through edges). Therefore, it is 
reasonable to define RLP only for BSHR rings. However, USHR rings are 
also often used in ring-based network design, especially when building 
access networks – such protective ring structure replaces standard stars and 
trees, and it is sometimes combined with dual homing structures. 
 

2. Ring dimensioning 
 
As described earlier, each demand can be routed through the ring in only 
one direction if splitting is not allowed, or in two directions if demand 
splitting is allowed. Directions are defined as clockwise and counter-
clockwise. Depending on whether splitting of demands is allowed or not, 
there are two classes of RLP – RLP with demand splitting (RLPW), and 
RLP without demand splitting (RLPWO). Let us formulate ring 
dimensioning problem using previously introduced ring model, which 
consists of three sets: set of nodes V = {n1, n2, n3,... nN}, set of edges E = 
{e12, e23, e34, ... eN-1N, eN1} and set of demands D = { dij : i<j, dij > 0}. Each 
edge from set E which connects nodes ni and nj where j = i + 1 mod N, has 
weighted value C(eij), that represent amount of traffic load passing through 
this edge. Each demand from set D, represents the amount of traffic that has 
to be carried from node ni, to node nj has a routing variable x(dij), 0 ≤ x(dij) ≤ 
1. Interpretation of routing variable x(dij) is as follows – if x(dij) = 1 then 
demand is routed clockwise, if x(dij) = 0 then demands is routed counter-



clockwise. When demand splitting is allowed, variable x(dij) can have 
any value between 0 and 1, which representing percentage of demand dij 
carried in clockwise direction. In other words, amount dij*x(dij) is routed 
clockwise, and amount dij*(1 - x(dij)) is routed counter-clockwise. 
 
In order to mathematically define link load, two subsets of set D for each 
edge are defined. Set A(eab) is defined as : 
 

{ }( ) : ( ) ( )ab ijA e d D i a j b= ∀ ∈ ≤ ∪ ≥  

 
and set B(eab) is defined as: 
 

)(\)( abab eADeB =  
 

Let us explain these set definitions. Set A(eab) includes all the clockwise 
routed demands from D that are passing edge eab. Set B(eab) includes all 
the other demands. 
  
Required capacity of each edge is calculated as the sum of all traffic 
routed through that edge:  
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Ring capacity (RC) is defined as the largest edge capacity.  All the edges 
in the ring are assigned the same capacity, which is equal to RC, or any 
higher value available on the market (standard SONET/SDH 
transmission capacities). 
 

max ( )
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In Figure 2 process of simple ring dimensioning is shown. It can be seen, 
how demands given in Table 1 are routed (without splitting), and how 
edge and ring capacity is calculated. Optimal routing solution for this 

example is as follows: demands d14 and d36 are routed counter-clockwise, 
while all other demands are routed clockwise. Capacity of each edge is 
calculated by summing up all the demands routed through this edge. In this 
example edge e45 has the largest capacity and therefore ring capacity 
required for this kind of routing is C(e45) = 29.  
 

Figure 2: Simple ring dimensioning example 

Table 1: Traffic demands for simple ring dimensioning example 

Src. Dest. Demand
n1 n2 5 
n1 n3 7 
n1 n4 11 
n2 n5 4 
n3 n5 10 
n3 n6 5 
n4 n5 4 
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It is clear, that, different solutions are possible for ring dimensioning, 
depending on routing of demands. But, since the ring cost is increasingly 
proportional to ring capacity, it is reasonable to find smallest possible 
ring capacity that could satisfy all the demands. 
 
By finding smaller ring capacity, the cost of the ring is decreased. This is 
a reason why RLP is defined as a problem of finding minimum ring 
capacity. 
 
In order to find an optimal solution for ring dimensioning we should 
alternate all the possible routings for all demands, and pick the solution 
giving the best overall ring capacity. That is not a problem for smaller 
ring networks, but when we have to dimension larger rings such 
processes could take a lot of time, which is often not acceptable. 
Therefore, different fast algorithms for solving RLP are developed. It is 
not always the case that they are providing an optimal solution, but all 
the solutions are near-optimal solutions, so that those algorithms can be 
very efficient when used in practice.  
For obtaining optimal solutions linear programming approaches can be 
used – defined problem can be easily formulated as linear program, and 
solved using available software tools for mathematical programming, 
such as AMPL/CPLEX [6]. 
 

2.1. RLPWO 
 
When demand splitting is not allowed, all the demands can be routed 
either clockwise or counter-clockwise. In our problem formulation 
routing direction variable x(dij) can be equal to 1 if demand dij is routed 
clockwise, or 0 if demand dij is routed counter-clockwise. Each demand 
can be routed in only one of two possible directions, which makes the 
total number of possible routing solutions 2|D|, where |D| is number of 

demands. If we suppose maximum number of demands to be 
2
n 

 
 

, which 

is the case where all possible demands dij (i<j) are given, we have total 

of 22
n 

 
  routing solutions. Our goal is to find the best routing solution out of 

all possible routing solutions.  
 
Simplest, but slowest, and in practice not applicable algorithm, is the one 
that explores all the possible solutions, and chooses the one with the best 
result. Such exact algorithm can be used for smaller rings in order to value 
results obtained using other algorithms. However, it is questionable if usage 
of such algorithm is reasonable at all. 
Another approach for finding optimal RLPWO solution would be the one 
using linear programming. It was shown that such process is NP-complete 
in case where only one demand is defined between pair of nodes [1]. After 
presenting RLP as a linear program, optimal results can be calculated using 
available commercial tools like AMPL/CPLEX. RLPWO is a special case 
of RLP where variables (x(dij)) can only take the values  0 or 1. Both 
described solutions are not very effective for practical usage. First solution 
is very slow but easy for implement, while second solution is faster but 
unpractical and more complex for implementation.  
 
It is obvious that there is a need for algorithms that should provide all the 
expected features – they should be relatively fast, easy to implement and 
finally, solutions obtained using them should be as near as possible to 
optimal solutions. Basically, there are two common approaches for all the 
algorithms – greedy approach and weighted approach. As its name says, 
greedy algorithms are quite myopic, and they consider only temporary 
optimal solutions. They do not consider a possibility that temporary non-
optimal solution could give better final solution than temporary optimal 
solution does. Therefore, there are no guaranties that solutions obtained 
using greedy algorithm will be near optimal – there are cases where 
solutions are exact the same as optimal solution, but also there are cases 
where solutions are not even near the optimal solution.  
Unlike greedy algorithms, weighted algorithms define a certain weight for 
each edge depending on different criterion. Weighted algorithms generally 
give better solutions than greedy algorithms. Example of weighted 
algorithm is DualAscent heuristic described in [1].  
 



In the following example of greedy algorithm, we will calculate an 
optimal routing for simple ring example introduced in previous section. 
We are given seven demands (Table 2) defined on ring built of six 
nodes. Simple greedy algorithm will be used. 
 

Table 2: Sorted demands of gready algorithm example 

Src. Dest. Demand
n1 n4 11 
n3 n5 10 
n1 n3 7 
n3 n6 5 
n1 n2 5 
n2 n5 4 
n4 n5 4 
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Figure 3: Example of greedy RLP approach 

 
First, sort all demands in decreasing order. The largest demand (first in 
sorted list) will be routed in direction where it passes the minimal 
number of edges. After that, other demands are routed in such manner 
that increment in ring capacity is smaller than if the demand has been 
routed in another direction. If the ring capacity increment is the same 
regardless routing direction, then some additional conditions are 
considered. In this case, let us route a demand so that smaller number of 
edges will be used. As depicted in Figure 3, there are two decisions to be 
made – s1 and s2. s1 occurs when demand d36 is being routed. If demand 

would be routed clockwise maximum edge capacity would be at e34, equal 
to 26. But, if we route it counter-clockwise maximum edge capacity is 23, at 
edges e12 and e23. Next demand, d12 is routed clockwise – if it would be 
routed counter-clockwise, maximum edge capacity would be the same, but 
here decision was made based on smaller number of edges influenced if 
demand is routed clockwise. Another decision s2 is to be made when d25 is 
routed. When routed clockwise it does not impact edge e12, so that ring 
capacity after finishing dimensioning is equal to 28. 
 
The question that arises here is, how would different sorting of demands 
impact final solution? What if demand d12 would be routed before d36, since 
both demands have the same traffic amount? In that case, ring capacity 
would decrease and at the end of dimensioning its value would be 27. It is 
obvious, that greedy algorithm is not reliable, because it depends on many 
parameters. For this reason we have implemented many greedy ‘sub-
algorithms’ that take into account different additional considerations. In our 
example, even optimal solution can be found (Figure 4) – if first demand 
(d14) is routed counter-clockwise instead of clockwise, it is possible to route 
other demands based on the same principles and to achieve optimal ring 
capacity value 25. In this routing solution, demands d14, d36 and d45 are 
routed counter-clockwise, and other demands are routed clockwise. 
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Figure 4: Greedy RLP approach with different initial routing 

 
One could notice, that greedy solutions are not very efficient and small 
change in algorithm can produce totally different solution. For this reason, 
many optimized algorithms were developed by different authors 
[1][2][3][4][5], each of them giving excellent results in certain scenarios. 



All algorithms were also implemented and compared in our software 
tool, and obtained solutions are discussed later.  
 
One approach in finding RLPWO routing solutions is based on solutions 
obtained from algorithms used for RLPW. In practice (see results 
section) algorithms that use RLPW solutions in order to find RLPWO 
solution were found very useful and very effective. One of them is 2-
OPT developed by [3], that is based on EXACT RLPW algorithm. 
 

2.2. RLPW 
 
Ring loading problem with demand splitting can be formulated as a 
relaxation of RLPWO. When RLPW is defined, linear program is the 
same as for RLPWO, with exception of definition of variable x(dij). 
Different than in RLPWO, variable x(dij) can take any value from 0 to 1 
(including 0 and 1). Traffic portion dij*x(dij) will be routed clockwise, 
and dij*(1 - x(dij)) will be routed counter-clockwise. 
 
Intuitively, RLPW looks more complex than RLPWO, because there are 
more possible solutions. For instance if we look back on greedy RLPWO 
approach example, we can see that for each demand one-step forward 
examination is made whether routing in one direction gives better results 
(lower ring capacity) than routing in another direction. But, since we 
know temporary edge capacities, we can determine how much additional 
traffic can be routed through each edge without unnecessary increasing 
ring capacity. After calculating that traffic amount we can easily 
determine x(dij). Of course, additional constraints can be set, for instance 
only certain splitting modes can be allowed (integer splitting) etc.   
 
Fast and exact algorithms for finding optimal RLPW are much like 
greedy algorithms. Simply, temporary ring capacity is explored and 
demands are split so that new ring capacity has smallest increase. 
Example of such algorithm is EXACT algorithm described in [3].  
 

3. Problem solutions 
 
Previous section gave an introduction and principle description of both RLP 
problems arising. Now, let us make a short overview of different algorithms 
developed by other authors, including simple descriptions. All described 
algorithms are implemented and included in our software tool called 
RingSolver (Figure 5). This tool imports data about ring structure (nodes, 
edges, demands) and calculates ring capacity using different algorithms, 
providing additional results analysis.  
 

 
Figure 5: RingSolver tool - main screen 

 
All the solutions got using this tool, together with solutions calculated based 
on linear program definition of RLP, are discussed later in next section. 
 
As already explained, greedy algorithms for RLPWO can provide majority 
of different solutions, depending on mechanisms used in cases where no 
direct decision can be made. Our tool includes several greedy algorithms. 



Since all of them are quite fast, all the calculations are always performed 
and best solution is picked to represent greedy solution. Greedy 
algorithms described in [1] are also implemented. 
For solving RLPWO two advanced algorithms are included - 
DualAscent algorithm as a weighted approach algorithm [1], and 2-OPT 
algorithm [3]. Algorithm 2-OPT is based on RLPW solution obtained 
using EXACT algorithm. It is very effective and fast. 
 
For solving RLPW two algorithms are included - EXACT algorithm, and 
INDES algorithm [2]. While EXACT provides exact solution without 
constraints, INDES is used to find integer splitting demand solution. As 
it can be seen from results, solutions obtained using them are almost the 
same. 
 
In order to find a solutions where all edges in ring network have almost 
the same utilization few Split algorithms are implemented. It can be seen 
that solutions they provide are not even near optimal, but all edges are 
almost equally utilized, meaning that traffic flow through all of them 
approximately the same. Optimized solutions often provide solutions in 
which some edges are under-loaded.  
 

4. Results 
 
In this section the results obtained by using all the previously described 
algorithms are presented. Results are compared with results calculated 
using AMPL/CPLEX tool for solving mathematical problems. Also, on 
smaller rings optimal solution for RLPWO is calculated using slow 
'algorithm' that explores all the possible solutions. All the algorithms are 
implemented and executed in our software tool RingSolver (Figure 6). 
Traffic demands are supposed to have uniform distribution, within 
predefined minimal and maximal values. The obtained results are shown 
in  Table 3 and Table 4. Table 3 has three sections. First section shows 
results for small rings, those with number of demands equal to the 
number of nodes. In second section of the table the results for middle-
size rings are shown. Middle-size ring are those with number of 
demands approximately two times smaller than maximal number of 

demands, which is 
2
n 

 
 

, where n is number of nodes in the ring. In third 

section results for large rings with maximal possible number of demands, 
are shown. For each ring, all the calculations were made 10 times. Demands 
were chosen randomly with uniform distribution in interval between 1 and 
30. Average value of these 10 calculations is shown in the table. 
  

 
Figure 6: Results window of RingSolver software tool 

 
First column in the table represents the number of nodes and edges in the 
ring. Remaining columns contain results calculated using described 
algorithms. Column 3 shows the results obtained by using AMPL/CPLEX 
tool. These results are optimal for RLPWO, and are used for validation of 
other results. RLPW results are also shown. Since we have different 
versions of Greedy and DualAscent algorithm implemented in our tool, 
where each version gives slightly different results in different scenarios, in 
the table are shown only the best results from each class of algorithms.  
 
Let us discuss results shown in Table 3. It is obvious that both RLPW and 
RLPWO rings have smaller capacity than USHR rings.  It does not 



necessarily means that they are cheaper than USHRs, because USHR 
equipment is usually cheaper than equivalent BSHR equipment. 
 

Table 3: RLP results obtained with RingSolver and AMPL/CPLEX 

** Result cannot be obtained with a student version of AMPL, which is limited 
to 300 variables 

 
RLPWO algorithms provide different solutions, and we cannot point out 
any of them saying it is always providing the best solutions. But, based 
on the results shown here, some rules can be determined. Greedy 

algorithms provide best solutions only with the small rings with small 
number of demands. In other cases 2OPT algorithm provides the best 
solution - solutions vary from 1% to 6%. It is generally because it is based 
on the EXACT algorithm and then degrades the result by eliminating 
possible demand splitting. DualAscent approach can be used in some cases, 
but only because it his complexity smaller than 2OPT algorithm. 
DualAscent can improve solutions calculated using greedy algorithms, 
especially in the rings with more demands. 
RLPW algorithms are optimal - EXACT gives exactly optimal solution, 
while INDES uses only integer splitting, therefore providing slightly 
degraded solution from EXACT.  
 
In Table 4, results for demands distributed uniformly between 1 and 100 are 
presented. All the regularities appearing in Table 3 are even more obvious 
in Table 4. DualAscent algorithm on large networks gives better solutions 
than simple Greedy algorithm.  
 

Table 4 RLP results for bigger demands values 

 RLPWO 
N,K Greedy DAscent 2OPT 

20,20 404,7 439,9 401,8 
10,22 397,6 426,2 394,6 
15,52 885,6 914,9 834,3 
20,95 1548,8 1560,9 1443,8 
10,45 753,0 734,2 706,6 

15,105 1574,5 1545,1 1545,1 
20,190 2877,2 2708,1 2708,1 

 

5. Conclusion 
 
In this article an overview of different methods used for solving single ring 
dimensioning problem is presented. All the algorithms discussed here are 
implemented in our software tool called, RingSolver, and are being used in 

  RLPWO RLPW 
N,K 

  
USHR CPLEX Greedy DAscent 2OPT EXACT INDES

Small rings 
5,5 57,1 41,8 41,8 45,2 42,9 36,4 36,6 

10,10 107,8 66,5 67,4 78,4 70,6 61,5 61,9 
15,15 143,6 90,2 92,6 103,9 93,3 88,3 88,6 
20,20 181,6 114,0 118,4 139,0 119,1 111,7 112,1 
40,40 329,0 192,6 207,0 240,7 198,3 189,6 189,7 

            
 Middle-size rings  

5,8 79,3 50,4 50,8 52,4 51,1 45,4 45,7 
10,22 209,6 120,2 128,8 139,0 122,3 116,4 116,8 
15,52 468,8 255,6 273,7 283,7 263,8 255,8 256,1 
20,95 819,5 442,2 487,3 481,0 449,2 439,9 440,5 

40,390 3239,6  ** 1821,7 1793,8 1717,9 1706,3 1706,6 
            

  Large rings 
5,10 96,2 59,3 59,8 61,7 60,7 53,6 54,0 

10,45 418,6 218,2 238,6 233,5 222,6 215,1 215,4 
15,105 917,4 486,2 504,5 504,5 494,3 484,1 484,6 
20,190 1575,6 821,6 878,3 858,9 830,1 820,5 820,8 
40,780 6201,4 **  3303,7 3250,5 3189,4 3177,0 3177,5 



another tool for designing more complex ring-networks, which is still 
under development. Since, majority of algorithms are relatively simple 
to implement, and they provide very good solutions in short execution 
time it is reasonable to use them when planning and dimension larger 
ring-based networks. Such networks can contain huge number of rings 
and therefore it is very important to have algorithms that can handle 
problems fast and effective. 
Additional research and improvement of algorithms is required, since it 
is obvious from the results that there is no universal algorithm, which is 
superior in all scenarios. Even though results are quite close to optimal 
(within 6%), still no RLPWO algorithm can reach the results obtained by 
AMPL/CPLEX. For the RLPW case, EXCAT algorithm gives optimal 
results in very short execution time. 
 
 
 
Literature 
 
[1] S.Cosares, I. Saniee, “An optimization problem related to balancing 

loads on SONET rings”, Telecommunication Systems, 3 (1994), pp. 
165-181. 

[2] C.Y.Lee, S.G.Chang, “Balancing loads on SONET rings with 
integer demand splitting”, Computers Ops. Res., Vol. 24, No. 3. pp. 
221-229, 1997.   

[3] Y-S.Myung, H-G.Kim, D-W.Tcha, “Optimal load balancing on 
SONET bidirectional rings”, Operations Research, Vol. 45, No.1, 
January-February 1997. 

[4] Wu, T.H, “Fiber Network Service Survivability”, Artech House, 
Massachusetts, 1992. 

[5] A. Schrijver, P. Seymour, P. Winkler, “The Ring Loading Problem”, 
SIAM J. Descrete Math., Vol. 11, No. 1, pp. 1-14, February 1998. 

[6] AMPL: A Modeling Language for Mathematical Programming, 
www.ampl.com 

 
 
 

http://www.ampl.com/

	Introduction
	Ring model
	Ring dimensioning
	RLPWO
	RLPW

	Problem solutions
	Results
	Conclusion
	
	
	Literature




