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In small volumes, the kinetics of filamentous protein self-assembly is expected to show significant
variability, arising from intrinsic molecular noise. This is not accounted for in existing deterministic
models. We introduce a simple stochastic model including nucleation and autocatalytic growth via
elongation and fragmentation, which allows us to predict the effects of molecular noise on the kinetics of
autocatalytic self-assembly. We derive an analytic expression for the lag-time distribution, which agrees
well with experimental results for the fibrillation of bovine insulin. Our expression decomposes the lag-
time variability into contributions from primary nucleation and autocatalytic growth and reveals how each
of these scales with the key kinetic parameters. Our analysis shows that significant lag-time variability can
arise from both primary nucleation and from autocatalytic growth and should provide a way to extract
mechanistic information on early-stage aggregation from small-volume experiments.
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The self-assembly of protein molecules into amyloid
fibrils is associated with many degenerative diseases [1] but
also presents potential opportunities for the development
of new materials [2]. In both cases, it is of outstanding
importance to identify the specific microscopic steps
responsible for amyloid aggregation, especially in its early
stages. An important success of recent biophysical work
has been to show that in vitro kinetic data for amyloid
fibril self-assembly can often be described by deterministic
mechanistic models [3–11]. However, it is unclear how far
the results of these large-volume experiments can be
translated to clinically relevant intracellular aggregation
phenomena, which occur in far smaller volumes.
In large-volume in vitro experiments (typically

100–1000 μl), measurements of the total mass of aggregated
(fibrillar) protein as a function of time typically produce
sigmoidal curves, as in Fig. 1(a) [2]. These data show an initial
lag phase in which no aggregated protein is detectable,
followed by a rapid growth phase, terminating in a plateau
once all the protein is in the aggregated form. In large
volumes, these characteristic sigmoidal growth curves can
often be well fitted by deterministic kinetic models involv-
ing homogeneous primary nucleation [Fig. 1(c), I], filament
elongation by monomer addition [Fig. 1(c), II], and
autocatalysis via filament fragmentation [Fig. 1(c), III]
[2,7,12–14]—although the contributions of primary nuclea-
tionandautocatalytic growth in theearly stages of aggregation
are often poorly distinguished [15]. Importantly, thesemodels
lead to analytical predictions for scaling behavior; for
example, if autocatalysis is dominant, the mean lag time
scales as the inverse square root of the product of the protein
concentration, elongation, and fragmentation rates [7].
In a clinical context, however, fibril formation happens

in much smaller volumes, on the scale of a human cell
(typically 500–3000 fl). In small volumes, the stochastic

nature of the underlying chemical reactions (“intrinsic
molecular noise”) is expected to become important, leading
to inherent variability in the aggregation kinetics. Figure 1(b)
shows the results of replicate kinetic Monte Carlo simu-
lations of a stochastic version of the autocatalytic growth
model [17] in a volume of 830 fl. These simulations predict
significant variability in the lag time. Lag-time variability has
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FIG. 1 (color online). (a) Experimental kinetic curve (black
line) for the aggregation of bovine insulin in a volume of 100 μl
from our own experiments, fitted to the theoretical prediction of a
model [7] involving primary nucleation, elongation, and frag-
mentation (dashed red line); for full experimental details, see the
Supplemental Material [16]. (b) Kinetic curves obtained from
kinetic Monte Carlo simulations of a stochastic version of the
same model [7,17] and the fit parameters extracted from (a), but
for a much smaller volume of 830 fl. (c) Schematic illustration of
(I) primary nucleation, (II) elongation via polymerization, and
(III) fragmentation. The critical nucleus size for primary nucle-
ation is denoted by nc.
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also been observed in recent pioneering experiments on
bovine insulin fibril formation in microdroplets [18], as well
as in classic small-volume experiments on the polymeriza-
tion of sickle cell hemoglobin [19–21]. Theoretical models
which explain such data should provide a powerful tool for
probing the mechanisms involved in early-stage aggregation.
In particular, an important question concerns the relative
roles of primary nucleation [Fig. 1(c), I] and autocatalytic
growth [Fig. 1(c), II and III] in determining the lag-time
distribution for amyloid fibril formation. So far, however,
analytic predictions for lag-time distributions have been
achieved only for models that do not fully take into account
autocatalytic growth [22,23].
In this Letter, we present an analytic prediction for the

lag-time distribution, for a stochastic model of filamentous
protein self-assembly that includes primary nucleation,
irreversible filament elongation, and autocatalysis via frag-
mentation. We show that our prediction is in agreement with
recent data for bovine insulin fibril formation in micro-
droplets [18]. This analytical solution allows a decomposi-
tion of the lag-time variability into contributions from
primary nucleation and autocatalytic growth and reveals
how each of these scales with the key kinetic parameters.
A coarse-grained model for autocatalytic protein self-

assembly.—Deterministic kinetic models for amyloid fibril
self-assembly usually consist of dynamical equations for
the mean number of fibrils hnii of a given length i ≥ nc,
where nc is the size of the smallest growth-competent fibril
(the “nucleus”) [2,7,12–14,24]. For a model including
homogeneous nucleation, irreversible elongation and fibril
fragmentation [Fig. 1(c), I–III], these equations are non-
linear, but various approximations have been successfully
employed to obtain their full time-dependent solution
[7,12–14]. The stochastic version of this model, where
the number of each species ni is allowed to fluctuate, is,
however, analytically intractable, although it can be simu-
lated numerically as we have done in Fig. 1(b).
To obtain an analytic prediction for the lag-time dis-

tribution, we coarse-grain the model, while retaining the
key processes of nucleation, elongation, and fragmentation.
Rather than tracking the full distribution of fibril lengths,
we track only the total number of fibrils n ¼ P

ini and the
number of monomers in aggregates m ¼ P

iini but treat
them as discrete random variables, which can fluctuate due
to intrinsic noise. This coarse-graining, which amounts
essentially to summing over fibril lengths in the full model
[25], results in the following set of possible transitions
between states n;m of the system:

n;m → nþ 1; mþ nc at rate α½cðtÞ�=ϵ; ð1aÞ
n;m → n;mþ 1 at rate 2kþcðtÞn; ð1bÞ
n;m → nþ 1; m at rate kfm: ð1cÞ

Primary nucleation is modeled by Eq. (1a) as a one-step
process in which a new filament (called a nucleus) is created
instantaneously from nc free monomers at rate α½cðtÞ�=ϵ.

The rate α is assumed to depend on the molar concentration
of free monomers cðtÞ and ϵ ¼ 1=ðVNAÞ, where V is the
volume and NA is Avogadro’s constant. Transition (1b)
represents filament growth by monomer addition at rate
2kþcðtÞ; the factor of 2 accounts for the fact that filaments
can grow at both ends. Transition (1c) represents fragmen-
tation; this amounts to an autocatalytic creation of new fibrils
from existing ones at rate kf; the probability that any given
fibril breaks is assumed to be proportional to its length.
Although this assumption is somewhat simplistic [26], we
have also studied a model where fibrils break more fre-
quently at their ends [27]. This latter model, which is
presented in the Supplemental Material [16], also obeys
detailed balance by including backward reactions such as
rejoining of fragmented fibrils and loss of monomers at fibril
ends [28,29]; however, none of these changes were found
to affect the early-stage aggregation phenomena studied
here. In the rest of the Letter, we will further simplify the
model by neglecting monomer depletion, which amounts to
approximating the free monomer concentration cðtÞ by ctot;
this has little effect on the lag phase.
The probability distribution Pn;mðtÞ for a given n and m

obeys the following master equation:

d
dt

Pn;m ¼ ðα=ϵÞPn−1;m−nc þ μnPn;m−1 þ λmPn−1;m

− ðα=ϵþ μnþ λmÞPn;m; ð2Þ
where α≡ αðctotÞ, μ≡ 2kþctot, and λ≡ kf. Starting with
an initial condition Pn;mð0Þ ¼ δn;n0δm;m0

, we aim to solve
for Pn;mðtÞ and then to find the probability distribution for
the lag time, i.e., for the time needed for the number of
aggregated monomers m to reach some predefined thresh-
old mT , which we define as 10% of the total number of
monomers (which is given by ctot=ϵ, assuming that ctot is
measured in moles per unit volume).
Analytic solution for the probability distribution

Pn;m.—In order to obtain an analytic solution, we replace
the master equation (2) with a corresponding Fokker-
Planck equation via the linear noise approximation (LNA),
also known as van Kampen’s system size expansion [30,31].
The LNA assumes that n and m can be decomposed into
deterministic and fluctuating parts:

n ¼ NAVϕðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
NAV

p
x1; ð3aÞ

m ¼ NAVψðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
NAV

p
x2; ð3bÞ

where the fluctuating parts x1 and x2 are scaled by
ffiffiffiffiffiffiffiffiffiffi
NAV

p
and are assumed to be small compared to the deterministic
terms. The deterministic parts ϕðtÞ and ψðtÞ, expressed in
units of concentration (heremoles per unit volume), solve the
following differential equations:

dϕ
dt

¼ λψ þ α; ϕð0Þ ¼ ϵn0 ≡ ϕ0; ð4aÞ
dψ
dt

¼ μϕþ αnc; ψð0Þ ¼ ϵm0 ≡ ψ0: ð4bÞ
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Equations (4a) and (4b) may be solved to yield

ϕðtÞ ¼
ffiffiffi
λ

μ

s
Ψ0sinhðτÞ þ Φ0coshðτÞ −

αnc
μ

; ð5aÞ

ψðtÞ ¼
ffiffiffi
μ

λ

r
Φ0sinhðτÞ þΨ0coshðτÞ −

α

λ
; ð5bÞ

where we have adopted the following notation: τ ¼ ffiffiffiffiffi
μλ

p
t,

Φ0 ¼ ϕ0 þ αnc=μ, and Ψ0 ¼ ψ0 þ α=λ. Equations (5a)
and (5b) describe the time evolution of the mean concen-
trations of fibrils and aggregated protein, respectively, at early
times. Solving ψðTÞ ¼ mTϵ, where mT is the threshold
concentration, yields the mean lag time T:

T ¼ 1ffiffiffiffiffi
μλ

p ln
Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 −Ψ2

0 þ ðμ=λÞΦ2
0

p
Ψ0 þ

ffiffiffiffiffiffiffiffi
μ=λ

p
Φ0

; ð6Þ

whereD ¼ α=λþmTϵ.Equation (6) is agoodapproximation
to the lag time reported in Ref. [7] and predicts the same
T ∝ ðkþctotkfÞ−1=2 scaling.
To determine the effects of intrinsic noise, we now turn

to the fluctuating parts x1 and x2, which are governed by
the following Fokker-Planck equation for the probability
density Pðx1; x2; tÞ:

∂P
∂t ¼ −

X
i

∂
∂xi ðAiPÞ þ

1

2

X
i;j

∂2

∂xixj ðBijPÞ; ð7Þ

where we assumed that Pðx1; x2; 0Þ ¼ δðx1Þδðx2Þ. The
drift vector ~A and the diffusion matrix B are given,
respectively, by

~A ¼
�
λx2
μx1

�
; B ¼

�
λψ þ α αnc
αnc μϕþ αn2c

�
: ð8Þ

Equation (7) describes a two-variable (time-dependent)
Ornstein-Uhlenbeck process which can be solved by
standard techniques [31] and yields a bivariate Gaussian
distribution with zero mean and time-dependent covariance
matrix Σij ¼ hxixji. To calculate the lag-time distribution
we only need to know Σ22 ¼ hx2ðtÞ2i; the time dependence
of the other matrix elements can be found in the
Supplemental Material [16].
Lag-time distribution.—Building on these results, we

now obtain an analytic expression for the lag-time distri-
bution LðtÞ. This is essentially a first-passage time prob-
lem; to calculate LðtÞ, we look for all events such thatm has
just exceeded mT at a time t, given that it will exceed mT
eventually:

LðtÞ ¼
d
dt Prob½m > mT; t�

Prob½m > mT; t → ∞� : ð9Þ

The probability Prob½m > mT; t� can easily be calculated
by integrating Pðx1; x2; tÞ and reads

Prob½m > mT; t� ¼
1

2
erfc

�
mTϵ − ψðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵhx2ðtÞ2i

p �
: ð10Þ

A lengthy but straightforward calculation for hx2ðtÞ2i gives

hx2ðtÞ2i ¼ coshð2τÞ
�
1

6

�
Φ0

μ

λ
þΨ0

�
þ αnc

2λ

�

þ sinhð2τÞ
ffiffiffi
μ

λ

r �
Φ0 þΨ0

3
þ αncðnc − 1Þ

4μ

�

þ coshτ
3λ

ðλΨ0 − 2μΦ0Þ þ
sinhτ
3

ffiffiffi
μ

λ

r
ðΦ0 − 2Ψ0Þ

−
αncðnc − 1Þt

2
þ 1

2

�
Φ0

ffiffiffi
μ

λ

r
−Ψ0 −

αnc
λ

�
:

ð11Þ

It now proves useful to introduce a new variable rðtÞ:

rðtÞ ¼ ψðtÞ −mTϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵhx2ðtÞ2i

p ; ð12Þ

which measures the deviation of the mean fibril concen-
tration [ψðtÞ] from the threshold (mTϵ), scaled by the root
mean square ofmϵ − ψðtÞ. Using this variable, we combine
expressions (9)–(11) to give our central result: an analytical
expression for the lag-time distribution in the linear noise
approximation of the master equation (2), which takes the
form of a Gaussian in r in the range −∞ < r < rð∞Þ [32]:

LðtÞdt ¼ dr=dtffiffiffiffiffiffi
2π

p
Z
e−½rðtÞ2=2�dt ¼ 1ffiffiffiffiffiffi

2π
p

Z
e−ðr2=2Þdr; ð13Þ

where Z ¼ erfc½−rð∞Þ=2�. Importantly, Eq. (13) allows us
to easily calculate moments of the lag-time distribution.
For example, to calculate the mean lag time hti and its
standard deviation σ, we express t and t2 as functions of r
and perform a Taylor expansion around r ¼ 0 (see the
Supplemental Material [16] for details). This gives

hti ≈ T and σ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵhx22ðTÞi

p
μϕðTÞ þ αnc

: ð14Þ

For most proteins, the fragmentation rate λ≡ kf is much
smaller than the net fibril elongation rate μ≡ 2kþctot; i.e.,
λ ≪ μ. If we also assume that no fibrils are present at time
t ¼ 0 (ϕ0 ¼ ψ0 ¼ 0), we can write a simpler expression for
the standard deviation of the lag time:

σ ¼ ð2=3Þ1=2
ðμλÞ1=4ðαNAVÞ1=2

: ð15Þ

Remarkably, Eq. (15) implies that the lag-time variance
scales in a simple way with the model parameters. Like the
mean lag time, the variance is predicted to scale asffiffiffiffiffi
μλ

p
∼

ffiffiffiffiffiffiffiffiffiffi
kfkþ

p
. Interestingly, however, the mean and
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variance of the lag time may show different dependencies
on the protein concentration ctot; while the mean scales as
c−1=2tot , in expression (15) for the variance this factor (which
arises from μ) is multiplied by an additional factor due to
the ctot-dependent nucleation rate α; the scaling of this
factor depends on the nucleus size nc.
It is important to note that results (13)–(15) hold only in

the regime dominated by growth, where fluctuations in n
andm are much smaller than their averages, for all times. In
contrast, for slow nucleation rates, a significant portion of
the lag time is spent waiting for the first nucleus to be
spontaneously created, which is a fluctuation-driven proc-
ess. We take this into account by convolving Lðt − t0Þ with
the waiting time distribution ðα=ϵÞ expð−αt0=ϵÞ for the
primary nucleation event, to give

L1ðtÞ ¼ ðα=ϵÞ
Z

t

0

dt0e−ðα=ϵÞt0Lðt − t0Þ; ð16Þ

where in the expression for Lðt − t0Þ we set ϕðt0Þ ¼ ϵ and
ψðt0Þ ¼ ncϵ (i.e., assume one fibril of size nc at time t0).
Figure 2 shows that the lag-time distributions predicted by
Eqs. (13) and (16) are in good agreement with the results of
stochastic simulations of the full model (which takes into
account fibril lengths), for several values of the primary
nucleation rate α. For relatively fast nucleation rates, our
“bare” LNA prediction LðtÞ [Eq. (13)] is sufficient (main
plots in Fig. 2); for slower nucleation rates (inset in Fig. 2),
Eq. (16) should be used instead (inset in Fig. 2).
For slow nucleation rates, we can separate the contri-

butions of primary nucleation and autocatalytic growth to
the lag-time variance in a simple way. Assuming LðtÞ can
be replaced by a Gaussian in t, we can use (14) to compute
the integral in (16) in a closed form which reveals that L1ðtÞ
has mean T1 and standard deviation σ1 given by

T1 ¼
ϵ

α
þ T; σ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϵ

α

�
2

þ σ2

s
: ð17Þ

Thus the lag-time variance is given by a simple sum of the
variance of the exponential waiting time distribution for the
primary nucleation event and the contribution from auto-
catalytic growth, given by Eq. (15).
Comparison with experimental results for bovine

insulin.—So far, the only available experimental data on
amyloid fibril nucleation in small volumes is that of
Knowles et al., who tracked the fibrillation of bovine
insulin in 52 microdroplets of volumes in the range
10–300 pl, using thioflavin T fluorescence [18].
Figure 3(a) shows the resulting lag times (red dots) as a
function of droplet volume, compared to our theoretical
prediction; the green line shows the mean lag time T1, and
the error bars show the standard deviation σ1, from
Eq. (17). No fitting parameters were used in this plot;
rather the parameters kþ, kf, and αwere taken directly from
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FIG. 2 (color online). The lag-time distribution LðtÞ for several
values of α, compared to that obtained by running 1000 indepen-
dent kinetic Monte Carlo simulations of the full stochastic model
(in which individual fibril lengths are resolved) [17]. From left to
right: α ¼ 50 (full line), 5 (dashed line), and 1.5 (dot-dashed line),
all in units of 10−15 mol=ðlsÞ. Inset: L1ðtÞ (dashed line) compared
to simulations for α ¼ 5 × 10−17 mol=ðlsÞ. The other parameters
are V ¼ 830 fl, MT ¼ 10% of ctot, ctot ¼ 100 μmol=l, nc ¼ 2,
kþ ¼ 5 × 104 l=ðmol sÞ, and kf ¼ 3 × 10−8 s−1.
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FIG. 3 (color online). (a) Volume dependence of the lag time for
the aggregation of bovine insulin in microdroplets of varying
volume (red dots) [18], compared to the mean (solid line) and the
standard deviation (error bars) from Eq. (17), using the following
values, which were obtained from Ref. [18]: T ¼ 104 min,
α ¼ 1=ð1.7 × 10−7NAÞ mol=ðl sÞ, kþ ¼ 8.9 × 104 l=ðmol sÞ,
kf ¼ 2 × 10−8 s−1, and assuming nc ¼ 2. (b) Corresponding
volume dependence of the standard deviation; the red dots are
six-point moving standard deviations from the experimental data,
and the solid green line is from Eq. (17). (c) Theoretical
predictions for the standard deviation σ1 as a function of volume,
relative to ϵ=α. The green (lower) lines correspond to the protein
concentration 30 mg=ml used in Ref. [18], while the blue (upper)
lines are for a higher protein concentration, 100 mg=ml, assum-
ing that αðctotÞ ∝ ctotnc [7]. In both cases, the dashed lines
correspond to (17), while the solid lines are calculated numeri-
cally from (16).
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the measurements of Ref. [18] (see also [33]). While there
are not enough experimental data points to plot a lag-time
distribution for any given volume, Fig. 3(a) shows that the
variability observed in the experiments is consistent with
our theory. This is further evidenced in Fig. 3(b), where
we plot directly the volume dependence of the standard
deviation.
We can also use our result, Eq. (17), to explore the relative

contributions of primary nucleation and autocatalytic growth
to the lag-time variability. Figure 3(c) shows our theoretical
prediction for the standard deviation σ1, relative to that for
primary nucleation only, ϵ=α. The relative contribution of
autocatalytic growth increases strongly as the volume
increases (although the total variability decreases with V).
For the protein concentration of 30 mg=ml used in Ref. [18],
primary nucleation is the main contributor. However, for
higher protein concentrations, we predict that autocatalytic
variability becomes significant even at smaller volumes, on
the scale of a human cell.
Conclusion.—We have presented an analytic expression

for the lag-time distribution, for a stochastic model of
autocatalytic protein self-assembly which includes nucle-
ation, elongation, and fragmentation. Our solution provides
simple scaling relations for the contributions to lag-time
variability due to primary nucleation and autocatalysis,
both of which can be significant under realistic conditions.
The implications of molecular noise for variability in
clinical outcomes between individuals, as well as the
possible connection to variability between replicates in
large-volume experiments [34], present interesting and
important directions for future work.
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