
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGENEERING AND COMPUTING

MASTER THESIS no. 1005

Long Read RNA-seq Mapper

Josip Marić

Zagreb, February 2015.

iii

Table of Contents

1. Introduction ... 1

2. RNA Sequencing ... 2

3. BBMap Alignment Method ... 6

3.1. Alignment Method Overview ... 6

3.2. Reference Genome Indexing .. 6

3.2.1. Index Creation .. 7

3.2.2. Index Usage ... 8

3.3. Reads Keys Generation .. 10

3.4. Important Terms Definitions .. 10

3.4.1. Key Hits .. 11

3.4.2. Triplets ... 11

3.4.3. Possible Read Alignment ... 12

3.5. Algorithm .. 12

3.6. Alignment Scoring ... 14

3.6.1. Possible Alignment Types .. 14

3.6.2. Location Array .. 18

3.6.3. Scoring function ... 22

3.7. Alignment presentation ... 22

3.7.1. Gap Array ... 23

3.7.2. String Representation .. 24

4. Alignment Method Improvements .. 25

4.1. Coverage Calculation ... 25

4.2. Two Phase Method ... 27

4.3. Read Realignment .. 27

4.4. Local Alignment Improvement .. 28

5. Evaluation and Results .. 30

5.1. Evaluation Metrics .. 30

5.2. Evaluation Parameters ... 31

5.3. Simulated Datasets ... 33

5.4. First Phase Evaluation .. 34

5.4.1. Evaluation Results ... 34

5.4.2. Comparison with BBMap .. 42

iv

5.4.3. First phase Evaluation Conclusion ... 43

5.5. Second Phase Evaluation ... 44

5.5.1. Evaluation with read length 2000 in the first phase 44

5.5.2. Evaluation with read length 500 in the first phase 49

5.5.3. Second phase evaluation conclusions 53

5.6. Read Realignment Evaluation .. 53

5.7. Best Solution and BBMap Comparison ... 57

6. Conclusion .. 59

7. Summary ... 61

8. Bibliography .. 62

v

List of Tables

Table 5.1: List of analyzed parameters .. 32

Table 5.2: Results of first phase evaluation .. 35

Table 5.3: Comparison of BBMap and developed tool ... 42

vi

List of Figures

Figure 2.1: Process of cutting intron region from pre-mRNA 3

Figure 3.1: Process of key creation .. 7

Figure 3.2: Usage of genome index ... 9

Figure 3.3: Read with kmers at certain positions .. 10

Figure 3.4: Example of perfect alignment ... 14

Figure 3.5: Example of alignment with single error ... 15

Figure 3.6: Example of spliced alignment ... 16

Figure 3.7: Example of alignment with false gap .. 17

Figure 3.8: Example of alignment with missing exon .. 17

Figure 3.9: Read with 9 hits being aligned to the genome 18

Figure 4.1: Coverage information for small part of genome.................................. 26

Figure 5.1: First phase metric results for high key density and low score cutoff ... 36

Figure 5.2: first phase metric results for high score cutoff and low key density 37

Figure 5.3: first phase metric results for high key density and high score cutoff .. 38

Figure 5.4: first phase metrics results for low key density and low score cutoff ... 39

Figure 5.5: Time and memory results of first phase evaluation 40

Figure 5.6: Execution time results for first phase evaluation for key 13 41

Figure 5.7: Execution time of BBMap and developed tool for 4 test sets 42

Figure 5.8: Hit rate of BBMap and developed tool for different test sets 43

Figure 5.9: Second phase metric results for high key density and low score cutoff

with uncut reads in first phase .. 45

Figure 5.10: Second phase metric results for low key density and high score cutoff

with uncut reads in first phase .. 46

Figure 5.11: second phase metric results for high key density and high score cutoff

with uncut reads in first phase .. 47

Figure 5.12: second phase metric results for low key density and low score cutoff

with uncut reads in first phase .. 48

Figure 5.13: second phase metric results for high key density and low score cutoff

with cut reads in first phase .. 50

Figure 5.14: second phase metric results for low key density and high score cutoff

with cut reads in first phase .. 51

vii

Figure 5.15: second phase metric results for low key density and low score cutoff

with cut reads in first phase .. 51

Figure 5.16: second phase metric results for low key density and low score cutoff

with cut reads in first phase .. 52

Figure 5.17: Distribution of read results for different values of THRESH_SCORE

parameter ... 55

Figure 5.18: Distribution of start-stop metric improvement for different values of

THRESH_SCORE parameter ... 55

Figure 5.19: Distribution of coverage metric improvement for different values of

THRESH_SCORE parameter ... 56

Figure 5.20: Execution time of realignment method ... 57

1

1. Introduction

Bioinformatics is an interdisciplinary field of science that combines computer

science, statistics and biology to process, analyze and study biological data. Its

primary goal is to develop methods and software tools that are used in various

areas of biology such as molecular biology, genomics and genetics. Annotating

genomes and analyzing gene and protein expression and regulation are just some

of the fields where bioinformatics plays great role.

A more specific part of bioinformatics is sequence analysis. DNA and RNA

sequencing is the process of determining the precise order of nucleotides within a

DNA or RNA molecule. Since the first sequencing tool was invented, thousands of

organisms have been decoded and stored in the databases. This information is

analyzed to determine genes, regulatory sequences motifs etc. The sequencing

methods have greatly improved in the past few years accelerating biological and

medical research and discovery. This also caused a great need for bioinformatics

tools and methods which are also rapidly developing in the past few years.

One type of biological sequences analysis is RNA sequencing that analyzes

sequences of RNA molecules obtained by different sequencing tools. This paper

will be concentrated on analysis of an RNA-seq tool BBMap and its usage with

long sequences of RNA molecules.

Chapter 2 will give a short summary on the RNA sequencing method, tools

and problems that occur with RNA sequences which are not found when

manipulating DNA sequences. Chapter 3 presents the method that BBMap tool

uses for RNA data which was reimplemented for the purposes of further analysis.

Chapter 4 presents some improvements to the method that were implemented and

tested. Finally in the chapter 5 analysis and evaluation of the method and

suggested improvements are given.

2

2. RNA Sequencing

RNA sequencing (RNA-seq) which is also called whole transcriptome shotgun

sequencing is the application of any of a variety of next-generation sequencing

techniques to study RNA [1]. Transcriptome is the set of all RNA molecules,

including mRNA, rRNA, tRNA and other non-coding RNA transcribed in a single

cell or a population of cells. RNA-seq reveals a snapshot of RNA presence and

quantity from a genome at a given moment in time. Since the transcriptome of the

cell continually changes, RNA transcripts in a cell, produced by RNA-seq, provide

the ability to detect changes in gene expression which, for example, can be used

in cancer studies [3]. Some of the other RNA-seq uses are: detection of alternative

gene splicing, detection of SNPs, determination of exon/intron regions and other

[2].

RNA molecules in a cell are transcribed from the DNA molecule. By knowing

the structure of the DNA molecule, reads, sequenced from RNA molecules, can be

mapped to the position in the genome where they were transcribed from.

Sequencers that sequence RNA molecules produce sequences of cDNA

molecules synthesized from mature mRNA or spliced mRNA. These sequences

are reverse complements of RNA molecules, but with DNA nucleotides. Spliced

mRNA is RNA transcript that has already been spliced and processed and is ready

for translation, while pre-mRNA is a single strand of mRNA synthesized from the

DNA template. Splicing is the modification of pre-mRNA in which some regions of

the pre-mRNA molecule are removed from the molecule. The remaining regions

form spliced mRNA. The removed regions are called introns, and the regions that

remain are called exons, as shown in Figure 2.1. Synthesized cDNA reads consist

exclusively of exon regions, because they are synthesized from spliced mRNA.

cDNA molecules have the same four bases as the DNA molecule, marked A, C, G

and T (short for adenine, cytosine, guanine and thymine). The problem of mapping

cDNA reads to the reference genome is similar to the DNA sequencing problem,

but since cDNA molecules have only exon regions, some of them can span over

two exons and contain big gaps. These types of reads are called spliced reads

and they make RNA sequencing more difficult than DNA sequencing.

3

Figure 2.1: Process of cutting intron region from pre-mRNA

When talking about RNA sequencing bioinformatics tools, there are several

characteristics they can be categorized by: the type of the reads they use and the

type of the mapping method they use. By the type of the reads they use, most of

the aligning tools are shot reads aligners. They use reads produced by second

generation sequencing platforms, such as Ilumnia, which sequence reads short in

length (50-700 bp), but have low error rate (0.5 – 5%). There are some mapping

tools that use reads from the third generation sequencing platforms such as

Pacific Biosystems RS. These reads can have average read length up to 10000

bp, but their average error rate can be over 15%. While short reads have a much

lower error rate, their mapping to the genome is prone to error because of the

repeating regions in the genome. Long reads have a smaller chance of being

mapped to many repeated regions in the genome. Also, accurate transcriptome

assembly, produced by short reads, is computationally more challenging. There

have been some attempts of using both short and long aligners to make

transcriptome assembly. In [6] an idea of narrowing down the regions in genome

where reads can be mapped by long reads and then error correcting these regions

by short reads is presented. The analysis of using long reads in RNA-seq is

4

debated in [5], where they state that long PacBio reads used for RNA-seq have

lengths ranging from 500-6000 bp with average length 2500 bp.

RNA-seq bioinformatics tools can also be categorized by the aligning method

they use in two main categories:

 short unspliced aligners – short aligners can align continuous reads, with no

gaps or splices, to the reference genome. They are based on the Burrows-

Wheeler method, such as Bowtie and BWA, or the Needleman-Wunsch or

Smith-Waterman algorithms. While the first group tends to be much faster,

second group aligns reads with more precision.

 spliced aligners – these aligners can align reads that are not continuous,

which have gaps and splices. They can use special methods to do this or

use unspliced aligners first and then a different strategy to align spliced

reads. These types of aligners can be divided in two groups considering

whether they are annotation-guided or not.

o annotation guided spliced aligners – these aligners detect splice

junctions on data available in databases about known junctions.

Some of the representing tools are RUM and SpliceSeq. However,

these tools cannot identify new splice junctions.

o de novo spliced aligners – this type of aligners can detect new splice

junctions and they are of great interest in this paper. Some of the

mostly used tools of this type are: BBMap, GSNAP, TopHat and

other [7] [8].

A research about de novo spliced aligners is given in [4]. In this paper BBMap,

GSNAP and TopHat are compared to the new developed RNA-seq tool by their

time and memory requirements and precision. All these tools are short read

aligners, although BBMap can also use PacBio reads. In [4] BBMap showed best

results in almost every test, and, while TopHat and GSNAP accuracy extremely

dropped with longer reads and higher average error rate, BBMap continued to

show acceptable results. A newly developed tool used in [4] used unspliced short

aligners to map unspliced reads, while rest of the spliced reads were mapped

using a different algorithm and heuristic knowledge about intron and exion regions.

5

It showed promising results, but its performance was still limited by short unspliced

tools it was using. This is why the motivation for this paper was to explore the

method for mapping RNA reads to the reference genome used by BBMap and to

analyze its performance using long reads sequenced by the third generation

sequencing platforms. In this paper, the BBMap aligning method was

reimplemented and tested in C++ programming language. The discoveries made

by this reimplementation were then used to explore possibilities of improving this

method even further.

6

3. BBMap Alignment Method

BBMap is a tool that offers various options for RNA and DNA alignment. The

sequence alignment method used by this tool is specific because it is splice-aware

and is therefore suitable for RNA-seq data and transcriptome assembly. This tool

uses short k-mers to align reads directly to the genome. It is highly tolerant of

errors and indels, and faster and more sensitive than TopHat. It supports short

reads, such as Illumnia, as well as long reads such as PacBio reads, paired or

single-ended. It doesn’t use any splice-site-finding heuristics, which is ideal for

studying new organisms with no annotation. This chapter will present a brief

introduction of the sequence aligning method that BBMap uses for aligning reads

to the reference genome. While the method is suitable for RNA-seq data, it can

also work with DNA data without any modification.

BBMap was implemented in the Java programming language with various

options for RNA and DNA mapping. The sequence alignment method used in

BBMap will be reimplemented in the C++ language, and will be called core

method, later referenced as CM. The whole process of aligning reads to the

reference genome will be called the alignment process.

3.1. Alignment Method Overview

The basic idea behind this method is the usage of short k-mers to map the

reads to the reference genome. Before reads are processed, the reference

genome is specifically indexed in the way that makes the locations of certain k-

mers easy to found. Also, before processing, every read is cut to a certain number

of small k-mers whose locations in the genome are found using this genome

index. These locations are used to determine the best alignment of the read, using

two special arrays: location array and gap array, which are explained later in this

chapter.

3.2. Reference Genome Indexing

The first step in the alignment process is the creation of the index of the

reference genome. The reference genome is indexed by small k-mers. BBMap

7

uses the default value 13 for the length of these k-mers, but this value can vary.

Shorter k-mers show more sensitivity, while longer kmers show much faster

execution time of the alignment process. The process of genome indexing can be

pictured as the process of scrolling the sliding window of length KEYLEN along the

genome for every base of the genome, as shown in Figure 3.1. For every k-mer,

that is, for every array of KEYLEN bases that are in the current sliding window, a

key k is generated. Key generation from KEYLEN bases is done by coding every

nucleotide base with two bits. For example: base A can be coded with code 00,

base C with code 01, base G with code 10 and base T with code 11. This way,

every different sequence of bases of length KEYLEN can be expressed with

2*KEYLEN bits. That bit sequence can further be expressed with integer values

from the interval [0-2^(2*KEYLEN)], which means that every different k-mer has a

corresponding integer from that interval. Figure 3.1 shows the example of

calculation of key values for four k-mers of length 13.

Figure 3.1: Process of key creation

3.2.1. Index Creation

The genome index consists of arrays: sizes and sites, whose creation will be

explained in this subchapter. Index creation could be divided into three small

steps.

The first step of index creation starts by counting the number of occurrences of

all keys created from the genome. Keys are created as explained in subchapter

above. For this purpose temporary array temp of size 2^(2*KEYLEN) is allocated

and filled with zeroes. Every occurrence of key k is counted by adding 1 to the

element at the position k in the array.

8

The second step of index creation builds the first array that is the index, array

sizes. This array holds accumulated sums of elements of the temporary created

array temp in previous phase. First element of sizes array holds the value 0,

second element holds the value of the first element of temp array; third element of

sizes is the sum of first and second element of temp and etc. For example: array

temp with values {1,3,5,0,4} will produce array sizes with values {0,1,4,9,9}. In this

example the genome has been indexed with 13 keys whose occurrences were

counted in temp array.

Third step of index creation builds the second array of genome index. This

array is named sites and its size is equal to the sum of the elements of temp array.

For the array temp from the example above, array sites would have size of 13. An

array sites has the locations of the keys in the reference genome (generated in the

first phase of index creation). Since there are 13 keys in this example, the array

sites will have 13 elements, where the value of each element is the location of the

corresponding key in the reference genome. At which position in sites will the

location of key k is put, is decided by next procedure:

For every key k whose starting location in the genome is loc:

- take the value v from sizes at position k

- put the value loc in the sites array at position v

- in array sizes increment the value at position k by 1

After this procedure is done, the array sizes has to be restored to the state it had

before the procedure, by shifting the content by one to the right and setting the first

element to zero. The array sites now holds the locations of every key at certain

positions.

3.2.2. Index Usage

The purpose of the genome index is to enable quick lookup of all locations of a

kmer k in the reference genome. With these two arrays, that can be done by

fetching the value v1 from the sizes array at position k and value v2 at position

k+1. Value (v2 – v1) is the number of occurrences of k-mer k in the reference

genome. Value v1 is the position in the sites array where the first location of k-mer

9

k in the reference genome is stored. All other locations of k-mer k in the reference

genome can be fetched by traversing through sites from position v1 to position v2-

1.

Figure 3.2: Usage of genome index

Figure 3.2 shows the idea behind the genome indexing. The positions in the

sizes array are values of keys generated from the genome as explained in

subchapter above. For every key value k, at position k, in the sizes array, the

position in the sites array where the first occurrence of that key k is in the genome,

is stored. In example in Figure 3.2, key 0 has two hits in the reference genome,

whose locations are stored in the array sites at positions 0 and 1. The first

occurrence of key 0 is at location 16 in the reference genome, and the second

occurrence is at location 123. Key 1 also has two hits, while key 2 has four hits

with locations stored in array sites from positions 4 to 7. Key 4 has no hits, which

can also be seen in the Figure 3.2. It is clear now that by knowing the value of the

key k generated from k-mer K, locations of k-mer K in the genome can be found by

fetching the value v from sizes at position k, and value v2 at position k+1, and by

traversing through array sites from position v to position v2-1.

10

3.3. Reads Keys Generation

The reference genome index is something that the alignment method uses while

mapping reads to the reference. Before the mapping process starts, every read

that is being mapped also has to be preprocessed. Figure 3.3 shows one read with

length 100 that is being aligned to the reference genome.

Figure 3.3: Read with kmers at certain positions

Similar as in genome indexing, keys will be generated from the read by coding

corresponding k-mers to 2*KEYLEN long binary numbers, but not for every base

of the read. The read in Figure 3.3 is being cut to k-mers of size 13 at every 6th

position. This generates 15 k-mers in total and also, 15 keys generated from those

k-mers. In general, starting positions of k-mers used in generating keys from the

read are called offsets. In Figure 3.3 the read has offset values { 6, 12, 18, 24, 30,

36, 42, 48, 54, 60, 66, 72, 78, 84 }. The number of keys generated from one read

can vary, but the usual number of keys for read of size 100 is 15.

3.4. Important Terms Definitions

This subchapter presents the definitions of some important terms that are used

in CM. CM uses genome index explained in the chapter 3.2 and read keys

explained in the previous chapter. It is important to note that all steps of the CM

are also done for the reversed complement of the read as well. For the reversed

complement of the read, reversed offsets and keys are generated and the rest of

11

the method continues the same for both cases. Before explaining the algorithm

itself, the notion of key hit, triplets, and one possible alignment will be presented.

3.4.1. Key Hits

Key hits are the occurrences of keys, generated from the read, in the reference

genome. Once the keys are generated from the read, some of them will have hits

in the genome, and some will not. For every key k of the read r, values v1 and v2

are looked up in array sizes at positions k and k+1. The number of hits of the key k

is v2-v1. Position in sites array where the location of the first occurrence of key k in

the genome is stored is v1. Values v1 and v2 are all that is needed to fetch all hits

for key k in the genome. By doing this for every key k of the read r, the number of

total key hits for one read can be counted.

3.4.2. Triplets

Triplets are structures which are a representation of key hits. They are used in

CM and they have three values: column, row and site, which are sufficient to

describe every key hit. For every key of the read that has hits in the genome,

every key hit of that key can be represented by a corresponding triplet. Value of

the column is the id of the key hit and it corresponds to the ordinal number of the

key of that key hit. Row is the value v1 of the key hit, as noted in the paragraph

3.4.1. Row is the position in sites array where the location of occurrence of the

actual key hit of the corresponding key, in the genome, is stored. Third value, site,

is the value at position v1 in array sites, subtracted by offset value of the

corresponding key.

Using the example shown in the Figure 3.3 it is clear that offset values of read r

are { 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84 }. Key with offset value 24

will be denoted as key k. If that key has more than zero hits in the genome, array

sizes will have value v at position k and array sites will have value loc at position v,

which corresponds to the first hit of the key k in the genome. Triplet t that

represents this key hit will have values: column = 3, as it is the ordinal number of

the key k, row = v and site = loc -24, because the value of offset for key k is 24.

12

3.4.3. Possible Read Alignment

After describing how to generate keys from the read, how to find and count hits

of those keys in the genome and how to represent those key hits, it is important to

define what makes one possible alignment of the read or what makes the result

aligning one read to the genome. If the currently aligning read is denoted as r, that

read has multiple keys created from the read: { , , …, }. Every key , can

have hits in the genome.
 hit of the key is denoted as . The s et

 can then be defined as set of , where is the number of hits

key has. All elements of every Cartesian product of every combination of sets

 create the set S. Set S contains elements of the Cartesian product of only one

set , as well as elements of Cartesian product of all sets . For example, it

contains elements of Cartesian products of sets: , , and and

products of every other combination of sets . Elements in S are actually all

combinations of key hits of keys generated from read r but every element of set S

does not contain two key hits of the same key. Every element of set S is one

possible result of CM and from that set, a resulting alignment of read r can be

created. But, not every element of set S is an equally good alignment. There is a

need to define how the elements of set S will be scored, which properties of key

hits in one possible alignment make a good alignment and how will that set of key

hits produce read alignment. It is also necessary to define an algorithm for

searching the best alignment, since the space search of all elements of set S

would be computationally too complex. This algorithm is defined in the next

subchapter, while two more arrays: location array and gap array are presented in

two subchapters after that, because they are crucial in alignment scoring and in

producing the resulting alignment.

3.5. Algorithm

The algorithm of the CM will be presented in this chapter. The algorithm starts

by creating triplets for every first hit of every key that has at least one hit in the

genome. This set of key hits is an element from set S that is used as the starting

element of the algorithm for the currently processed read. Every created triplet has

a column that says which key it was built from, row value which holds the position

13

in the sites array where the location of the hit in the genome is saved, and site

value which is the location of the hit in the genome subtracted by the offset of the

corresponding key. The lowest site value of currently built triplets is denoted

low_site. The subset of triplets with site values higher or same as low_site and

lower than low_site+MAX_INDEL is one possible alignment of the currently

processed read. These triplets are scored by the scoring function and if they have

a higher score than some CUTOFF value, a resulting alignment is built from these

triplets. The MAX_INDEL value is usually set to 32000 and it represents the

maximum length of the currently processed read’s alignment. Because of that, key

hits should span at the interval of MAX_INDEL. That is why only a subset of

triplets from that interval is considered as a possible alignment. This part of the

algorithm is called Triplet Scoring.

The next step in the algorithm is the transition from the current set of triplets to

the next set of triplets, or in other words, from one element of the set S to the next

element of set S. This is done by incrementing the row value of every triplet in the

current set by 1, and fetching the value from array sites at position of the new row

value of the triplet, subtracting it by the offset value of the corresponding key, and

storing that value as a new site value of the triplet, for every triplet whose site

value is equal to low_site. In this way, the site value of the changed triplets will

have the value of next location of the hit in the genome of corresponding key. If

some triplet’s corresponding key does not have any hits left, it is removed from the

set. This step of the algorithm is called Triplet Translation. After Triplet Translation,

algorithm repeats the Triplet Scoring step again. The algorithm ends when all

triplets are removed from the set, which means that all key hits were processed.

This algorithm can find more possible solutions, but the best scoring solution is

considered as the resulting alignment. Using these steps, the alignment method

processes subsets of key hits looking for the best alignment. The way the subset

of key hits is scored and the way an alignment solution is built from that set of key

hits is explained in the next two chapters, where a brief summary of location and

gap array usage is presented.

14

3.6. Alignment Scoring

This chapter presents the scoring function of one possible alignment which is

presented by a set of key hits. Theoretically, every set of keys can make a

possible alignment, but sets with few key hits, or sets with key hits that are not

close to each other in the genome, should be valued with low scores. Sets of key

hits with many key hits close to each other should be valued with high scores. The

process of scoring the set of key hits is done in two phases: creation of the

location array and scoring of the created location array. Before these steps are

presented, different characteristic types of sets of key hits will be discussed.

3.6.1. Possible Alignment Types

3.6.1.1. Perfect unspliced alignment

Figure 3.4: Example of perfect alignment

Figure 3.4 shows the set of key hits for the read shown in Figure 3.3. This read

is not spliced, and in this figure, all 15 keys have hit the genome at the location

they were actually sequenced from. This alignment is the example of a perfect

read alignment. All triplets that were created form these key hits have the same

site value which is in this case the value of the start of the read in the reference

genome.

15

3.6.1.2. Unspliced alignment with errors

Figure 3.5: Example of alignment with single error

An example of alignment when substitution, deletion or insertion occurs in the

read is shown in Figure 3.5. This time the processed read has an error somewhere

between the 18th and 24th nucleotide as shown in Figure 3.5, with two key hits

marked with red color. These key hits would exist if there was no error in the read,

but since the read has an error these two keys will not hit the genome at those

locations. Two red keys have hits with site value not equal 15000, their site values

are somewhere on the right in the genome, greater than 15100. In case of

substitution all black key hits will have site value equal 15000. In case of deletion

first two black key hits will have site value equal 15000 while other black key hits

will have value 14999. In case of insertion first two key hits will have site value

15000 and other will have 15001. This is the simplest example of alignment with

one error. More errors make an alignment more complicated, but the principle of

key hit locations is the same.

16

3.6.1.3. Spliced alignment with no errors

Figure 3.6: Example of spliced alignment

Figure 3.6 shows the third type of read alignment with spliced read. In this case,

the first part of the read was transcribed from the reference genome from location

15000 to location 15050, and the second part of the read was transcribed from

location 16050 to location 16100. This read has spanned over two exon regions.

Triplets built from first seven key hits have site value 15000. Two key hits marked

with red, did not hit genome at locations they are drown in the Figure 3.6. The

rests of the black hits have their corresponding triplet sites values 16000. This is a

common type of alignment with one big gap between several close key hits. This

type of alignment is not scored with low score value as it will be explained in next

subchapter, but this alignment can also have substitutions, deletions and

insertions which will further lower its score value. The building and scoring of

location array which will be explained in next subchapter is the reason why this

method can detect gaps and align spliced reads as well as unspliced reads.

17

3.6.1.4. Spliced alignment with false gap

Figure 3.7: Example of alignment with false gap

Figure 3.7 shows another example of alignment which is similar to the example

above. The read in the example is spliced and has one gap, but in this example,

two keys marked red have hit the genome further on the right at positions 15510

and 15523, because they have some errors. This alignment will be interpreted as

alignment with two gaps and three exon regions, which is false. This is an example

of wrong alignment discovery because of the errors in the read. The probability of

this happening is higher the shorter the keys are and this is why shorter keys will

not always be more precise than longer keys and they tend to find more exon

regions than there really are.

3.6.1.5. Spliced alignment with missing exon

Figure 3.8: Example of alignment with missing exon

18

The last example of common alignment that will be explained in this work is

shown in Figure 3.8. This example shows an alignment where opposite situation

occurred than in the example above, an exon region was skipped. The read in this

example spans over three exon regions, but two red keys have not hit the genome

at those positions because of errors. This is why this exon region will not be

recognized and will be skipped. This will happen more often with longer keys

because there is a higher probability that more keys will be affected with one error.

This shows that smaller and longer keys both have their weaknesses and

advantages and that the density of keys also has a high effect on how accurate

alignment will be.

3.6.2. Location Array

Location array is the main structure used in the whole alignment process. It is

built out of the set of key hits and it is used in scoring the set of key hits. It is also

used in building the resulting alignment. Location array has the size equal to the

size of the read, which will be denoted as READ_LENGTH, and it is first filled with

value at all positions.

Figure 3.9: Read with 9 hits being aligned to the genome

19

Figure 3.9 shows an example of possible alignment where first 4 keys did not

make a hit because of substitution or deletion or insertion. Keys with offset value

54 and 60 hit the reference genome, but at some location in the genome more

further on the right, because a substitution occurred on nucleotide 63. This

example will be used to show how the location array is built from this set of key

hits and how the score of alignment is calculated. All key hits in black color have

site value equal 15000 and this is also the low_site value for this set of key hits.

Keys that are marked red might have no hits in the reference genome at all, or

they might have hit the genome at some location that is further on the right from

locations 15000 and 15100. For the purpose of this example it will be assumed

that the first four keys have no hits. The filling process starts with the first key hit,

which in this example is the key hit with offset 24 (this doesn’t have to be the key

hit with low_site value). For this key hit, all bases from the interval [24 + KEYLEN -

1, 0] in the read, and bases from the interval [15000 + 24 + KEYLEN – 1, 15000] in

the genome are compared (since 15000 is the site value of triplet created from key

hit with offset 24). In this case all bases in the read are equal to the bases in the

reference genome at all corresponding locations from those intervals. For every

matching base at one position in the read, a site value of current key hit’s triplet is

put in the same position in location array. In this case site value of key hit with

offset 24 is 15000 and that value is put in the location array at positions [24 +

KEYLEN -1, 0]. After processing the key hit with offset 24, location array has a

value of 15000 at locations [0,24+KEYLEN-1] and values -1 at locations

[24+KEYLEN, READ_LENGTH]. For the first processed key hit, comparison of

bases is always done all the way to the beginning of the read regardless of the

possible bases mismatch. In case of mismatch, value -1 is left in the location

array.

This process is repeated for the next key hit with offset 30; comparison of bases

in read from the interval [30 + KEYLEN -1, 0] and bases in the genome from the

interval [15000 + 30 + KEYLEN -1, 15000]. Site value of triplet of this key hit is

also 15000 and that value will be filled in the location array where matches of

bases occurred. Filling of location array will start at position (30 + KEYLEN – 1)

and continue descending until position (24 + KEYLEN - 1) is reached. Array the

20

filling stops at that location because there is already value that is not -1. After

second key hit is processed, the location array is filled with values 15000 at

positions [0, 30 + KEYLEN – 1] and with values -1 at positions [30 + KEYLEN,

READ_LENGTH]. Using this explanation, the first general rule of location array

filling can be presented:

 For every key k with offset o, that has hit h in the genome, whose triplet t

has site value s, the substring of read r from interval [o + KEYLEN – 1, 0]

and the substring of genome from interval [s + o + KEYLEN – 1] are

compared base by base. For every match at location loc, location array is

filled with value s at position loc if the current value at location loc is -1.

For mismatch, the first processed key the value value -1 in the location

array, and continues the process to the beginning of read. Every other

key stops the process at first mismatch or if the location array is already

filled with the same site value.

Continuing the analysis of this example, a situation where an error is reached

occurs. Red keys with offsets 54 and 60 have key hits whose triplets have site

values 17000. For these key hits the first rule of location array filling is done,

where the location array is filled with value 17000 at all positions where there is no

error. The location array is filled with value 17000 from position (54 + KEYLEN - 1)

to position (48 + KEYLEN - 1) and from position (60 + KEYLEN - 1) to position (54

+ KEYLEN - 1). The key hit with offset 66 will fill the location array with value

15000 at positions [66 + KEYLEN -1, 64]. The process will stop at position 63

because that is where substitutions occurred. All remaining key hits will fill the rest

of location array with 15000.

This phase of the location array filling is called reverse location array filling. The

location array is fully filled after the second phase of location array filling is done

and it is called forward location array filling. Forward location array filling is similar

to reverse filling, but in forward filling read and genome bases comparison is done

in ascending order. Second general rule of location array filling is:

 The location array is filled forward and reverse. In reverse location array

filling, for every key hit h with offset o and site s, comparison between

21

read at positions [o + KEYLEN – 1, 0] and genome at positions [s + o +

KEYLEN -1, s] is done. Both forward and reverse location array filling

have the same first general rule.

In this example, a specific situation occurs when the key hit with offset 48 is

processed in forward location array filling. When applying the first rule of location

array filling, this key hit should fill the location array with value 15000, which is

low_site value, from position (48 + KEYLEN - 1). This time the location array will

not have value -1 at those position, but value 17000. Since this key hit has site

value equal to low_site, it will overwrite values 17000 in location array and this

makes the third general rule of location array filling:

 If the triplet of current key hit has site value that is equal to the low_site

value, when filling the location array by applying the first general rule of

location array filling on this key hit, all other values in location array that

are not equal to low_site, are overwritten by low_site.

After finishing reverse and forward location filling, the location array will be filled

with value 15000 at positions [0, 62] and [64, 100], and the value at position 63 will

be value -1.

When applying this process for alignment with a big gap, as shown in Figure 3.6

the location array will be filled with values 15000 at locations [0, 49] and with value

16000 at locations [50, 100]. It can be seen from these examples that for

alignments with key hits that are close to each other and that have a small amount

of errors, the location array will be filled with similar site values. Alignments that

have key hits with lots of errors and which are dispersed will have a location array

with many different site values and with values -1. Alignments with a small number

of big gaps between key hits will have few sequences of same site values in the

location array. The structure of the location array suggests the structure of the

alignment. The score function could be developed so that it values location arrays

with uniform values at some intervals with high score. This scoring function will be

presented in next chapter.

22

3.6.3. Scoring function

Filled location array is the most important structure of the CM and it is used to

score an alignment and later to make an alignment representation. Calculating

score of the location array is done by traversing through the array and processing

every element of location array. At the beginning the score is set to zero and every

processed element of location array adds or subtracts from the current score

value. For every element:

 If the element is less than zero a substitution has occurred and some

SUB penalty is reduced from the score.

 If the element is greater or equal to zero and if its value is equal to the

previously processed element, this means that match has occurred and

some positive MATCH value is added to the score.

 If the element is greater or equal to zero and if its value is greater than

previously processed element, that means that an insertion has occurred

and some INS penalty is reduced from the score. INS penalty is modeled

so that its value is higher the greater the difference between the previous

and current element is, because big insertions should not happen.

 If the element is greater or equal to zero and if the value is lower than the

previously processed element, this means that deletion occurred and

some DEL penalty is reduced from the score. Contrary to the insertion

case, big deletions should be common in spliced reads and should only

be slightly higher than singular deletions. This is why penalty should be

adjusted in the way that big gaps are acceptable as single deletions are.

Modeling scores of penalties of insertions and deletions is a topic that could be

further discussed but that would exceed the limits of this thesis. That is why these

values will be taken from the current BBMap implementation.

3.7. Alignment presentation

So far one possible alignment was presented by set of key hits and with a filled

location array. A function was constructed for scoring a filled location array and the

best scored location array was chosen as the resulting alignment of the processed

23

read. Now this final alignment presented by location array will be presented by the

final form which is consists of:

 starting position of alignment

 stopping position of alignment

 score of alignment

 gap array

 match string

The starting position of an alignment is equal to the low_site value. Stopping

position of an alignment is equal to the maximum value in the location array

increased by the size of the read. The score of the alignment is the score of the3

location array presented in the chapter above. Gap array and match string are two

more elements of alignment presentation which will be explained in the next

chapter.

3.7.1. Gap Array

The gap array is a structure that is the part of alignment representation, which

has more than zero elements if the alignment contains splices. It is created from

the filled location array. It is considered that an alignment has splices, or big gaps,

if the difference between two nonnegative adjacent elements in the location array

is greater than the MINGAP value. This value is usually set to 256 because that is

the minimal size of intron regions. Before the gap array is built, the location array

is transformed in the way that every element not equal to -1 is increased by the

value of its position in the array. For example, if the location array has values

[15000, 15000, 15000, -1, 15000, 16000, 16000, 16000], then after the

transformation, it will have values [15000, 15001, 15002, -1, 15004, 16005, 16006,

16007]. Every element that has value -1 is replaced by value of the previous

element increased by 1. For the previous example, the location array will now

have values [15000, 15001, 15002, 15003, 15004, 16005, 16006, 16007].

In this example, only one gap will be detected because elements at position 4

and 5 have difference 1001, which is greater than MINGAP. If the number of gaps

is g, then the gap array has 2*g+2 elements. The first element of the gap array is

24

the value of the first element in the location array, which is 15000 for this example.

The last element of the gap array is the value of the last element in the location

array, which is 16007 for this example. Other elements are values at positions in

the location array, where big gaps appeared. In this example there is only one big

gap at positions 4 and 5 with values 15004 and 16005. Finally, the gap array for

this example is [15000, 15004, 16005, 16007]. The gap array is the fourth part of

the resulting representation of the alignment. All exon regions and big gaps that

were recognized by the alignment method are stored in the gap array and can be

used in analyzing the solution and in creation of string representation of the

alignment.

3.7.2. String Representation

For the purpose of making the string representation of the resulting alignment

one local alignment method was implemented in this work. The idea of string

representing the alignment was used in BBMap where the Needleman-Wunsch

algorithm with affine gaps was used to make the match string from the resulting

alignment. This method is suitable for spliced reads and it is also an example of a

local alignment method that uses results from CM and then produces an alignment

that is more precise. The idea of using local alignment for further improvement of

results is presented in a later chapter. The analysis of this method was not done in

this work because it would exceed the scope of this research.

25

4. Alignment Method Improvements

In the previous chapter a CM that BBMap uses was presented. This method

was reimplemented in this work. The inputs of the method are: reference genome

and a set of reads that are mapped to the reference genome. Output of the

method is a set of resulting alignments of the reads that the aligner was able to

map. Starting and stopping position of alignment, score of alignment and gap array

make a resulting presentation of an alignment. In this chapter various options of

improvement of CM are considered. Some of these improvements are

implemented and analyzed in the next chapter, and some of them are left for

future analysis.

4.1. Coverage Calculation

The first novelty in the alignment process is the introduction of coverage

computation. In RNA sequencing, coverage refers to the number of times a

nucleotide is read during the sequencing process. Coverage is the average

number of reads representing a given nucleotide in the reconstructed sequence

[4]. Data from the alignments of the mapped reads can be used to calculate the

coverage of bases in the reference genome. For every resulting alignment

 , a gap array has exon regions , where every exon region

 has number of bases where every base has position in the

genome. If the whole genome is denoted as G and one base of genome at

position p is , then total coverage C of the genome is an array whose length is

the same as the length of the genome and whose content can be computed by the

following expression:

26

Figure 4.1: Coverage information for small part of genome

Figure 4.1 shows the computed coverage for bases of the genome from position

870000 to position 880000. It can be seen that some regions of this part of the

genome have high coverage up to value 100. Regions around bases 875000,

876500 and regions from position 877500 to 878800 and from position 879100 to

880000 are candidates for exon regions. Some of the regions have coverage

value around 20, which suggests possible errors in certain number of reads. This

coverage information could be used to reduce the search space from the whole

genome to some subpart of the genome. The main idea behind this improvement

technique is to use the coverage information to make a new reference genome

which would include only high covered regions of the whole reference genome and

then use other improvement methods like the two phase method or the read

realignment method which will be presented in next two chapters.

Coverage computation offers many possibilities and this alone only could be a

topic of a whole new research, but in this work, only a small research of coverage

information will be given and used to analyze other method improvement

possibilities. In this work, new reference production from coverage information was

done by cutting out the reference genome regions with low coverage. The problem

in creation of new reference is to determine what the regions with low coverage

are and what the regions with high coverage are. Three parameters were

introduced to achieve that: COV_THRESH, COV_PADDING and COV_GAPLEN.

27

COV_THRESH is the minimal value of coverage one base has to have to be

considered a base with high coverage. COV_GAPLEN is the minimal gap size

between two bases with high coverage such that the region between them is

considered a region with low coverage information. This region is then cut from the

genome but the endings of the region with size COV_PADDING are included in

the new reference genome because of the possible errors of coverage

computation. The values of these parameters determine how of the genome will

be included; higher COV_THRESH value cuts more of the genome including only

exon regions in the new reference genome. Low COV_THRESH value includes

more areas around the exon regions in the new reference genome. Low

COV_GAPLEN value excludes small islands of low coverage information, while

high COV_GAPLEN value only excludes regions that have low coverage

information over greater area of genome, probably only excluding regions with no

gene activity and including intron regions.

4.2. Two Phase Method

The two phase method is the idea of improving CM by executing the CM two

times where every execution of CM is one phase of a method which is called the

Two Phase Method (TPM). This is the simplest idea of improvement of CM where

reads unaligned in the first phase of TMP are aligned in the second phase of the

TPM. Second phase of the TMP is same as the CM, but executed under different

conditions and with new additional information gained from the first phase of TPM.

New conditions and information in the second phase should result in alignment of

the reads that were not aligned in the first phase of TMP. In this work an

implementation of TMP was done where the second phase of TMP is executed

using new reference genome built from the coverage information presented in the

chapter above mapping the reads that were not mapped in the first phase of TMP.

A detailed analysis of this improvement method is given in chapter 5.

4.3. Read Realignment

Another possible improvement of CM is read realignment. This could be

considered as the further improvement of the TPM or as another variant of second

28

phase of TMP. Read realignment is an improvement idea where some of the reads

that are mapped in the first phase of TMP are realigned in the second phase of

TMP. This is done because some of the reads that had low score alignment with

low precision and quality could produce better alignment with higher score after

being aligned with additional information and new conditions. This improvement

could be achieved with realigning reads with low scored alignment to the new

reference genome produced from coverage information. If the realignment of the

read produced an alignment with better score, that read’s resulting alignment from

the CM or TFM is replaced with the resulting alignment from the realignment

method. This improvement method raises questions about the THRESH_SCORE

parameter, which is the score that determines low and high quality alignments.

Reads with alignments scored below the THRESH_SCORE value are considered

low quality reads and are included in the realignment process. The coverage

computation that produces a new reference and conditions under which

realignment is executed both have effect on the realignment method, but it will be

interesting to analyze how the THRESH_SCORE parameter improves results of

the whole alignment process. An analysis of a percentage of reads that have

better score, a percentage with worse score and the ones that cannot be realigned

in the realignment method will be given in chapter 5. Also, the realignment method

can be used as a substitution for the second phase in TPM, but it can also be

executed alongside TPM to produce possibly even better results. This possibility

will also be analyzed in chapter 5.

4.4. Local Alignment Improvement

Local alignment is conceptually different than other improving methods

presented above. Methods above can use other heuristic information to improve

their performance such as donor-acceptor statistic as presented in [4], but their

main concept is to use additional information and different conditions to execute

CM on some new subset of reads. Local alignment is an improvement idea that

uses the results of core BBMap method or of some of the improvement methods

presented above and then executes another method to improve resulting

alignments. It does not use CM and does not produce new alignments, but it

29

improves already produced alignments. The idea of local alignment improvement

is based on the assumption that the preceding method has found the starting and

stopping points of an alignment with great accuracy. If that is the case, then some

local alignment could use that region of the genome to align the read more

precisely to the genome and especially to detect the gaps and exon regions of the

alignment more accurately. One example of local alignment that could be used to

improve the resulting alignments is Needleman-Wunsch with affine gaps. This

algorithm is suitable since it can detect big gaps in the alignment. An

implementation of this algorithm was done in this work for the purposes of finding

the matching string of the resulting alignment. An analysis of variations of this

algorithm, as well as analysis wheter some other local algorithm would produce

better results are a topic for further research.

30

5. Evaluation and Results

In this chapter an analysis of performances of the BBMap aligning method and

an improvement methods is given. First, some metrics of quality of alignment

methods are defined, after which parameters which will be evaluated are

presented. After that, detailed evaluation of performance and accuracy of both

phases of TFM are given followed by an evaluation of the read realignment

method. Reimplemented core BBMap method is compared with the original

BBMap tool and the best developed improvement method is also compared with

BBMap tool. The developed tool can map DNA and RNA data, both stranded, not

depending on the read length. Short reads can be mapped with high precision, but

the tool was tuned so it can map longer reads with much higher error rate.

5.1. Evaluation Metrics

Before diving further into evaluation of different mapping methods, three

evaluation metrics will be presented: hit rate, start-stop accuracy and coverage

accuracy. These are different metrics for measuring precision and accuracy of the

alignment method. For an aligning method, which maps R reads to the reference

genome, the following metrics are defined:

 hit rate – the number of reads for which the alignments were found,

divided by the total number of reads

 start-stop accuracy – this metric measures how precise a method can

map starts and stops of the read to the right location. A start/stop is

considered to be mapped precisely if the absolute difference between

mapped start/stop and correct start/stop location is less than 15. There

are four parts of the metric:

o start accuracy – number of reads with precisely mapped starts,

divided by the number of aligned reads.

o stop accuracy – number of reads with precisely mapped stops,

divided by the number of aligned reads

o start-or-stop accuracy – number of reads with precisely mapped

either starts or stops, divided by total number of aligned reads

31

o start-and-stop accuracy – number of reads with precisely mapped

both starts and stops, divided by total number of aligned reads.

 coverage accuracy – metric that counts the percentage of bases in the

resulting alignment whose locations in the genome are correct. The

resulting alignment’s gap array holds the found exon regions. The total

number of bases in these exon regions is the number of found bases. By

comparing these regions with the correct exon regions, the total number

of overlapping bases can be found. By knowing the total number of all

bases being mapped and the total number of basis that were aligned,

two parts of this metric can be expressed:

o coverage amount – the number of overlapping bases divided by

the total number of bases of all aligned reads

o coverage precision – the number of overlapping bases divided by

the total number of found bases of all aligned reads.

These three metrics show different properties of some alignment method. Some

methods will have a big number of hits and high hit rate, but low coverage and

start-stop accuracy. Other methods will have high coverage or start-stop accuracy,

but will have too few hits and thus low hit rate. Great alignment methods will have

high hit rate, but with high start-stop and coverage accuracy. Start-stop accuracy

is important to evaluate because it shows how good is the method in finding starts

and stops of the read in the genome. Methods with high start-stop accuracy could

have potential for further improvement with local aligners. Coverage accuracy

shows how good the method is in producing highly precise coverage information.

Methods with high coverage accuracy will produce quality coverage information

used to build new reference genomes for TFM and the realignment method.

5.2. Evaluation Parameters

Alignment methods evaluation will not only measure time and memory

performance and accuracy of the methods, but will also give analysis of certain

parameters whose value can highly affect the results of the method. Most of the

parameters for the CM were taken from the BBMap implementation, but since

BBMap has two modes of work, one for short reads and one for PacBio reads,

32

there are some parameters that had to be further analyzed. List of the parameters

that will be further analyzed and tested is given in Table 5.1.

Name Description Usage Domain

KEY_DENSITY

Set of constants that
determine the number of

keys created from the
read

Core method, TFM,
realignment method

{low density,
high density}

SCORE_CUTOFF
Alignments with score
below this value are

discarded

Core method, TFM,
realignment method

{low cutoff,
high cutoff}

KEYLEN Length of the key
Core method, TFM,
realignment method

{9,10,11,12,13}

READLEN

Desired size of the read.
Every read is cut in

pieces with maximum
size of READLEN

Core method, TFM,
realignment method

{500, 2000}

THRESH_SCORE

Reads with alignments
scored below

THRESH_SCORE value
are considered low

quality reads and are
included in realignment

process

Realignment method [0..1]

Table 5.1: List of analyzed parameters

KEY_DENSITY and SCORE_CUTOFF are sets of parameters that determine

how many keys will be generated for one read and how high the score of an

alignment has to have to even be considered as a result. These parameters are

taken from the BBMap alignment method. Low density and high score cutoff were

used in alignment of short reads and high density and low cutoff were used in

alignment of long reads with more error rate. Tools implemented in this work will

be evaluated with all combinations of values of these parameters to check for

which parameters it works best. High density should give higher hit rate, but would

also have higher execution time. High score cutoff would produce less alignments,

thus lower hit rate, but the produced alignments would be more precise. Which

combination of these parameters is the best will be evaluated in the following

chapters.

33

KEYLEN is the key parameter for every method because it highly affects the

precision and performance of the method. Methods using longer keys have lower

execution time and have fewer exon regions found. Methods with shorter keys

have longer execution time, but find more exon regions and tend to be more

sensitive.

READLEN is another key parameter because CM shows different results for

different lengths of the reads. Longer reads have less probability of not being

mapped, while shorter reads have a more precise resulting alignment. In this work

two read lengths will be analyzed: reads with length 500, which is the maximum

value of the read length BBMap uses, and reads with length 2000, which is the

average read length of reads produced by PacBio RNA-seq sequencers.

5.3. Simulated Datasets

 All the tests used for evaluation of alignment methods were executed with the

simulated reads that were generated by the BEERS simulator [9]. The BEERS

simulator or Benchmarker for Evaluating the Effectiveness of RNA-Seq Software,

uses different sets of annotations such as: AceView, Ensebl, Geneid, Genscan,

NSCAN, RefSeq, SGP, Transcriptome, UCSC and Vega, to avoid biased dataset

towards any particular annotation set. The simulator starts a with large number of

gene models taken from different annotation sets and then chooses a fixed

number of genes at random and introduces substitutions, indels, alternate splice

forms, sequencing errors and intron signals. It can simulate mouse and human

data, but in this work human data was used, more specifically part of the human

chromosome 1. For the purposes of comparison of reimplemented CM with

BBMap CM, short reads of length 250 and 500 were generated with error rate 5%

and 10%, because BBMap was previously tested with short reads in [4] and the

goal was to reconstruct the tool with similar performances. CM and improvement

methods were also tested with reads of length 2000 and error rate 18% to simulate

PacBio sequencers.

Simulated reads are saved in .cig format as well as .fa format. The developed

tool can read .fa formats, but it can also read .cig format where true alignments are

stored with starting and stopping positions of the true alignment, as well as the

34

information about gaps that happened in every read. Using this information, the

output of the developed tool, with various method implementations, can be tested

to calculate its coverage accuracy and start-stop accuracy. This is important for

detailed research of method improvements introduced above.

5.4. First Phase Evaluation

In this chapter, reimplemented CM will be evaluated. This evaluation will be

done in two parts. In the first part of the evaluation, the method itself will be

analyzed to see which parameters give the best results by measuring hit rate,

start-stop and coverage accuracy. This evaluation will be done with long reads of

length 2000. In the second part, the reimplemented method will be compared to

the original BBMap tool by its time execution and hit rate to see basic similarities

and differences between the two tools. This comparison will be done with short

reads of length 250 and 500.

5.4.1. Evaluation Results

The evaluation of reimplemented CM was done for parameters: KEY_DENSITY

(KD), SCORE_CUTOFF (SC), KEYLEN (KL) and READLEN (RL). For every combination

of parameters the program was executed and all evaluation metrics were measured: hit

rate (HR), start accuracy (SA), stop accuracy (SO), start-or-stop accuracy (SoS), start-

and-stop accuracy (SaS), coverage amount (CA) and coverage precision (CP), as well as

the time and memory efficiency. All tests were executed using the simulated set of 23447

reads with length 2000 and error rate of 18%. Size of the reference genome was

83083510 bases. The KEYLEN parameter was tested for values 13, 12 and 11 because

methods that were run with shorter key values showed extremely high execution time and

were not considered in the evaluation of the first phase. Detailed results of the evaluation

tests are given in Table 5.2.

35

KD SC KL(bp) RL(bp) HR(%) SA(%) SO(%) SaS(%) SoS(%) CA(%) CP(%)

high low 13 500 95,52 79,27 79,56 0 79,41 83,38 79,33

high low 13 2000 93,11 73,46 69,94 51,31 92,09 79,73 74,63

high low 12 500 94,29 80,92 79,82 0 80,98 85,16 80,19

high low 12 2000 91,29 74,95 70,84 53,33 92,44 82,11 75,65

high low 11 500 92,1 81,92 78,16 0 80 86,72 80,23

high low 11 2000 87,2 75,52 71,18 54,02 92,68 83,9 74,38

low high 13 500 41,15 92,72 89,71 0 91,22 89,13 86,52

low high 13 2000 59,73 80,06 72,23 55,97 96,32 83,69 79,96

low high 12 500 40,47 94,27 89,56 0 91,91 90,36 87,34

low high 12 2000 56,17 81,94 74,23 59,55 96,61 85,83 81,22

low high 11 500 44,88 91,58 86,68 0 89,14 89,91 85,69

low high 11 2000 60,45 80,08 73,31 57,87 95,52 86,21 79,18

high high 13 500 46,64 91,21 88,88 0 90,05 89,45 85,65

high high 13 2000 69,38 80,49 74,32 58,78 96,03 84,63 79,28

high high 12 500 43,69 93,79 89,33 0 91,56 90,68 86,33

high high 12 2000 64,45 81,79 75,39 60,94 96,23 86,85 80,23

high high 11 500 47,56 91,64 84,25 0 87,95 90,63 84,75

high high 11 2000 66,87 80,72 74,86 59,89 95,69 87,68 77,66

low low 13 500 93,12 76,7 77,89 0 77,29 81,13 78,19

low low 13 2000 91,54 70,52 67,47 46,5 91,48 76,47 72,61

low low 12 500 93,92 78,31 78,05 0 78,18 82,54 78,77

low low 12 2000 90,77 72,03 68,93 49,3 91,67 78,99 73,99

low low 11 500 91,33 79,7 77,23 0 78,47 84,09 79,12

low low 11 2000 87,67 73,3 69,65 50,86 91,09 81,34 74,24

Table 5.2: Results of first phase evaluation

Figure 5.1 shows the results for the first combination of parameters

KEY_DENSITY and SCORE_CUTOFF: high key density and low score cutoff. The

36

first graph shows start and stop accuracy for different lengths of the reads and

different key lengths. Results of mapping reads with length 2000 are colored with

red and reads with length 500 are colored with blue. Start-stop metrics graph

shows that reads with length 2000 are mapped more accurate than reads with

length 500, with start-or-stop value exceeding 90% for all key lengths. For reads of

length 2000 start-stop metrics are more accurate as the keys get shorter, while for

reads of length 500 start-stop metric is best for key with length 12. Overall start-

stop accuracy is high for low score cutoff and high density. The hit rate graph

shows high percentage of hit rate for every read length and key length. The

accuracy was highest for key length 13 and worst for key length 11. Reads of

length 500 achieved higher hit rate than reads with length 2000. Also, reads of

length 500 show higher coverage accuracy than reads of length 2000, with

coverage amount being highest for keys of size 11 and lowest for keys of size 13,

and coverage precision having similar values for all keys.

Figure 5.1: First phase metric results for high key density and low score cutoff

Results of analysis CM with second combination of key density and score cutoff

are given in Figure 5.2. These are the results for low key density and high score

37

cutoff. Start-stop metrics are higher than for the previous test for reads of length

500, and they are most precise for key 12. For reads of length 2000 they are

slightly more precise than in the previous test with also key 12 being the most

precise. Coverage accuracy is also more precise than in previous example, where

key 12 also shows best accuracy, and reads of length 500 showing more precise

results. Hit rate is on the other hand much lower than in the previous example with

reads of length 2000 having hit rate around 60% and reads of length 500 having

hit rate around 40%. This is expected since high score cutoff lowers the number of

resulting alignments while increasing start-stop accuracy and coverage accuracy.

Figure 5.2: first phase metric results for high score cutoff and low key density

Results of analysis of the next combination of parameters are shown in Figure

5.3. In these graphs high score cutoff and high key density were tested. As

expected hit rate is also low for this test as it was for previous test. High cutoff has

high effect on the number of reads that will be aligned. Because of the high

density, this test example has slightly higher hit rate, but the hit rate metrics are

mostly determined by score cutoff. Also, this combination of parameters shows

better precision than the previous combination, with start-or-stop metrics having

38

value of 96% for reads with length 2000. It can be concluded that higher key

density has good effect on reads of bigger size such as 2000, while for short reads

lower key density is equally good. Also for most of the test examples key length of

12 shows the most precise results thus showing that neither very short keys or

very long keys are the answer for higher precision.

Figure 5.3: first phase metric results for high key density and high score cutoff

The last combination of parameters are low score cutoff and high key density.

Results for this combination are showed in Figure 5.4. The results for this

combination are similar to the one with combination of low score cutoff and high

key density shown in Figure 5.1. Start-stop metrics are higher for reads with length

2000. Hit rate is very high with values around 90% for different keys. Reads with

length 500 have higher hit rate than reads with length 2000, but overall hit rate is

lower than for the first combination of parameters. Coverage and start-stop metrics

are better for key 11, same as for the first combination of parameters.

39

Figure 5.4: first phase metrics results for low key density and low score cutoff

It can be concluded that combinations 1 and 4 have higher hit rate because of

the low cutoff score, and combinations 2 and 3 have higher start-stop accuracy as

well as coverage accuracy because of the low score cutoff. High key density

affects reads with length 2000, increasing hit rate as well as the precision. Reads

with length 2000 have better results for combinations 2 and 3, while for

combinations 1 and 4 reads with length 500 have higher accuracy and hit rate, but

lower start-stop metrics. For combination 2 and 3 key with length 11 had better

performance, suggesting that shorter reads could produce better results. For

combination 1 and 4 key lengths had various effects on results. Key length 13

produced most hits, while key length 11 showed higher precision.

Figure 5.5 shows the results of time and space testing of CM for 4 different

combinations of KEY_DENSITY and SCORE_CUTOFF parameters. First column

shows time efficiency and second column shows memory usage. It can be seen

that reads with length 500 are processed faster than reads with length 2000.

Shorter keys have much greater time execution, but lower memory usage. High

density and low cutoff produce a method with the slowest time execution, followed

40

by high density and high cutoff combination, suggesting that key density has

higher influence on time execution than score cutoff. Low density and high cutoff,

as expected, produced the fastest method. When considering accuracy evaluation

presented above, it can be noticed that shorter keys have much greater execution

time but do not produce proportional quality in accuracy and hit rate, especially

key 11 which produces methods which are extremely slow.

Figure 5.5: Time and memory results of first phase evaluation

41

Figure 5.6 shows only results of execution time for key 13. The combination of

low key density and high score cutoff is the fastest, but that is the combination

which produced a low hit rate with a not so high precision. Reads with length 500

are faster for all combinations.

Figure 5.6: Execution time results for first phase evaluation for key 13

When taking all tests into consideration it can be concluded that combinations 2

and 3 for parameters KEY_DENSITY and SCORE_CUTOFF are not suitable for

CM because they show very low hit rate despite lower execution time and slightly

higher precision than other two combinations. Also, keys lower than 13 did not

show dramatically more precise results and some had worse results than key 13,

with key 13 showing best results in execution time tests. Combinations 1 and 4 do

have lower accuracy than combinations 2 and 3 because they use low score

cutoff, but low cutoff is also responsible for high hit rate. Also, combination 1 has

slightly higher precision and hit rate, because it uses high density which produces

more hits. Despite it being the slowest combination, combination 1 with high

density and low score cutoff seems to be the best for CM because its high hit rate

and coverage accuracy enable the computation of quality coverage information

and enable usage of second phase method and realignment of reads. This is why

the second phase and realignment read tests will be done using the first phase

method with low score cutoff, high key density and key with length 13. Both read

lengths will be tested because reads with length 2000 show better start-stop

accuracy and offer the possibility to test both read lengths in second phase. If the

reads are cut to length 500 in the first phase they will have the length 500 in the

second phase.

42

5.4.2. Comparison with BBMap

The first phase method that was evaluated in the chapter above will be

compared with BBMap. Execution time and hit rate were compared to check how

similar the two tools are. Comparison was executed with four test sets generated

with the BEERS simulator. Test results are given Table 5.3.

Test Length of

reads

Error

rate

Number

of reads

Hit rate

BBMap

Execution

time BBMap

Hit rate

dev. tool

Execution

time dev. tool

1 250bp 5% 48294 99,08 2,74 sec 98,56 2,29 sec

2 250bp 10% 49147 92,25 3,46 sec 96,73 2,88 sec

3 500bp 5% 48979 98,27 3,66 sec 97,66 6,18 sec

4 500bp 10% 49069 94,29 3,28 sec 96,35 4,41 sec

Table 5.3: Comparison of BBMap and developed tool

Four test samples with short read values and high error rate for short reads

were aligned to the reference genome with BBMap and with developed tool. Both

tools had very high hit rate, exceeding 90% for all tests. Analysis given in [4]

showed that BBMap had much higher hit rate than any other tested tool including

Tophat, but for reads shorter than 500 and with lower error rate. For longer reads

with higher error rate BBMap stopped working. Figure 5.7 shows the values of

execution time for different test sets. While the developed tool is better for reads of

length 250 bp, BBMap is better for reads of length 500 bp. However, the execution

times have quite similar values.

Figure 5.7: Execution time of BBMap and developed tool for 4 test sets

43

Figure 5.8 shows the values of hit rate for every test set. BBMap has slightly

better hit rate for reads with error rate 5%, and the developed tool has better

results for reads with error rate 10%. While the developed tool was a recreation of

CM that BBMap uses, not every detail could be reimplemented correctly. Because

of this, there are differences in resulting alignments, but this evaluation shows that

the behavior of developed tool is very similar to the behavior of BBMap for short

reads. This evaluation also shows that BBmap and the developed tool have

excellent hit rate for short reads as it was shown in [4].

Figure 5.8: Hit rate of BBMap and developed tool for different test sets

5.4.3. First phase Evaluation Conclusion

There are a few important conclusions that the evaluation of CM or the first

phase method revealed. Firstly, it was shown that the CM shows results very

similar to BBMap. It was also shown that using parameters that BBMap uses for

aligning short reads, such as low KEY_DENSITY and high SCORE_CUTOFF is

not suitable for longer reads with higher error rate. Making keys shorter also did

not produce better results, but made them less precise because shorter keys tend

to produce more exon regions that there actually are. Splitting reads to shorter

lengths, thus making them short reads, did produce good results, because BBMap

is suitable for short read alignment, but it did not produce better results than

aligning longer reads. This however could be improved by using the knowledge of

shorter reads actually being the same read. The CM itself showed great results for

short reads and solid results for longer reads with higher error rate. It has big

44

potential for using it as a foundation for acquiring starting results of long read

alignment and then using different methods, techniques and heuristics to improve

these results.

5.5. Second Phase Evaluation

This chapter covers the evaluation of the second phase of the TPM. For the first

phase the following parameters were chosen: KEY_DENSITY was set to low,

SCORE_CUTOFF was set to high and KEYLEN was set to 13. Two tests were

processed, one with the read length of 500 in the first phase and one with the read

length 2000 in the first phase. The process of evaluation was similar to the one for

the first phase; same set of reads was processed for every combination of

parameters: KEY_DENSITY, SCORE_CUTOFF, READLEN and KEYLEN. Hit

rate, start-stop accuracy and coverage metrics were calculated. This analysis will

be presented in two parts: evaluation with read length 2000 in the first phase and

evaluation with read length 500 in the first phase.

5.5.1. Evaluation with read length 2000 in the first phase

Figure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12 show the results of second

phase method for the four combinations of parameters KEY_DENSITY and

SCORE_CUTOFF. Figure 5.9 shows results for high KEY_DENSITY and low

SCORE_CUTOFF. It can be seen that the coverage amount gets higher the

shorter the key length gets. Coverage precision on the other hand tends to drop as

the key length gets shorter. Reads with length 500 showed much better hit rate

and coverage precision and accuracy than reads with length 2000. Best start-stop

metrics has highest values with keys 10 and 11.

45

Figure 5.9: Second phase metric results for high key density and low score

cutoff with uncut reads in first phase

Figure 5.10 shows the results for low KEY_DENSITY and high

SCORE_CUTOFF. As expected this combination has low hit rate in this phase as

well. Reads with length 500 produce more hit rate as in the previous combination.

For this combination, key length 13 has better start-stop metrics which is probably

because in the previous example same reads were aligned with same

KEY_DENSITY and SCORE_CUTOFF values, while in this test different

combination of parameters produces great results for key length 13. Coverage

accuracy still shows the same properties as in the previous example, but it is

higher than in the previous combination.

46

Figure 5.10: Second phase metric results for low key density and high score

cutoff with uncut reads in first phase

Figure 5.11 shows results for combination of high KEY_DENSITY and high

SCORE_CUTOFF. Results are very similar to the previous example with low hit

score, better results for reads with length 500 and high coverage and start-stop

precision and accuracy.

47

Figure 5.11: second phase metric results for high key density and high score

cutoff with uncut reads in first phase

Figure 5.12 shows the last combination of low KEY_DENSITY and low

SCORE_CUTOFF. This combination shows similar results as combination 1, but

with the different results for read length 2000 and key length 13. In this

combination, these parameter values produce high start-stop metric values. Again

this is probably because different combinations of parameters affects different

reads and produces more alignments. Still, the overall results are much better for

reads with length 500.

48

Figure 5.12: second phase metric results for low key density and low score

cutoff with uncut reads in first phase

There are a few general conclusions that can be made from this analysis. Low

value of SCORE_CUTOFF generally produces low hit rate and high coverage

precision and amount. High precision is important but the hit rate is too low to be

useful. Coverage precision and amount show the same property for all

parameters; the amount rises with shorter keys and precision drops. This is

because shorter keys with long reads and high error rate produce exon regions

that don’t exist. Tolerable ratio of coverage precision and accuracy is achieved for

keys 11, 12 and 13. Reads with length 500 produced better hit rate and coverage

precision and amount for all tests. This is because the reads with length 2000

which were unaligned, were cut to reads of length 500 in the second phase where

some of these reads had low error rate or less splices. This is why they were

mapped in the second phase. For low SCORE_CUTOFF, low KEY_DENSITY

produces better start-stop accuracy for key 13, which is probably the result of

different parameter combinations affecting different reads. Also for combination 4,

coverage metrics and hit rate show slightly better results than for combination 1.

49

Since key length 11 shows highest coverage accuracy and precision and the

number of unaligned reads is much lower than total number of reads, the

execution time should not be of the highest priority, a best solution for second

phase could be: low KEY_DENSITY, low SCORE_CUTOFF, read length 500 and

key length 11.

5.5.2. Evaluation with read length 500 in the first phase

Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16 show the results for

evaluation of four combinations of parameters KEY_DENSITY and

SCORE_CUTOFF for read length 500 used in first phase method. Coverage

accuracy and precision show same property as in the previous tests with read

length 2000 used in first phase method; precision drops with shorter keys and

amount rises. Combinations 1 and 4 again show similar results to each other and

combinations 2 and 3 show similar results to each other.

Figure 5.13 shows results for low SCORE_CUTOFF and high KEY_DENSITY.

Hit rate for key 13 is very low because the same parameters were used in first

phase. Overall hit rate is much lower than for the same combination of parameters

used with read length 2000 in first phase.

50

Figure 5.13: second phase metric results for high key density and low score

cutoff with cut reads in first phase

Figure 5.15 and Figure 5.15 show results for combinations: low KEY_DENSITY,

high SCORE_CUTOFF and high KEY_DENSITY and low SCORE_CUTOFF.

These combinations produce very poor results with extremely low hit rate.

51

Figure 5.14: second phase metric results for low key density and high score

cutoff with cut reads in first phase

Figure 5.15: second phase metric results for low key density and low score

cutoff with cut reads in first phase

52

Figure 5.16 shows last combination of low KEY_DENSITY and low

SCORE_CUTOFF. This combination produces similar results as combination 1

with better results for key 13.

Figure 5.16: second phase metric results for low key density and low score

cutoff with cut reads in first phase

There is an explanation for poor results when using read length 500 in the first

phase. When the reads are being cut to length 500 in the first phase, pieces of

reads with fewer errors and less splices are aligned in the first phase, thus leaving

only pieces of reads with high error rate and more splices, to be aligned in the

second phase. When using reads with length 2000 in the first phase, some of low

quality reads of length 500 are included in the 2000 bases long reads that are

mapped to the genome. In the second phase low quality reads with length 2000

are being cut to reads with length 500 which produces some reads of size 500 with

low error rate and less splices. That is why using reads with length 2000 in the first

phase and then cutting reads to length 500 in the second phase produces better

results with very high hit rate. Therefore a conclusion that using reads with length

2000 in the first phase is a better option than using reads with length 500.

53

5.5.3. Second phase evaluation conclusions

Second phase evaluation did show moderate improvements in resulting

alignments. It showed that coverage information does provide additional

information that can be used in improving results of alignment. Changing the key

and splitting the reads had a greater role in aligning the reads that were not

aligned in the first phase. Since the execution time for the second phase is very

short compared to the first phase, due to the shorter reference genome and

smaller number of reads, it is useful to use the second phase in the alignment

method. However, most of the reads were aligned in the first phase and thus the

second phase cannot improve the results dramatically. It is expected that in most

cases most reads will be aligned in the first phase because that is important to

obtain the coverage information and to align unaligned reads in the second phase.

Cutting reads to shorter values in the first phase was not a good experiment

because most of the low error shorter reads were aligned in the first phase and the

reads that entered the second phase could not be aligned because they had too

high error rate or to many splices. This is why longer reads should be used in the

first phase and cut reads should be considered in further methods for improvement

of results.

5.6. Read Realignment Evaluation

The center of this part of evaluation is the realignment method. Read

realignment is an idea of mapping reads whose value of score alignment is below

THRES_SCORE value. These reads are aligned to the new reference genome

built from coverage information, as explained in chapter 4.3. In this chapter, this

method will be evaluated for different values of THRES_SCORE. Since the first

phase of the method is executed with reads of length 2000, key with length 13,

high KEY_DENSITY and low SCORE_CUTOFF, realignment of reads will be

executed with same parameters to check how SCORE_CUTOFF parameter

affects the results.

Evaluation of the realignment method was done with the same dataset of 23447

reads with length 2000 and error rate of 18%. After executing CM, all the reads

that have low score were queued for the realignment method. Low score of the

54

read was determined by THRESH_SCORE parameter that represents the

percentage of maximum score that one read can achieve. Every read that has

alignment score lower than THRESH_SCORE percentage of maximum score is

queued for realignment method. The realignment method was executed with same

parameter values as CM to analyze the behavior of read realignment depending

on THRESH_SCORE. The tests were executed for different values of

THRESH_SCORE { 0.5, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7 } and the results are shown in Figure 5.17, Figure 5.18, Figure 5.19 and

Figure 5.20.

For different THRESH_SCORE values different number of reads was set for

realignment. Also, different number of reads had better alignment score, different

number had worse alignment score and different number had the same alignment

score. Some of the reads were unaligned in the realignment method. Figure 5.17

shows the number of reads with same score in both methods, number of reads

with better score in realignment method, number of reads with worse score in

realignment method and number of reads that were unaligned in realignment

method, for different values of THRESH_SCORE value. For THRES_SCORE

values above 0.6 mostly all reads went through realignment method resulting in

highest number of reads with better result. Most of the reads however had the

same score value. The number of reads drops linearly from THRESH_SCORE 0.3

to 0.55. The number of unaligned reads is very low, while the number of worse

reads is always lower than the number of better reads.

55

Figure 5.17: Distribution of read results for different values of

THRESH_SCORE parameter

Figure 5.18 shows the ratio of start and stop metrics after the realignment

method to the metrics before the realignment method. Both start accuracy and

stop accuracy improve by more than 1%, while start or stop accuracy improves by

0.5%. This resulted in improvement of start and stop accuracy of 2.5% with

THRESH_SCORE above 0.6. Start and stop accuracy rapidly drops from

THRESH_SCORE 0.5.

Figure 5.18: Distribution of start-stop metric improvement for different values of

THRESH_SCORE parameter

56

Figure 5.19 shows the coverage amount and precision improvement with the

realignment method. While coverage precision does not improve more than 0.5%,

coverage amount improves for 2.5% for THRESH_SCORE above 0.55.

Figure 5.19: Distribution of coverage metric improvement for different values of

THRESH_SCORE parameter

Figure 5.20 shows the execution time for different values of THRESH_SCORE.

The execution time was measured for whole alignment process build in debug

mode. This is why the execution time achieves very high values, but for the

purpose of this test it is only important to analyze in what manner the different

values of THRESH_SCORE affect the total execution time of the whole alignment

process. The execution time is liner for THRESH_SCORE from 0.25 to 0.6. For

the worst case, the execution of the realignment method causes execution time to

rise by 20%.

57

Figure 5.20: Execution time of realignment method

These results showed that some improvement can be achieved with

realignment of reads, but in this case, realignment did not make a greater

improvement of results. With execution time rising for up to 20% realignment of

reads might not be worth using in the process. However this evaluation showed

that some improvements can be achieved and that further analysis of coverage

information could produce even better realignment results. Also, this evaluation

showed that maybe the way of improving the whole alignment process could be

achieved with local alignment and not with realignment of reads, because

realignment process did not improve precision and accuracy of the results more

than 2.5%. Also, this suggests that the CM itself might not be improvable with

coverage information but it should rather be intrinsically improved and modified.

5.7. Best Solution and BBMap Comparison

After all research the best resulting method was chosen. That was a two phase

method with read realignment. The first phase method was executed with the

following parameters:

 KEYLEN: 13

 KEY_DENSITY: high

 SCORE_CUTOFF: low

 READLEN: 2000

58

The second phase method was executed with the following parameters:

 KEYLEN: 11

 KEY_DENSITY: low

 SCORE_CUTOFF: high

 READLEN: 500

Read realignment was executed with the same parameters as first phase and

with THRES_SCORE = 0.55.

This resulting method was used to map the same dataset as used in previous

tests. It achieved very high hit rate of 98,19%, leaving only 1.8% of reads

unaligned. Coverage precision was 75.26%, leaving 25% of the bases from

resulting alignments to be wrongly aligned. Coverage amount was 80,24%, which

means that 80,24% of total number of bases were found in the genome. While

coverage metrics are high, to achieve higher precision and accuracy other ideas

should be explored. Start accuracy was 73,88%, while stop accuracy was 71,02%.

Start or stop accuracy was 95,14% which means that almost every aligned read

had at least start or stop aligned perfectly. This suggest that this method could be

used to get correct starts and stops of the alignment and then use some other

method to get higher precision. Start and stop precision was 49,77% which means

that half of the reads had start and stop position mapped correctly. The whole

alignment process had execution time of 17.54 seconds. BBMap had hit rate of

only 51%. Why is this the case is left unknown since BBMap uses many complex

parts of alignment process with the core method. TheBBMap alignment process

had execution time of 6,34 seconds which is about three times quicker than the

developed solution, but the hit rate is obviously much lower which suggest that

using different improvement methods on the core BBMap method does produce

much better results.

59

6. Conclusion

In this thesis, a new rna-seq aligner was developed from the aligning method

used in BBMap tool. Basic principles of this method are explained so that its

recreation can be available to everyone. It is shown that this method has very high

hit rate especially for shorter reads with lower error rate, but it also shows good

results for longer reads with higher error rate, produced by sequencing tools such

as PacBio.

The analysis of core method showed that it can produce different results

depending on used parameters. However, the results were always more precise

and had more hit rate than other tools that were evaluated in [4]. Start and stop

locations of alignment were precisely aligned that shows great potential in using

this method as a basis for further improvements that would produce more precise

alignments. Also, core method produce high hit rates for different read lengths and

used parameters.

Few examples of improvements of this method have been proposed and

evaluated such as coverage calculation and repetition of core method for

unaligned reads or reads with low quality alignment. Coverage information showed

that results can be further improved by detecting regions with high coverage and

that it has potential for further research. Unaligned reads were successfully

aligned using the additional information, while the realignment of low scored reads

produced only slight improvements in the results.

While the coverage information is one type of method improvement, another

improvement could be to improve the core method itself. This thesis provides

basic information about functionality and behavior of the core method for different

reads and parameters and could be used for further development of the core

method. Cutting long reads to short reads but using the information which short

reads come from the same long read could be the first step in building an

improved core method.

Finally, very high hit rate and great accuracy in locating the start and/or stop of

the read in the genome are the main strength of the core method and its improved

variants. However, despite the fact that core method is build to detect splices and

60

gaps, they still remain the problem and are often the cause of imprecision in the

resulting alignments because long reads have very high error rate. This problem

could be tackled by using short local alignments on the small area where the core

method aligned the read in the genome. This is a very promising improvement

especially because the core method in most cases aligns the read at the location

in the genome where it really was sequenced, even with the long reads with error

rate of 18%. Local aligners would be the final touch that would give very precise

results of the alignment, however they are much more time consuming than any

aligner built in this thesis. An example of such improvement was build to make a

representing string of an alignment, but its analysis was left for further research.

There is still much room for improvement in the field of RNA sequencing, but

this thesis shows that the method which is used by BBMap is currently the best

starting point in making further progress in development of not just RNA-seq tools,

especially long read RNA-seq tools, but also in development in DNA sequencing

tools. No splices and gaps could make the core method itself sufficient to align

long DNA reads with high error, especially knowing that the tool does not need any

changes to work with DNA data as well. But this is also a topic for further research.

61

7. Summary

RNA sequencing is a technology that uses next generation sequencing tools for

transriptome analysis. Bioinformatics tools used are used to analyze RNA

sequences to reveal a snapshot of RNA presence and quantity from a genome at

a given time which is important for interpreting the functional elements of the

genome and understanding development of diseases. This thesis presents a tool

built from the BBMap aligning method that is used in mapping long reads with high

error rate to the reference genome. Improvements of the developed method are

also presented and evaluated. Results are analyzes and compared to the BBMap

tool. This paper explains the aligning method used by BBMap and shows that it

can be recreated in such manner that it produces highly precise alignment results.

62

8. Bibliography

[1] Y. Chu and D. R. Corey. RNA Sequencing: Platform Selection, Experimental

Design, and Data Interpretation. Nucleic Acid Ther. 22(4): 271-274, 2012.

[2] C. A. Maher, C. Kumar-Sinha, X. Cao, S. Kalyana-Sundaram, B. Han, X. Jing,

L.Sam, T. Barrette, N. Palanisamy, A. M. Chinnaiyan. Transcriptome

Sequencing to Detect Gene Fusion in Cancer. Nature. 458(7234): 97-101,

2009.

[3] Qian F, Chung L, Zheng W, Bruno V, Alexander RP, Wang Z, Wang X,

Kurscheid S, Zhao H, Fikrig E, Gerstein M, Snyder M, Montgomery RR.

Identification of Genes Critical for Resistance to Infection by West Nile Virus

Using RNA-Seq Analysis. Viruses. 5(7):1664-1681, 2013.

[4] I. Jerković. RNA-seq mapper, Faculty of Electrical Engineering and

Computing, University of Zagreb, 2014.

[5] E. Tseng and J. G. Underwood. Full-Length cDNA sequencing on the PacBio®

RS, Pacific Biosciences, Research and Development, Menlo Park, CA, 2013.

[6] K. F. Aua, V. Sebastianob, P. T. Afsharc, J. D. Durruthyb, L. Leed, B. A.

Williamsf, H. van Bakelg, E. E. Schadtg, R. A. Reijo-Perab, J. G. Underwoodd,

and W. H. Wonga. Characterization of the human ESC transcriptome by hybrid

sequencing. PNAS, 2013.

[7] B. Bushnell: BBMap short read aligner, URL

http://sourceforge.net/projects/bbmap/

[8] D. Kim et al: Tophat2: accurate alignment of transcriptomes in the presence of

insertions, deletions and gene fusions, 2013

[9] G. R. Grant, M. H. Farkas, A. Pizarro, N. Lahens, J. Schug, B. Brunk, C. J.

Stoeckert Jr, J. B. Hogenesch and E. A. Pierce. Comparative Analysis of RNA-

Seq Alignment Algorithms and the RNA-Seq Unified Mapper (RUM).

Bioinformatics. 2011.

[10] J. T. Witten, J. Ule: Understanding splicing regulation through RNA splicing

maps, 2011

