
HRVATSKA AKADEMIJA ZNANOSTI I UMJETNOSTI
RAZRED ZA TEHNIČKE ZNANOSTI

CROATIAN ACADEMY OF SCIENCES AND ARTS
DEPARTMENT OF TECHNCAL SCIENES

Glavni i odgovorni urednik / Editor-in-Chief
Akademik Stjepan Jecić

Urednički odbor / Editorial Board
Razred za tehničke znanosti

Trg Nikole Šubića Zrinskog 11, Zagreb
vesvel@hazu.hr

Elektronička inačica svih tekstova objavljenih u časopisu dostupna je na središnjem 
portalu hrvatskih znanstvenih i stručnih časopisa HRČAK
na e-adresi http: //hrcak.srce.hr/rtz. Urednik Aco Zrnić.

The electronic versions of all texts published in the journal are available on  
HRČAK, the central portal for Croatian scientific and expert journals.

Link http: //hrcak.srce.hr/rtz. Editor Aco Zrnić.



UDK 62 ISSN 1848-8935 (Online)
ISSN 1330-0822 (Tisak)

R A D
H R V A T S K E  A K A D E M I J E 
Z N A N O S T I  I  U M J E T N O S T I

521

TEHNIČKE ZNANOSTI

17

ZAGREB, 2015.



1

UDK / UDC 629.5 
Izvorni znanstveni članak / Orginal scientific paper 
Prihvaćeno / Accepted: 19. 2. 2015.

TIMOSHENKO BEAM THEORY 93 YEARS LATER 
– OVER BRIDGES TO NANOTUBES AND  

ULTRA LARGE SHIPS

Ivo Senjanović, Nikola Vladimir, Marko Tomić, Neven Hadžić

Abstract

An outline of the Timoshenko beam theory, which deals with deflection 
and cross-section rotation as the basic variables, is presented. It is modified 
by decomposing total deflection into pure bending deflection and shear de-
flection, and total rotation into bending rotation and axial shear angle. The 
governing equations are condensed into two independent equations of mo-
tion, one for flexural and another for axial shear vibrations. The solution is 
given for natural vibrations. Nonlocal stress parameter is taken into account 
for vibration analysis of nanotube embedded in an elastic medium. The 4th 
order partial differential equation for flexural vibration is extended to the 6th 
order one. Nanotube response to moving nanoparticle gravity load is ana-
lyzed by employing modal superposition method, separation of variables, 
Galerkin method and harmonic balance method. In addition coupled flexural 
and torsional vibrations of a thin-walled girder are considered. The modified 
Timoshenko beam theory is applied for flexural vibrations while the complex 
torsional beam theory with warping cross-section is worked out in an analog-
ical way. For vibration analysis of nonprismatic ship hull an advanced beam 
finite element is created. Application of the developed theory is illustrated in 
the case of nanotube and ultra large container ship vibrations.

Keywords: Timoshenko beam theory; nanotube; moving load; thin-
walled girder; flexural vibrations; torsional vibrations; container ship

Preface 
Timoshenko’s way from St. Petersburg to Stanford – via Zagreb 

written by Stjepan Jecić

In engineering mechanical, especially supporting structures, the essential ele-
ments are the so-called girders. They are of different designs, and their basic geometrical  
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shapes are bars (beams), plates, walls, and shells, and variants thereof. In the first semes-
ters of engineering studies, such as civil engineering, mechanical engineering and naval 
architecture, the strength of such elements is studied according to approximate theories 
adapted to the most common cases of actual structural designs. Thus, for instance, the 
calculation of beam elements is done according to the Euler-Bernoulli hypothesis which 
is valid for beams whose span l between the supports exceeds five heights h of the 
cross-section. Special cases are the beams on numerous mutually close supports with 
elastic characteristics and extreme cases of beams that rely on elastic bases. There are 
a lot of such cases known in engineering practice, such as railway tracks all the way to 
vessels – ships.

More accurate calculations of such special problems were the subject of research 
of scientists both of theoretical and applied mechanics at the end of the 19th century 
and further on intensively in all the years of the past twentieth century (e.g. E. Win-
kler, H. Zimmermann, W. Prager and others). Among these scientists special focus 
should be on a scientist theoretician, and above all pioneer of applied (engineering, 
technical) mechanics, Stephen Prokopovych Timoshenko. Born Ukrainian (in Shpo-
tovka on 22 December 1878), he studied in St. Petersburg where he graduated in 1901 
and acquired the university degree of an engineer of ways of communication. By 
starting to work at the Polytechnic Institute in St. Petersburg he acquired additional 
knowledge in theoretical mechanics under the supervision of very distinguished pro-
fessor I.V. Mešćerski, and additional knowledge in mechanics of deformable bodies 
he acquired from the books and works of A. Föppel, whom he greatly admired. As a 
professor of mechanics he worked in Kiev (1906 – 1911) at the Faculty of Civil Engi-
neering where he was also the Dean. From 1913, as professor of mechanics at the Pol-
ytechnics in St. Petersburg he held lectures and published a textbook on the Theory 
of Elasticity (1914). Scientifically he was dealing with problems of structural elements 
bending. He extended the Prandtl theory of boundary layer analogy to problems of 
torsion, and for the needs of shipbuilding of the Baltic fleet he developed procedures 
of calculating stability of stiffened panels. It is interesting to mention that at that time 
Timoshenko defined and determined the so-called shear centre for beams in which 
the resulting load does not pass through the centre of gravity of the girder cross-sec-
tion. At the beginning of the First World War he published his original idea, observing 
the railway tracks as girders on an elastic bedding. He published a paper dealing with 
this topic in the Works of the St. Petersburg Ways of Communication Institute.

In the whirlwind of war and political events the life and work in St. Petersburg 
were becoming increasingly difficult. Timoshenko took refuge with his family in a 
relatively peaceful Kiev. However, war and revolutionary developments forced Ste-
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phen Timoshenko to move with quite a large group of refugees towards Sevastopol 
where, together with his former student J.M. Hlitčijev, he decided to move to Serbia. 
Passing across Turkey, after several weeks of toilsome travelling they arrived in Bel-
grade. The city was full of refugees and it was impossible to find any accommodation. 
After a short time, the Belgrade professor of mechanics Arnovljević found him accom-
modation at his sister’s place in Zemun. Realizing that in 1919 the Technical Higher 
School was to be founded in Zagreb, he sent his job application and was admitted as 
the professor of Science of Strength of Materials starting in April 1920. He stayed in 
Zagreb until the end of the academic year 1922 where he established a Department for 
technical mechanics. However, his junior colleague Hlitčijev, a shipbuilding engineer, 
remained all his life in Belgrade as a distinguished university professor and member 
of the Serbian Academy of Sciences.

Although Stephen Timoshenko describes Zagreb as a city of pro-European ap-
pearance and culture, his life in this city was not comfortable. Zagreb could not offer 
any appropriate accommodation, so by the approval of the Rector he was placed with 
his family in the premises of the future laboratory for material testing. On improvised 
furniture the whole family lived for two years modestly and in a cramped space, 
which resulted in Timoshenko’s decision in 1922 to move to the United States. Yet, 
even in such circumstances he was active scientifically, and retreated from undesira-
ble visitors to the university library into peace and quiet.

Still while he was staying in Zemun, he used the time to develop arithmetic 
procedures of solving various problems important in shipbuilding. The continuation 
of intensive work in Zagreb brought to two major publications in the field of transver-
sal vibrations of beams abandoning the Euler-Bernoulli hypothesis. It is, namely, in 
bending of short beams that the cross-sections deflect more from their original posi-
tion and do not stay perpendicular to the neutral axis of the girder, and therefore the 
application of a simple theory of bending will lead to the wrong result greater than 
1%. With the paper On the correction for shear of the differential equation for transverse 
vibration of prismatic bars and the paper On the transverse vibrations of bars of uniform 
cross section Timoshenko solved the problem in a way applicable to the engineering 
practice, although solving finite equations satisfying the given boundary conditions 
was a demanding job. Both papers were published in 1921 and 1922 in the Journal 
Philosophical Magazine, and in this Timoshenko received great help from the English 
mathematician E.H. Love, one of the founders of mathematical theory of elasticity. 
Today’s powerful computers provide almost unlimited possibilities for the applica-
tion of direct methods of searching for solutions numerically (e.g. finite difference 
method). However, new numerical methods, developed from the middle of the past 
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century provide a better and more convenient tool. Among them, the method of finite 
elements is definitely unmatched. Today in literature the usual term for such prob-
lems related to the beams is Timoshenko beam theory.

In Zagreb Stephen Timoshenko has been remembered as an excellent scientist, 
and foremost as an excellent lecturer, delivering lectures initially in Russian, and later, 
with the help of an assistant in the Croatian language. He left Zagreb in the summer 
of 1922 moving with his family first to Philadelphia and then to Pittsburgh. In 1927 
he became Professor at the University of Michigan. From 1936 until his retirement he 
was Professor of mechanics at the Stanford University. On several occasions he visit-
ed Europe. On two occasions, in 1958 and 1967, Timoshenko visited Kiev, which was 
described in more detail by the Kiev academician G.S. Pisarenko who was his host 
and wrote the afterword to the second edition of Timoshenko’s book Vospominanija. 
In 1956 Timoshenko received a honorary doctorate of science of the University of 
Zagreb. On that occasion he visited the Faculty of Engineering, writing about it with 
words of praise in his Memoirs describing the huge progress and development from 
the time of his work in Zagreb. In Switzerland in 1964 he had the bad luck of breaking 
his leg and that same autumn his elder daughter Ana escorted him in a wheelchair 
to the opening of the International Congress of Mechanics in Munich. Timoshenko 
was greeted with a round of applause receiving thus tribute from more than 1,000 
attendees as one of the greatest mechanical engineers of that time. Unable to return to 
the USA he remained until the end of his life (29 May 1972) with his daughter Ana in 
Wuppertal. His urn was laid next to his wife in Palo Alto in California.

1. INTRODUCTION

Beam is used as a structural element in many engineering structures like frame 
and grillage ones, [1,2,3]. Also, the whole complex structures like bridges, ship hulls, 
floating airports, etc. can be modeled as a beam. Hence, instead of 3D FEM model, 
beam model is used with cross-section properties determined as equivalent quantities 
of 2D sectional structure. In case of structure with large aspect ratio of height and 
length the Timoshenko beam theory is used, instead of the Euler-Bernoulli theory, 
since it takes both shear and rotary inertia into account. Their influence is especially 
pronounced in higher natural modes.

The Timoshenko beam theory was published 93 years ago, and during that long 
time it has been successfully used for static and dynamic analysis of any type of beam-
like structures, [4,5]. That theory deals with two differential equations of motion with 
deflection and cross-section rotation as the basic variables. The system is reduced into 
a single the 4th order partial differential equation by Timoshenko [6], where only an 
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approximate solution is given as commented in [7,8]. Almost in all papers the first 
approach with two differential equations is used in order to ensure control of exact 
and complete beam behavior, [8,9].

The Timoshenko beam theory is applied also for more complex problems as for 
instance beam vibrations on elastic foundation, [10], beam vibrations and buckling on 
elastic foundation, [11], vibrations of double-beam system with transverse and axial 
load, [12], vibration and stability of multiple beam systems, [13], beam response due 
to moving gravity and inertia load related to railway and highway bridges, [14-17], 
etc. Recent decades the Timoshenko beam theory is used in nanotechnology for vibra-
tion analysis of nanotubes exposed to moving nanoparticle load, [18-21].

Timoshenko’s idea of shear and rotary inertia influence on deflection is not only 
limited to beams. These effects are also incorporated into the Mindlin thick plate the-
ory as well as into its modification, as 2D problem, [22,23]. Timoshenko beam static 
deflection functions are often used as coordinate functions for thick plate vibration 
analysis by the Rayleigh-Ritz method, [24]. Furthermore, differential equation of 
beam torsion with shear influence is based on analogy with that for beam bending, 
[25]. Hence, in case of coupled flexural and torsional vibrations of a girder with open 
cross-section the same mathematical model is used for analysis of both responses.

The Timoshenko beam theory plays an important role in development of sophis-
ticated beam finite element. Various finite elements have been worked out in the last 
decades. They are distinguished into the choice of interpolation functions for mathe-
matical description of beam deflection and cross-section rotation. Application of the 
same order polynomials for both displacements leads to the so-called shear locking 
problem, since bending strain energy for a slender beam vanishes before shear strain 
energy. If static solution of Timoshenko beam is used for deflection and rotation func-
tions the problem is overcome, [26].

In spite of the fact that enormous number of papers has been published by em-
ploying Timoshenko beam theory from 1922, it seems that all phenomena hidden in that 
theory are not yet investigated. For instance problem of beam response due to moving 
gravity and inertia force related to bridges is analyzed in literature in different ways. Pres-
ently, a systematic investigation of that problem is undertaken in [27] in order to establish 
the simplest mathematical formulation. Hence, original and modified Timoshenko beam 
theory is used in combination with Galerkin method and energy balance. The problem is 
solved completely in analytical way employing the perturbation method.

Motivated by the above described state-of-the art in this article modified Timos-
henko beam theory, with bending deflection as the single based variable, and its 
advantages are presented, [28]. It is applied for nanotube vibrations due to moving 
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nanoparticle load, [29], by employing results from [26]. Also, an advanced beam finite 
element for coupled flexural and torsional vibration analysis of thin-walled girder is 
worked out. Its application is illustrated in case of an ultra large container ship, [30].

2. OUTLINE OF THE TIMOSHENKO BEAM THEORY

Timoshenko beam theory deals with beam deflection and angle of rotation of 
cross-section,  and , respectively, [4,5]. The sectional forces, i.e. bending moment 
and shear force read

	 ,	 (1)

where D=EI is flexural rigidity and  is shear rigidity, A is cross-section area 
and I is its moment of inertia,  is shear coefficient, and E and  is 
Young's modulus and shear modulus, respectively. Value of shear coefficient depends 
on beam cross-section profile, [31].

Beam is loaded with transverse inertia load per unit length, and distributed 
bending moment

	 ,	 (2)

where  is specific mass and  is mass moment of inertia, both per unit 
length.

	 Equilibrium of moments and forces

	 	 (3)

leads to two coupled differential equations

	 	 (4)

	 .	 (5)

From (5) yields

	 	 (6)
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and by substituting (6) into (4) derived per x, one arrives at the single beam differen-
tial equation of motion

	 .	 (7)

Once (7) is solved angle of rotation is obtained from (6) as

	 ,	 (8)

where  is rigid body motion.

3. MODIFIED TIMOSHENKO BEAM THEORY

3.1	 Differential equations of motion

In order to make the beam theory more physically transparent, beam deflection 
w and angle of rotation  are split into their constitutive parts, [28], Fig. 1, i.e.

	 	 (9)
where  and  is beam deflection due to pure bending and transverse shear, 
respectively, and  is angle of cross-section rotation due to bending, while  is 
cross-section slope due to axial shear. Newly introduced phenomenology as well 
as additional explanations are thoroughly presented in [28]. Equilibrium equations 
(4) and (5) can be presented in the form with the separated variables  and , 
and 

	 	 (10)

	 .	 (11)

Since only two equations are available for three variables one can assume that flexural 
shear, , and slope due to axial shear, , are not coupled. In that case, by setting 
both left and right hand side of (10) zero, yields from the former

	 .	 (12)
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Fig. 1. Thick beam displacements; a – total deflection and rotation , b – pure bending deflection and 
rotation , c – transverse shear deflection , d – axial shear angle 

Sl. 1. Pomaci debele grede: a – ukupni progib i kut zakreta , b – progib čistog savijanja i kut zakreta 
, c – progib poprečnog smicanja , d – kut uzdužnog smicanja 

By substituting (12) into (11) differential equation for flexural vibrations is obtained, 
which is expressed with pure bending deflection

	 (13)

Disturbing function on the right hand side in (13) can be ignored due to assumed un-
coupling of flexural and axial shear vibrations. Once  is determined, the total beam 
deflection, according to (9), reads

	 .	 (14)

The right hand side of (10) represents differential equation of axial shear vibra-
tions

	 	 (15)

as given in [28].

3.2	 General solution of flexural vibrations
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Natural vibrations are harmonic, i.e.  and , so that 
equations of motion (13) and (15) are related to the vibration amplitudes

	 	 (16)

	 .	 (17)

Amplitude of total deflection, according to (14), reads

	 .	 (18)

Eq. (16) is known in literature as a reliable alternative of Timoshenko differential 
equations, [32,33].

	 Solution of (16) can be assumed in the form  that leads to 
biquadratic equation

	 ,	 (19)
where 

	 .	 (20)

Roots of (19) read
	 ,	 (21)

where  and

	 	 (22)

Hence, solution of Eq. (16) is obtained in the form 

	 .	 (23)
By employing expressions for displacements and forces one arrives at
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	 (24)

3.3	 General solution of axial shear vibrations

Differential equations (17) for natural axial shear vibrations of beam reads

	 .	 (25)

It is similar to the equation for rod stretching vibrations

	 .	 (26)

The difference is the additional moment , which is associated to inertia moment 
, and represents reaction of an imagined rotational elastic foundation with 

stiffness equal to the shear stiffness S, as shown in Fig. 2.

Solution of (26) and corresponding axial force  read

	 	 (27)

where . Based on analogy between (25) and (26) one can write for 
shear slope angle and moment



11

I. Senjanović, N. Vladimir, M. Tomić, N. Hadžić: Timoshenko Beam Theory 93 Years Later – ...

	 	 (28)

where

	 .	 (29)

Fig. 2. Analogy between axial shear model and stretching model

Sl. 2. Analogija između modela uzdužnog smicanja i rastezanja

4. NONLOCAL VIBRATIONS OF A CARBON NANOTUBE DUE TO 
MOVING NANOPARTICLE GRAVITY FORCE

4.1	 Differential equation of nonlocal vibrations

In the modified Timoshenko beam theory the basic variable is bending deflec-
tion , so the total deflection reads , where  is shear deflection (12). 
Nonlocal effect is included in the definition of beam bending moment and shear force 
of nanotube according to [18]

	 	 (30)
	

	
	 (31)
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where  is nonlocal parameter related to the second stress gradient,  is 
a constant and  is an internal characteristic length, [18]. Dynamic equilibrium of 
bending moments and transverse forces acting on beam differential element reads, 
Fig. 3,

	 	 (32)

	 	 (33)

where  is stiffness of elastic support,  is mass per unit length,  is 
cross-section area, and  is distributed external excitation. By eliminating  from 
(32) by (33) yields

	 	 (34)

while (33) can be written in the form

	 	 (35)

Fig. 3. Displacements and forces on differential element of a beam on elastic foundation

Sl. 3. Pomaci i sile na diferencijalnom elementu grede na elastičnoj podlozi
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Substituting (34) and (35) into (30) and (31) respectively, one arrives at

	 	 (36)

	 	 (37)

Furthermore, inserting (37) into (33), equilibrium equation with nonlocal effect in 
terms of  and  is obtained
	

      (38)

Referring to (9) and (12), total deflection reads

	 	 (39)

and substituting (39) into (38) partial differential equation of vibrations in terms of 
single variable  is obtained

	
	

(40)

The equation (40) is of the sixth order, i.e. the fourth order per  and . If  and 
 Eq. (40) is reduced to the modified Timoshenko equation, [28].

4.2	 Natural vibrations

Natural vibrations are harmonic functions , where  
is bending natural mode and  is natural frequency. Now Eq. (40) is reduced to , 
which depends on , and can be presented in the form



14

Rad 521. Tehničke znanosti knj. 17(2015), str. 1-49

	 	 (41)

where

	 (42)

Solution of (41) is assumed in exponential form  that leads to biquadratic 
characteristic equation
	 	 (43)
with roots
	 	 (44)
where 

	 	 (45)

Bending deflection is obtained in the form (23) and displacements and sectional 
forces, according to (18), (36) and (37) respectively, read

	

	
   (46)
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where

	 (47)

Integration constants , are determined by satisfying bound-
ary conditions. Simply supported beam is a special case since boundary conditions 

 and  are satisfied by trigonometric function

. Substituting  into differential equation (41), and grouping terms of 
the same power of , the frequency equation is obtained

	 	 (48)
where

(49)

Solutions of Eq. (48) read

	 	 (50)
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It is obvious that two frequency spectra are obtained as a characteristic of simply sup-
ported beam. They are shifted for

	 	 (51)

4.3	 Forced vibrations due to moving gravity force

Vibrations of a simply supported single-walled carbon nanotube (SWCNT), em-
bedded in elastic medium and excited by weight of moving nanoparticle, are ana-
lyzed, Fig. 4. Modal superposition method and separation of variables approach are 
used for solving governing partial differential equation (40). Accordingly, bending 
deflection is assumed in the form

	 	 (52)

where  is natural mode and  is unknown time dependent function. Eq. 
(52) is substituted into (40), and applying the Galerkin method, it is further multiplied 
with mode function  and integrated over the beam length. As a result, the fol-
lowing modal equation in terms of generalized displacements is obtained

( )( )
( )

( )

0 (2)

1

4 (2) (0)

1

2
4 (2) (0)

2
1 0

1 1 1

11 1 d ,

ij ij j
j

w w
ij ij ij j

j

l
w w w

ij ij ij j bi
j

mJ I I T
DS

k J k Jm m SJ S mI I I T
S S Dm D Sm D Sm

k k kS qI I I T q W x
S S D D D x

µ

µ µ

µ µ µ

∞

=

∞

=

∞

=

−

     + − + + + + +          
   ∂   + + − + + = −     ∂     

∑

∑

∑ ∫




	

(53)

 

where  and 

	 	 (54)

The above system of ordinary linear differential equations of the fourth order can be 
written in matrix notation

	 	 (55)
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where

	 	 (56)

is the generalized excitation force. In the considered case one is faced with constant 
lumped nanoparticle gravity force, , Fig. 4. Using partial integration

 and  one obtains

	 	 (57)

where the force position is linearly changed due to constant velocity, . 
Hence, disturbing function  becomes time dependent. The same expression (57) is 
obtained in [18] by employing the Dirac  function for transformation of distributed 
load, , to concentrated one, .

Fig. 4. Carbon nanotube embedded in elastic medium exposed to gravity and inertia force of moving nanoparticle

Sl. 4. Ugljična nanocijev uronjena u elastičnom mediju i izvrgnuta djelovanju gravitacijske i inercijske sile 
gibajuće nanočestice

Diagonal terms in (55) are dominant due to almost orthogonal modal functions 
as well as their derivatives in integrals (54). As a result, coupling of equations (55) is 
weak, and therefore an iteration procedure can be used for their solution. A typical 
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equation can be written in the form

	 	 (58)

where  is the Kronecker delta and  is iteration step.
The above formulation is general for a beam with arbitrary boundary condi-

tions, where mode function  is expressed in terms of trigonometric and hyper-
bolic functions. A simply supported beam is a special case since natural modes are 

single trigonometric functions, i.e. , and moreover they are orthogonal

as well as any combination of their even derivatives. As a result, all integrals (54) are 
zero for , and for  they take the following values

	 	 (59)

Coupling terms on the left hand side in (57) disappear and the remaining diagonal 
elements in (53) read

	 	 (60)

where coefficients ,  and  are identical to ,  and  determined within nat-
ural vibration analysis, Eqs. (49), respectively. In this case, modal differential equation 
(58) takes the following form

	 	 (61)

where

	 	 (62)

is modal excitation amplitude and forcing frequency, respectively. Assuming homog-
enous solution of Eq. (61) in harmonic form, , frequency equation (48) is 
obtained as in the case of differential equation of motion (41). Particular integral of 
(61) is assumed in the same form as disturbing function

	 	 (63)
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and substituting it into (61) yields

	 	 (64)

Denominator in (64), according to (48), is identical to the modal frequency equation if 
 is written instead of . Hence, one can write

	 	 (65)

and substituting (65) into (64) yields

	 	 (66)

Two singular values of excitation frequency are possible, i.e.  and 
. The former is due to translatory and the latter due to rotary 

inertia. Since the natural frequency spectra, Eq. (50), are quite dense, it is obvious that 
a particular mode can easily fall into resonance, depending on nanoparticle velocity, 

.
In order to reduce infinite resonant response to a finite value it is necessary to 

include damping into differential equation of vibrations. Nanotube is supported by 
elastic medium and can slide along it if axial force overcomes friction force, which is 
equal to the product of normal force and friction coefficient. Friction force is indepen-
dent on the velocity, but causes reduction of vibration amplitude due to dissipation 
of the kinetic energy, [34]. Therefore, damping can be modeled as a viscous one, with 
intensity based on equivalence of dissipated energy of friction force and the assumed 
viscous force, [35].

Prescribing linear viscous damping force Eq. (61) reads

	 	 (67)

where  is damping coefficient. Solution of (67) is assumed in the form

	 	 (68)

Substituting (68) into (67) and equalizing coefficients of sine and cosine functions, 
system of two algebraic equations is obtained,
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	 (69)

Its solution, determined by the Cramer rule, reads

	  	 (70)

where

	  	 (71)

are determinants of the system. Taking ,  and 
, Eq. (68) is transformed into the form

	 	 (72)

where

	  	 (73)

is mode amplitude and phase angle, respectively. The first quantity can be presented 
in the well-known form for a single degree of freedom system 

	 	 (74)

where  is modal static coefficient and  is dynamic amplification factor. In res-
onances  and .

The above particular solution of Eq. (67) is steady state response and does not 
satisfy initial condition  and . That causes transient free vibra-
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tions, which are represented with homogenous solution of (67). That solution can not 
be obtained analytically in closed form and therefore an approximate solution is used

	  	 (75)

where  is natural frequency of undamped dynamic system derived in Section 4.3, 
and  is nondimensional damping coefficient.

Particular solution of (67) is presented with (68), and total time function is 
. Constants  and  are determined by satisfying initial conditions 

 and ,

	 	 (76)

Hence, the complete time function yields

	 	 (77)

In resonance  and according to Eqs. (70) and (71)  and 
, and Eq. (77) is reduced to

	 	 (78)

In case of conservative dynamic system, , the second term in (78) is deter-
mined, while the first one takes undetermined form, i.e. . That 
is only apparently, and the problem can be overcome if the exponential function is 

expanded into the power series . Hence, one finds

	 	 (79)

If , Eq. (79) takes a simpler form

	 	 (80)
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While damping plays decisive role in resonant steady state response, which attains 
infinite value if damping is not present, Eq. (74), the resonant response starting from 
the rest is a smooth function. That is a reason why numerical time integration of dif-
ferential equation of motion without damping force can be performed in resonance 
without difficulties.

It is obvious from (80) that envelope of amplitude is increased linearly by time 
to infinity. Since passing time of nanoparticle through nanotube is known, , 
and , yields . It means that number of time function half 
waves is equal to the mode number . The time function achieves its maximum value 
at , i.e. .

4.4	 Numerical example

4.4.1	 Basic data

Application of the presented theory is illustrated in the case of simply supported 
embedded SWCNT exposed to the influence of moving nanoparticle gravity load. 
Values of the basic parameters are chosen the same as in [18] in order to enable com-
parison of some results: Young’s modulus , mass densi-
ty , outer diameter , wall thick-
ness  and Poisson’s ratio . The derived data are the following: 
cross-section area , moment of inertia of cross-section 

. The shear correction factor for hol-
low circle is determined according to [31], . Values of nanotube length, 

, stiffness of elastic medium, , and nonlocal parameter, , are varied.

4.4.2	 Natural vibrations

Natural frequencies for simply supported SWCNT are calculated according to 
Eq. (50), for different values of slenderness ratio  and nonlocal parameter .  
They are normalized by the first natural frequency of the simply supported Eul-
er-Bernoulli beam, , so that frequency parameter reads 

. The obtained results for the first natural mode are 
listed in Table 1, [18] and compared with those from Refs. [18] and [21]. Values from Ref. 
[21] agree excellently with analytical ones, while those from Ref. [18] are slightly different.

Influence of elastic medium stiffness , , on nanotube natural frequencies can 
be seen in Table 2. Values of frequency parameters are somewhat increased for higher 
stiffness as expected.
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Table 1 - The first frequency parameter for simply supported nanotube, , 

l/d μ (nm) PS Ref. [21] Ref. [18]
0 9.7425 9.7443 9.7074
1 9.2974 9.2931 9.2612

10 2 8.9081 8.8994 8.8713
3 8.5640 8.5517 8.5268
4 8.2569 8.2419 8.2196
0 9.8373 9.8381 9.8281
1 9.7183 9.7187 9.7090

20 2 9.6035 9.6036 9.5942
3 9.4928 9.4924 9.4834
4 9.3857 9.3850 9.3763
0 9.8644 9.8645 9.8629
1 9.8450 9.8451 9.8435

50 2 9.8257 9.8258 9.8242
3 9.8065 9.8066 9.8050
4 9.7875 9.7875 9.7859

Table 2 - Frequency parameter for simply supported nanotube, , 

, 

Mode no. kw = 0 kw = 10-5 E kw = 10-4 E
1 9.7271 9.8317 10.7271
2 37.3631 37.3900 37.6315
3 79.2282 79.2406 79.3527
4 131.2700 131.2770 131.3430
5 190.1420 190.1470 190.1920
6 253.4390 253.4430 253.4760
7 319.5350 319.5380 319.5640
8 387.3590 387.3610 387.3830
9 456.2120 456.2140 456.2330
10 525.6390 525.6410 525.6580

4.4.3	 Forced vibrations

Forced vibrations of SWCNT are performed by employing procedure presented 
in Section 4.3. Some vibration parameters are normalized. Modal damping coefficient 
is specified as , where  is nondimensional parameter. Velocity pa-
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rameter is defined as ratio of nanoparticle velocity and velocity which corresponds 
to the first natural mode of nanotube, i.e. . Nondi-
mensional time is . Vibration deflection is normalized by the static 
value due to lumped force  acting at the midsection, i.e. , 
where .

All numerical calculations for forced vibrations are performed by employing 
30 natural modes, that was necessary to stabilize the first 6 digits of response. Fig. 5 
shows time history of maximum relative deflection of nanotube during nanoparticle 
motion from the rest, , up to passing time, . Relief presentation points out 
moving of maximum deflection simultaneously with nanoparticle. Maximum rela-
tive deflection as function of velocity parameter, determined by step , is 
shown in Fig. 6. Response is rapidly increased for higher values of . 

Influence of damping response is analyzed in case of resonance, . Time 
history of relative midsection deflection within time period of double value of pass-
ing time of nanoparticle is shown in Fig. 7. Response is dominated by the first natural 
mode, especially for higher damping value. Reason is that damping force is propor-
tional to natural frequency, . Contribution of the other natural modes is 
more pronounced when there is no damping.

Fig. 5. Time history of relative deflection of nanotube, 

Sl. 5. Vremenska promjena relativnog gibanja nanocijevi, 
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Fig. 6. Maximum relative deflection versus velocity parameter, 

Sl. 6. Maksimalni relativni progib u ovisnosti o parametru brzine, 

Fig. 7. Time history of relative midsection deflection in resonance, 

Sl. 7. Vremenska promjena relativnog gibanja po sredini nanocijevi u rezonanciji
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5. COUPLED HORIZONTAL AND TORSIONAL VIBRATIONS OF  
ULTRA LARGE SHIPS

5.1	 General

Increased sea transport requires building of ultra large container ships which 
are quite flexible. Therefore, their strength has to be checked by hydroelastic analysis 
[36]. The methodology of hydroelastic analysis is described in [37]. It includes the 
definition of the structural model, ship and cargo mass distributions, and geometrical 
model of ship wetted surface. Hydroelastic analysis is based on the modal superpo-
sition method. First, dry natural vibrations of ship hull are calculated. Then, modal 
hydrostatic stiffness, modal added mass, modal damping and modal wave load are 
determined. Finally, the calculation of wet natural vibrations is performed and trans-
fer functions for determining ship structural response to wave excitation are obtained 
[38]. 

The intention of this Section is to present an advanced numerical procedure 
based on the beam and thin-walled girder theories for reliable calculation of dry natu-
ral vibrations of container ships, as an important step in their hydroelastic analysis. A 
ship hull, as an elastic nonprismatic thin-walled girder, performs longitudinal, verti-
cal, horizontal and torsional vibrations. Since the cross-sectional centre of gravity and 
centroid, as well as the shear centre positions are not identical, coupled longitudinal 
and vertical, and horizontal and torsional vibrations occur, respectively. 

The distance between the centre of gravity and centroid for longitudinal and 
vertical vibrations, as well as distance between the former and shear centre for hori-
zontal and torsional vibrations are negligible for conventional ships. Therefore, in 
the above cases ship hull vibrations are usually analysed separately. However, the 
shear centre in ships with large hatch openings is located outside the cross-section, 
i.e. below the keel, and therefore the coupling of horizontal and torsional vibrations 
is extremely high.

The above problem is rather complicated due to geometrical discontinuity of 
the hull cross-section. The accuracy of the solution depends on the reliability of 
stiffness parameters determination, i.e. of bending, shear, torsional and warping 
moduli. The finite element method is a powerful tool to solve the above problem in 
a successful way. One of the first solutions for coupled horizontal and torsional hull 
vibrations, dealing with the finite element technique, is given in [39,40]. Generalised 
and improved solutions are presented in [41,42]. An advanced theory of thin-walled 
girder with application to ship vibrations is worked out in [30].
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5.2	 Differential equations of beam vibrations

Referring to the flexural beam theory [31], the total beam deflection, w, consists 
of the bending deflection, wb, and the shear deflection, ws, while the angle of cross-sec-
tion rotation depends only on the former, Fig. 8

	 .	 (81)

The cross-sectional forces are the bending moment and the shear force

	 	 (82)

where E and G are the Young's and shear modulus, respectively, while Ib and As are 
the moment of inertia of cross-section and shear area, respectively.

Fig. 8. Beam bending and torsion

Sl. 8. Savijanje i uvijanje grede
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The inertia load consists of the distributed transverse load, qi, and the bending 
moment, μi, and in the case of coupled horizontal and torsional vibration is specified 
as

	 	 (83)

where m is the distributed ship and added mass, Jb is the moment of inertia of ship 
mass about z-axis, and c is the distance between the centre of gravity and the shear 
centre, , Fig 9.

Fig. 9. Cross-section of a thin-walled girder

Sl. 9. Poprečni presjek tankostijenog nosača

Concerning torsion, the total twist angle, ψ (which should be distinguished from 
the cross-section rotation, ψ, within the Timoshenko beam theory, Sections 2 and 3), 
consists of the pure twist angle, ψt, and the shear contribution, ψs, while the second 
beam displacement, which causes warping (deplanation) of cross-section, is variation 
of the pure twist angle, i.e. Fig. 8 [30]

	 .	 (84)

The cross-sectional forces include the pure torsional torque, Tt, warping bimoment, 
Bw, and additional torque due to restrained warping, Tw, i.e.
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	 ,	 (85)

where It, Iw and Is are the torsional modulus, warping modulus and shear inertia mod-
ulus, respectively.

The inertia load consists of the distributed torque, μti, and the bimoment, bi, pre-
sented in the following form:

	 ,	 (86)

where Jt is the polar moment of inertia of ship and added mass about the shear centre, 
and Jw is the bimoment of inertia of ship mass about the warping centre, Fig. 9.

Considering the equilibrium of a differential element, one can write for flexural 
vibrations

	 ,	 (87)

and for torsional vibrations [29]

	 	 (88)

The above equations can be reduced to two coupled partial differential equa-
tions as follows. Substituting Eqs. (82) into the first of Eqs. (87) yields

	 .	 (89)

By inserting the second of Eqs. (82) and the first of (83) into the second of (87) leads

	
.           (90)

In similar way, substituting the second and third of Eqs. (85) into the first of Eqs. (88) 
yields

	 .	 (91)

By inserting Eqs. (85) into the second of Eqs. (88) one finds
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(92)

Furthermore, ψ in (90) can be split into  and the later term can be expressed 
with (91). Similar substitution can be done for  in (92), where ws is given 
with (89). Thus, taking into account that  and , Eqs (90) and 
(92) after integration per x read

	
									         (93)

				  
									         (94)

Af﻿﻿﻿ter solving Eqs. (93) and (94) the total deflection and twist angle are obtained 
by employing (89) and (91)

	 	 (95)

	 ,	 (96)

where f(t) and g(t) are integration functions, which depend on initial conditions.
The main purpose of developing differential equations of vibrations (93) and 

(94) is to get insight into their constitution, position and role of the stiffness and mass 
parameters, and coupling, which is realized through the inertia terms. If the pure 
torque Tt is excluded from the above theoretical consideration, it is obvious that the 
complete analogy between bending and torsion exists, [43].

Application of Eqs. (93) and (94) is limited to prismatic girders. For more com-
plex problems, like ship hull, the finite element method, as a powerful tool, is on 
disposal.
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The shape functions of beam finite element for vibration analysis have to satisfy 
the following consistency relations for harmonic vibrations obtained from Eqs. (95) 
and (96), [44]

	 	 (97)

	 .	 (98)

5.3	 Beam f﻿inite element

The properties of a finite element for the coupled flexural horizontal and torsion-
al vibration analysis can be derived from the total element energy. The total energy 
consists of the strain energy, the kinetic energy, the work of the external lateral load, 
q, and the torque, μ, and the work of the boundary forces. Thus, according to [40, 44],

	
(99)

where l is the element length.
Since the beam has four displacements, , a two-node finite element 

has eight degrees of freedom, i.e. four nodal shear-bending and torsion-warping dis-
placements respectively, Fig. 10,

	 .	 (100)

Therefore, the basic beam displacements, wb and ψt, can be presented as the third-or-
der polynomials

	 	 (101)
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Fig. 10. Beam finite element

Sl. 10. Gredni konačni element

Furthermore, satisfying alternately the unit value for one of the nodal displacement 
{U} and zero values for the remaining displacements, and doing the same for {V}, it 
follows that:

	 	 (102)

where wbi, wsi, wi and ψti, ψsi, ψi are the shape functions specified below by employing 
relations (97) and (98)

	 	 (103)



33

I. Senjanović, N. Vladimir, M. Tomić, N. Hadžić: Timoshenko Beam Theory 93 Years Later – ...

	
 (104)

	 	 (105)

	 	 (106)

	 	 (107)

Constitution of torsional matrices ,  and  is the same as ,  
and , but parameters α and β have to be exchanged with

	 	 (108)

according to (98).
By substituting Eqs. (102) into (99) one obtains

		  (109)
where, assuming constant values of the element properties,

 – �bending-shear stiffness 
matrix,

 – �warping-shear stiffness matrix,
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 – torsion stiffness matrix,

 – shear-bending mass matrix,

 – torsion-warping mass matrix,

 – shear-torsion mass matrix,

	 	   (110)

The vectors {P} and {R} represent the shear-bending and torsion-warping nodal 
forces, respectively,

	 .	 (111)

The above matrices are specified in [30], as well as the load vectors for linearly distrib-
uted loads along the element, i.e.

	 .	 (112)

Shape functions of sectional forces are also given in [30].
The total element energy has to be at its minimum. Satisfying the relevant con-

ditions

	 	 (113)

and by employing the Lagrange equations of motion, the finite element equation 
yields
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	 ,	 (114)

where

	 	 (115)

It is obvious that coupling between the bending and torsion occurs through the mass 
matrix only, i.e. by the coupling matrices [m]st and [m]ts.

In the finite element equation (114), first the element properties related to 
bending and then those related to torsion appear. To make an ordinary finite 
element assembling possible, it is necessary to transform Eq. (114) in such a way 
that first all properties related to the first node are specified and then those be-
longing to the second one. Thus, the rearranged nodal force and displacement 
vectors read

	 .	 (116)

The same transformation has to be done for the load vector  resulting in 
. The above vector transformation implies also the row and column exchange 

in the stiffness and mass matrices.
The element deflection refers to the shear centre as the origin of a local coor-

dinate system. Since the vertical position of the shear centre varies along the ship's 
hull, it is necessary to prescribe the element deflection for a common line, in order to 
be able to assemble the elements. Thus, choosing the x-axis (base line) of the global 
coordinate system as the referent line, the following relation between the former and 
the latter nodal deflections exists:
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	 	 (117)

where zS is the coordinate of the shear centre, Fig. 9. Other displacements are the same 
in both coordinate systems. Twist angle ψ does not have influence on the cross-section 
rotation angle . The local displacement vector can be expressed as

	 ,	 (118)

where  is the transformation matrix

	 .	 (119)

Since the total element energy is not changed by the above transformations, a new 
element equation can be derived taking (118) into account. Thus, one obtains in the 
global coordinate system

	 ,	 (120)

where

	 	 (121)

The first of the above expressions transforms the nodal torques into the form

	 	 (122)
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5.4	 Numerical procedure for vibration analysis

A ship's hull is modelled by a set of beam finite elements. Their assemblage in 
the global coordinate system, performed in the standard way, results in the matrix 
equation of motion, which may be extended by the damping forces

	 	 (123)

where [K], [C] and [M] are the stiffness, damping and mass matrices, respectively; 
 are the displacement, velocity and acceleration vectors, respectively; 

and {F(t)} is the load vector.
In case of natural vibration {F(t)} = {0} and the influence of damping is rather low 

for ship structures, so that the damping forces may be ignored. Assuming

	 ,	 (124)

where  and ω is the mode vector and natural frequency respectively, Eq. (123) 
leads to the eigenvalue problem

	 ,	 (125)

which may be solved by employing different numerical methods[45]. The basic one is 
the determinant search method in which ω is found from the condition

	 	 (126)

by an iteration procedure. Afterwards,  follows from (125) assuming unit value 
for one element in .

The forced vibration analysis may be performed by direct integration of Eq. (123), 
as well as by the modal superposition method. In the latter case the displacement vec-
tor is presented in the form

	 ,	 (127)

where  is the undamped mode matrix and {X} is the generalised displace-
ment vector. Substituting (127) into (123), the modal equation yields

	 ,	 (128)
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where

	 	 (129)

The matrices [k] and [m] are diagonal, while [c] becomes diagonal only in a special 
case, for instance if [C] = α0 [M] + β0 [K], where α0 and β0 are coefficients [44].

Solving (128) for undamped natural vibration, [k] = [ω2m] is obtained, and by its 
backward substitution into (128) the final form of the modal equation yields

	 ,	 (130)

where

	 	 (131)

If [ζ] is diagonal, the matrix Eq. (130) is split into a set of uncoupled modal equations.
The ship vibration is caused by the engine and propeller excitation forces, which 

are of periodical nature and therefore can be split into harmonics. Thus, the ship's hull 
response is obtained solving either (123) or (128). In both cases, the system of differen-
tial equations is transformed into a system of algebraic equations.

If hull vibration is induced by waves, the time integration of (123) or (128) has 
to be performed. Several numerical methods are available for this purpose, as for in-
stance the Houbolt, the Newmark and the Wilson θ method, as well as the harmonic 
acceleration method [46,47].

It is important to point out that all stiffness and mass matrices of the beam fi-
nite element (and consequently those of the assembly) are frequency dependent 
quantities, due to coefficients α and η in the formulation of the shape functions, Eqs. 
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(107) and (108). That results in the physically consistent natural modes which are not 
orthogonal and therefore their application in the modal superposition method for 
forced vibration analysis is not practical, especially not in the case of time integration. 
Hence, it is preferable to use mathematical orthogonal modes for that purpose. They 
are created by the static displacement relations yielding from Eqs. (97) and (98) with 

, that leads to . In that case all finite element matrices, defined with 
Eqs. (110), can be transformed into explicit form, as shown in [30].

5.5	 Numerical example

The application of the improved theory and numerical procedure is illustrated 
in case of an 11400 TEU VLCS (Very Large Container Ship), Fig. 11. The main vessel 
particulars are the following:

Length overall	 Loa = 363.44 m
Length between perpendiculars	 Lpp = 348 m
Breadth	 B = 45.6 m
Depth		  H = 29.74 m
Draught	 T = 15.5 m
Displacement, full load	 Δf = 171445 t
Displacement, ballast	 Δb = 74977 t
Displacement, light weight	 Δl = 37151 t
Engine power	 P = 72240 kW
Ship speed	 v = 24.7 kn

The midship section, which shows a double skin structure with the web frames 
and longitudinals, is presented in Figure 12. The ship hull stiffness properties are 
calculated by the program STIFF [48], based on the theory of thin-walled girders, [47]. 
Their distributions along the ship are shown in [30]. Influence of transverse bulkheads 
is taken into account by increasing value of torsional modulus  according 
to the theory presented in [49]. The lightweight loading condition, i.e. without con-
tainers, is considered. Ship mass distribution and its properties are also given in [30].

Dry natural vibrations, as prerogative for hydroelastic analysis, are calculated 
by the modified and improved program DYANA, [50]. The ship hull is divided into 
50 beam finite elements. Ordinary finite elements for closed cross-sections are used 
for the ship bow, ship aft and in the engine room area.

Natural frequencies of vertical vibrations, and those of coupled horizontal and 
torsional vibrations are listed in Table 3 and 4 and are compared to the results ob-
tained by 3D FEM analysis. Quite good agreement is achieved for the first few natural 
modes.
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Fig. 11. 11400 TEU container ship

Sl. 11. Kontejnerski brod od 11400 TEU
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Fig. 12. Midship section

Sl. 12. Poprečni presjek kontejnerskog broda
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Table 3 - Natural frequencies of vertical hull vibrations,  (Hz)

Mode no. 1D FEM 3D FEM Discrepancy %
1 1.149 1.159 -0.86
2 2.318 2.327 -0.39
3 3.695 3.654 1.12
4 5.457 5.409 0.89
5 6.913 6.605 4.66

Table 4 - Natural frequencies of coupled horizontal and torsional hull vibrations,  (Hz)

Mode no. Coupled modes 1D FEM 3D FEM Discrepancy %
1 T1 0.639 0.638 0.16
2 T2+H1 1.056 1.076 -1.86
3 T3+H2 1.745 1.749 -0.23
4 T4+H3 2.233 2.429 -8.07
5 T2+H5 3.072 2.630 16.81
6 T5+H4 3.350 3.519 -4.80

Nodal displacements, i.e. translation and rotation of beam model, are trans-
ferred to the ship wetted surface. The first natural mode of vertical vibration as well 
as that of coupled horizontal and torsional vibrations are shown in Figs. 13 and 14, 
respectively. Also, the later mode determined by the 3D FEM analysis is shown in Fig. 
15. 1D and 3D natural mode is of the same shape.

Fig. 13. The first natural mode of vertical vibrations, 1.149 Hz, 1D model

Sl. 13. Prvi prirodni oblik vertikalnih vibracija, 1.149 Hz, 1D model
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Fig. 14. The first natural mode of coupled horizontal and torsional vibrations,  0.639 Hz, 1D model

Sl. 14. Prvi prirodni oblik spregnutih horizontalnih i torzijskih vibracija,  0.639 Hz, 1D model

Fig. 15. The first natural mode of coupled horizontal and torsional vibrations,  0.638 Hz, 3D FEM model

Sl. 15. Prvi prirodni oblik spregnutih horizontalnih i torzijskih vibracija,  0.638 Hz, 3D FEM model
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6. CONCLUSION

Writing of this paper was motivated by the fact that Timoshenko beam theory 
after 93 years is still actual. As pointed out in Introduction it has been used at the be-
ginning for dynamic analysis of structural elements, and later on for structural anal-
ysis of bridges. Nowadays, its application is extended to large range of scale, from 
nanotubes to ultra large structures.

The paper is dealing with two presently interesting subjects, i.e. dynamic behav-
ior of nanotube embedded in an elastic medium and exposed to moving nanoparticle 
gravity load, and vibrations of ultra large container ships. In both cases the modified 
Timoshenko beam theory is used, which results with simpler problem formulations. 
Nanotube response is determined semi-analytically and parametric analysis is per-
formed emphasizing influence of damping on response.

Even complex structures like ultra large container ships can be modeled as a 
beam for global response analysis if flexural and torsional stiffness parameters of 
ship cross-section are determined in a sophisticated way by the advanced thin-walled 
girder theory and if influence of transverse bulkheads and relatively short engine 
room structure are taken into account in a proper way. Dry natural vibrations are 
prerogative for hydroelastic analysis of ship exposed to wave excitation by the modal 
superposition method. Such an analysis includes also determination of modal restor-
ing stiffness, added mass and damping. Correlation of natural eigenpairs (frequency 
and modes) determined by the beam model with those obtained by 3D FEM model 
shows high reliability of the former.

Timoshenko beam theory is only one topic worked out by that genius scientist, but 
unique one due to long time and broad application. Probably, he could not imagine that 
application of his beam theory does not end with structural analysis of bridges.
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Timošenkova teorija grede nakon 93 godine – preko mostova do  
nanocijevi i ultra velikih brodova

Sažetak

Sažeto je prikazana Timošenkova teorija grede, koja operira s progibom 
i kutom zakreta poprečnog presjeka kao osnovnim varijablama. Teorija je na-
dalje modificirana rasprežući ukupni progib grede u progib čistog savijanja i 
progib uslijed smika, te ukupni kut zakreta u kut uslijed savijanja i kut usli-
jed uzdužnog smicanja. Osnovne jednadžbe su spregnute u dvije nezavisne 
jednadžbe gibanja, jedna za savojne, a druga za uzdužne smične vibracije. 
Jednadžbe su rješene za slučaj prirodnih vibracija. Razmatran je problem vi-
bracija nanocijevi u elastičnom mediju uvođenjem parametara nelokalnog na-
prezanja. Parcijalna diferencialna jednadžba 4-tog reda za savojne vibracije 
proširena je na jednadžbu 6-tog reda. Odziv nanocijevi na pomičnu gravita-
cijsku silu nanočestice analiziran je koristeći metodu superpozicije prirodnih 
oblika vibriranja, metodu separacije varijabli, Galerkinovu metodu i metodu 
ravnoteže harmonika. U nastavku razmotren je problem spregnutih savojnih 
i torzijskih vibracija tankostijenog nosača. Korištena je modificirana Timošen-
kova teorija grede za savojne vibracije. Složeni problem torzijskih vibracija 
uz vitoperenje poprečnog presjeka nosača formuiliran je na analogan način. 
Za potrebe analize vibracija neprizmatičnog brodskog trupa razvijen je sofi-
sticirani gredni konačni element. Primjena razvijenih teorija ilustrirana je na 
primjerima analize vibracija nanocijevi i jednog ultra velikog kontejnerskog 
broda.

Ključne riječi: Timošenkova teorije grede; nanocijev; pomično optereće-
nje; tankostijeni nosač; savojne vibracije; torzijske vibracije; kontejnerski brod
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