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1. Introduction

Transcriptome analysis is one of the most important areas in biological investigation of

living organisms. Which transcripts and in what quantities are present in a sample can

tell about its state, what genes are expressed and why, how that will affect the state of

the organism and its functioning and how are the processes related to transcript levels

connected to various diseases and their development.

This work focuses on the transcript isoform abundance estimation problem. Esti-

mating isoform abundances can be of use for better understanding of gene expression

levels and transcriptome structure in a sample. Also, comparing transcript or gene ex-

pressions levels between various cell types and tissues or in different timepoints of the

same tissue can help us better understand fundamental biological processes and their

effects on the overall functioning of the living organisms [1].

So-called microarrays have been used a lot for solving this and many other pro-

blems in the transcriptome analysis. They are relatively cheap and have existed for

almost two decades now, ever since their inception in the early 1990s. They are based

on the principle of hybridization between two complementary DNA strands, one called

a probe and the other called target sequence. If a fluorescently dyed target sequence

strongly binds to a probe, it generates a signal of presence which is then quantified and

normalized for further downstream analyses.

High-throughput RNA-Seq [2] is becoming evermore popular for transcriptome

analysis. RNA-Seq is an application of next-generation sequencing technologies in

transcriptome analysis. Next-generation DNA and RNA sequencing (NGS) are be-

coming tools of choice for various types of bioinformatics and functional genomics

analyses. These sequencing technologies have enabled scientists to produce extremely

large amounts of data which are analysed with a plethora of new tools, mathematical

models and computational methods. This has greatly enhanced our understanding of

the underlying biological structures and principles, as well as significantly improved

the sheer quantity and quality of assembled genomes and genomic data of different

species. For example, when sequencing DNA using NGS, it is possible to, depen-
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ding on the experiment setup, price and desired properties of data, generate numbers

of reads ranging from hundreds of millions up to a billion. Such a huge quantity of

information is often-times necessary for high-precision and high-sensitivity analyses.

DNA and RNA assemblers, for example, often rely on these capabilities for successful

reconstruction of genomes and transcriptomes.

The chapters of this work are described as follows:

2. Overview: In this chapter, I will present some important definitions, give a

general overview of the RNA study field, including a brief description of microarrays

as well as how they compare to RNA-Seq and what are the pros of RNA-Seq over them

and other technologies. Also, various ways of tackling abundance estimation problem

will be addressed here.

3. Materials and methods: Here, the idea and the statistical model along with

statistical algorithms used in this work will be described in detail.

4. Implementation: A general overview of the current code structure and future

functionalities will be presented in this chapter along with a brief documentation for

each module.

5. Results: The results and how the work in this thesis compares to the results of

other abundance estimation software will be analysed in this chapter.

6. Conclusion: A brief conclusion and the look into the future of this work will be

provided in this chapter.
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2. Overview

2.1. Definitions

Definitions of some important concepts will be covered here for easier understanding

of the text following this section.

A transcript is a mature and functional RNA molecule transcribed from DNA [3].

A transcriptome is the complete set of RNA and their associated quantity in a

cell at any given time [4, 5]. The transcriptome includes messenger RNA (mRNA),

ribosomal RNA (rRNA), transfer RNA (tRNA) and short RNA such as microRNA

(miRNA). The transcriptome itself constantly changes over time and usually one is

analysing its snapshot at a certain timepoint or comparing transcriptome levels in-

between different timepoints(snapshots).

An exon is a part of genomic sequence that contains coding information for ami-

noacids and consequently, protein. In other words, it is a part of the genome expressed

in the protein [6]. Exons are present in mature mRNA.

An intron is a non-coding part of DNA sequence. Introns are removed from mature

mRNA before it is translated into protein [6].

A gene is, according to Gerstein et al.: "A union of genomic sequences encoding a

coherent set of potentially overlapping functional products" [7]. A detailed and exten-

sive discussion on why this definition was proposed is available in the paper. It can

also be defined as a basic unit of heredity [6].

Splicing is a regulatory stage in mRNA creation in which introns are removed from

pre-mRNA and exons are kept and ligated [8].

Alternative splicing means inclusion of different exons of a gene in the transcripts

it produces [8]. It enables a gene to code for multiple mRNA and protein structures by

eliminating and keeping different exon combinations from pre-mRNA. For example,

human genome is estimated to have around 20,000 protein-coding genes, but approxi-

mately 100,000 different proteins are created from these [8]. Detailed information on

alternative splicing can be found in [8, 9] and other resources.
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An isoform in the context of this work is a synonym for transcript. Also, it can

be defined as different forms of protein produced from the same gene by alternative

splicing [6].

Dynamic range is the ratio between the largest and smallest values of RNA levels

that can be accurately quantified [10].

2.2. RNA-Seq and related technologies

2.2.1. DNA Microarrays

DNA microarrays [2, 11] have been the most popular technology for larger scale

analysis of transcriptomes [12] in the past two decades. Microarray technology is

based on the hybridization or binding of complementary DNA sequences.

There are 3 widely popular types of microarrays [2]:

– Spotted arrays [13]

– In-situ, Synthesized arrays [14, 15]

– Self assembled arrays [16, 17, 18, 19]

All of these methods have their own characteristics and chemical properties. For

example in the first technology type, an array is made up of probes that are aligned

precisely in order across a 2-D or 3-D plate made up of glass or silicon. The probes are

fixed on the plates by using a covalent or a non-covalent chemical bond. The probes are

essentially short or somewhat longer sequences of known genes and/or exons which

are used to detect their reversed complementary sequences, cDNA or cRNA, created

from the sample’s mRNA. The sample cDNA is fluorescently labelled for detection.

This technology enables good sensitivity and dynamic range while being relatively

cheap [2].

A great characteristic of microarrays compared to older technologies and methods

is that there can be tens of thousands of different probes on a single microarray chip,

which enables detection and analysis of thousands of different RNA sequences and

their presence in a sample, all at the same time. This has been a key feature of micro-

arrays since it has simplified very expensive and relatively low throughput techniques

used prior to their advent [4, 20].

Detailed descriptions of microarrays, as well as above-mentioned microarray tech-

nologies, are outside of the scope of this work and are available in the papers referenced

herein and in other works, as well as in the various web resources.
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2.2.2. RNA-Seq

RNA-Seq, also called Whole Transcriptome Shotgun Sequencing (WTSS) or short-

read massivelly parallel RNA sequencing [21, 4, 22] uses next-generation deep sequ-

encing to analyse RNA at a certain timepoint in a cell or tissue. In contrast to tradi-

tional Sanger-based sequencing, as well as microarrays, RNA-Seq provides enormous

amounts of data in a single run and is also highly scalable [22, 23].

The process of mRNA sequencing and downstream analysis is usually as follows

[5, 21]. The mRNA is isolated from other RNA in the sample and converted to its

corresponding cDNA using reverse transcription. One of the reasons for converting to

cDNA is that RNA is not very stable and degrades quickly. The cDNA is then broken

into fragments, typically between 200–500 bp in length which marks the creation of a

fragment library [4]. Sequencing adaptors are then attached to these fragments and a

short piece of sequence is read from either one or both ends of the fragments, obtaining

single-end or paired-end reads, respectively. Reads are typically 25-450 base pairs

long [22]. Small RNA molecules can be sequenced directly without RNA or cDNA

fragmentation. Due to technological limitations, larger molecules must be fragmented

as described. Also, it is possible to fragment RNA directly without first converting to

cDNA.

Using RNA-Seq technology, reads are determined directly from complementary

DNA sequences (or RNA fragments) in a massively parallel fashion. This makes RNA-

Seq a digital and quantitative measure of bases present in the sample. The number of

reads estimated this way can range from hundreds of thousands, up to a billion. The

higher the depth of sequencing, the higher the coverage of transcriptome and easier it

is to detect low abundant transcripts. Also, de novo assemblers greatly rely on high

coverage of the transcriptome and therefore need larger sequencing depth [24] to be

effective. If a genome is more complex, or the organism has high alternative splicing

levels or other transcriptomic variability across its genome or genes, the greater sequ-

encing depth will be needed. Of course, with larger sequencing depth, comes a greater

cost of the experiment. Therefore, it is necessary to try estimating needed coverage

in advance, which can be very complicated in transcriptome analysis and has been

tackled in various ways in the past [4, 25, 26, 27].

When the reads have been obtained, further analyses can take place. Their type as

well as the necessary steps differ depending on the goal of the experiment. RNA-Seq

can be used to analyse and estimate overall RNA present in a sample or to quantify

only one type of RNA, for example, coding mRNA, or to examine short RNA such as
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miRNA. Metagenomic and metatranscriptomic studies are another important applica-

tion of NGS and RNA-Seq [22]. It can also help in identifying exon-intron boundaries,

alternative splicing events, SNPs and in theory provide to a base resolution of transcript

and gene boundaries in a genome [4, 22].

Typically, when estimating transcript isoform abundance and/or gene expression

levels, the next step involves either mapping of the reads to a reference (annotated)

genome of the sample being analysed, or a genome of a related organism, if such exist.

Many different tools and methods have been published through the years that rely on

this idea [26, 28, 29, 30], with well known being Cufflinks [3] and Scripture [31]. After

mapping of the reads, transcript reconstruction and statistical investigation can be done.

Another possibility, used when a reference is not available, or is poorly understood and

annotated, which is quite often the case, is de novo transcriptome assembly. Tools like

Trinity [32], Oases [33], SOAPdenovo-Trans [34] and Trans-Abyss [35] are used to

reconstruct transcripts from the reads. Here, the analysis continues with the reads

being usually mapped back to the transcripts and software packages such as RSEM

[36, 37] or eXpress [38] are used for downstream investigation of the data.

2.2.3. A comparison of microarrays and RNA-Seq

An expected question arises when talking about next-generation sequencing applicati-

ons. How well does RNA-Seq perform compared to older technologies? There were

a number of studies that compared RNA-Seq to microarrays, comparing both their

similarities and differences [12, 20, 26, 39, 40, 41, 42].

Zhao et al. have focused more on the priorly observed differences between RNA-

Seq and microarrays, trying to investigate them in more detail [12]. They used Affyme-

trix GeneChip HT HG-U133+ PM arrays and compared them to Illumina HiSeqTM

2000 platform on Human CCR6+ CD4 memory T cell. They did observe high corre-

lations between gene expression results from both profiles, but also some significant

discrepancies. What they found is that RNA-Seq expression profiles had better results,

especially with regards to low abundance transcripts and the detection of changes of

these transcripts throughout the course of the experiment. Since microarrays have pro-

blems with background hybridization noise, they are unable to precisely quantify low

abundant isoforms. Also, they discuss many other disadvantages characteristic of mi-

croarray technology, specifically inaccurate annotations for certain probes, problems

in detecting splice variants and a limited number of transcripts that can be probed [12].

In a well-known paper, Marioni et al. have tried to assess technical reproducibility
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of RNA-Seq experimental data [20] using Illumina platform. Their results confirmed

that RNA-Seq is very reproducible, with statistical variation that showed only around

0.5% of genes were outliers from the Poisson model they set up. They also found that

RNA-Seq is much more capable of correctly identifying gene expression levels and

their changes across samples compared to array technology, with most of the RNA-

Seq results being confirmed by qPCR.

Mortazavi et al. haven’t focused much on the comparisons of RNA-Seq and arrays

in their paper [26], but have provided a very interesting result that shows the potential

of RNA-Seq. Namely, they identified that RNA-Seq provides a dynamic range that

spans five orders of magnitude. Combined with the amount of data that can be pro-

duced by RNA-Seq, it is a powerful realization of the possibilities of the technology.

They also found a huge number of new potential transcripts and gene parts, somet-

hing that was not possible using standard arrays, but can obviously be provided by

RNA-Seq.

The other papers have as well identified and confirmed advantages of RNA-Seq

over microarrays, most important being non reliance on known annotations and sequ-

ences, ability to produce enormous amounts of data, very large dynamic range, high

technical reproducibility and the ability to quantify low or high-abundant transcripts

and expressed genes.

RNA-Seq is not without its disadvantages, namely price of the experiment, read

length, errors and biases typical of next-generation sequencing, especially with re-

gards to fragment distribution. Fragmenting introduces specific biases into the data

that should be taken care of in the later stages [4, 5, 43]. Short reads, typical of NGS,

are another major problem since they often-times do not cover long enough portions

of transcriptomes (or genomes) to distinguish between repetitive regions. When alter-

native splicing is present, a read coming from a certain exon can originate from any

of the isoforms that include that particular exon. Read origin uncertainty is one of

the bigger challenges of transcript abundance estimation. Also, sensitivity to read er-

rors usually needs to be met by trying to filter out low-quality reads in some way. In

theory, it would be best if all the molecules could be read directly without fragmen-

tation and completely from start to end, generating one read per molecule [24]. This

would greatly simplify downstream pipelines. However, since this is currently not

possible, computational challenges posed by huge number of very short reads along

with experimental biases are non-trivial and are still being actively tackled by scien-

tists using various methods and models. Overall, it is predicted that RNA-Seq will be,

if it already is not, a technology of choice for transcriptome analysis and that many of
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these obstacles will be cleared over time with RNA-Seq mostly replacing microarrays

[4, 22].

2.3. RNA analysis pipelines

2.3.1. Reference based RNA-Seq analysis

When a reference genome is available, it can be used to help in abundance estimation

and gene expression level analysis. Quite a few approaches over the years have been

published that relied on mapping of the reads to reference genomes (with or without

annotations) [20, 26, 28, 29, 30, 44]. These approaches use various statistical mo-

dels and tests on read mappings to quantify RNA and gene expression in sequenced

samples. Cufflinks [3] and scripture [31] are two well known, robust genome-guided

assemblers and downstream analysis pipelines [45].

In short, scripture searches for significant paths in a base connectivity graph. The

graph is built from spliced alignments of reads. It scores the paths by using coverage

from the reads. Then, identifying these paths, helps it construct a transcript graph

which, combined with paired-end information helps reconstruct transcripts.

Cufflinks uses a two-step approach to assembly and analysis. It first tries to recons-

truct possible present isoforms using read mappings to a reference genome. For read

mapping, it uses TopHat [46], a software designed by the same authors that is speci-

fically suited for mapping of RNA-Seq reads to reference genomes. TopHat tries to

align the reads having splice junctions in mind, both existing and possible novel ones.

Cufflinks then proceeds to reconstruct transcripts from TopHat mappings. It divides

these mappings into sets of non-overlapping loci, assembling each locus independen-

tly. To assemble transcripts, it finds a maximum matching in a bipartite graph, trying

to obtain a minimal set of transcripts that is in conjunction with reads and their map-

ping. When it reconstructs possible isoforms, it proceeds to apply a rigorous statistical

model to obtain transcript abundance measure. To estimate abundances of each iso-

form, Cufflinks maximizes the following likelihood function with respect to relative

abundances:

L(ρ|R) =
∏
r∈R

∑
t∈T

ρtl̄(t)∑
u∈T

ρul̄(u)

(
F (It(r))

l(t)− It(r) + 1

)
(2.1)

In this equation, ρ corresponds to non-negative abundances, F is the probability

distribution of fragment lengths, It(r) is the implied length of a fragment given read
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mapping r, l(t) is the length of the isoform t and l̄(t) is the effective length of t. The

effective length is defined as:

l̄(t) =

l(t)∑
i=1

F (i)(l(t)− i+ 1) (2.2)

and can be interpreted as the mean number of positions at which a fragment can

start in t [37]. In general, maximizing some kind of a likelihood function is a very

common approach in abundance estimation [3, 30, 36, 37, 29].

An interesting approach to isoform identification and quantification was proposed

by Bernard et al. [28]. Therein, they propose the idea of isoform detection and abun-

dance estimation at once, as a solution to a path selection over a graph and call their

software FlipFlop. The graph in their method is a set of nodes which represent bins.

Bins are defined as ordered set of exons. Edges connect any two bins if the bins can be

associated with two reads starting at successive positions in a candidate isoform. They

then reduce this path selection to a flow decomposition problem that yields a solution

in a relatively fast and efficient manner. Their results show that it performs compara-

bly to Cufflinks with regards to sensitivity, surpassing it on some tests. Since it does

solve a harder computational problem, it is slower, but according to the authors, it is

a significant improvement over similar and computationally very intensive approaches

[28].

2.3.2. De novo RNA assemblers

When a reference genome or transcriptome is not available, or when it is still being fini-

shed and/or is poorly annotated, the only alternative for detailed transcriptome analysis

is de novo assembly of transcripts from the available reads. Even when the genome is

annotated, de novo reconstruction can still be used to help in improving the annotation,

identifying new transcripts and SNPs. De novo assembly presents some of the hardest

bioinformatics challenges.

De novo assembly of DNA sequences has been extensively studied and has become

popular over the years with the improvements in both technology and software used

for the assembly. DNA assemblers usually assume some properties of the data they

work with, such as uniformity of coverage or usage of sequencing depth to adjust the

parameters and to resolve various ambiguities in the assembly process. Assumptions

such as these mightily simplify the reconstruction process. However, these assumpti-

ons don’t work with transcriptome assembly [24]. For example, if sequencing depth
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was taken into account, probably only highly expressed transcripts would be recons-

tructed in the end, which is fundamentally wrong since there can be many isoforms

with low abundances that should be detected and assembled. Also, alternative spli-

cing additionally complicates the assembly by having same exonic sequences present

in multiple isoforms, making it very difficult to correctly resolve ambiguities [24].

As was mentioned, a number of de novo RNA assemblers has been published in

the recent years [32, 33, 34, 35]. Many are actually based on genome assemblers with

additional post-processing steps or repeated runs in order to accommodate them to

RNA-Seq data.

Trans-ABySS [35], for example, is based on the well known ABySS genome

assembler that incorporates k-mer de Bruijn graph approach. Trans-AbySS works

by running the genome assembler a few times with different k-mer values. It then

proceeds to merge all of these assemblies into transcripts. Trans-Abyss is highly mo-

dular because it is structured as a collection of scripts and its various parts can be used

with other tools. It also has the ability to do additional analyses, namely prediction of

polyadenylation sites, computation of gene-level expression and identification of gene

fusion. It is also resource friendly according to some analyses [45].

Oases [33] is, similarly like Trans-ABySS, based on a genome assembler of its

own, namely Velvet. Oases tries to combine multiple k-mers approach of Trans-

ABySS with a more specific topological analysis of the produced contigs. Specifically,

it runs Velvet without its later stages that make assumptions valid only for DNA assem-

bly. In each run, it builds a de Bruijn graph, removes the errors, and creates scaffolds

that are later grouped and transfrags are extracted from these groups. After all the runs

are finished, the resulting transfrags are merged into the final assembly. Its big strength

is the error removal step which helps it perform very well [45].

Another genome assembler based transcriptome reconstruction software is known

under the name of SOAPDenovo-Trans [34]. It is a modified SOAPDenovo genome

assembler that uses advantages of SOAPDenovo together with additional modules de-

signed for RNA-Seq data. It runs in two phases, contig assembly and transcript assem-

bly. Contig assembly is essentially very similar to the same phase in genome recons-

truction, with an added error correction module. The transcript assembly phase runs in

four substeps, namely scaffold construction, graph simplification, graph traversal, and

gap filling. These four stages produce final isoforms.

Trinity [32] is a popular standalone transcriptome assembler divided into 3 inde-

pendent modules, Inchworm, Chrysalis and Butterfly. Trinity is not built on top of any

genome assembler, but is rather specialized for transcriptome assembly. Inchworm is
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the first step in Trinity assembly. It is designed as a greedy and fast heuristic that tries

to assemble contigs, retrieving one transcript representative from a set of those that

share same k-mers. It is a six-step algorithm that uses most frequent k-mers as starting

points for contig extension. Chrysalis clusters these contigs into connected compo-

nents in a recursive fashion. These connected components are likely to contain contigs

that are alternative splice forms or closely-related paralogs. The final step is Butterfly.

It tries to resolve different spliced isoforms and paralogous transcripts as well as am-

biguities. As described, Trinity is a modular software and its modules can be replaced

with others, as mentioned in [45].

When the assembly is done and transcripts are produced, tools such as RSEM and

eXpress are used to estimated abundances. Similarly to reference-based approaches,

these tools also define statistical models which involve maximizations of certain like-

lihood functions.

2.3.3. A comparison of assemblers

BingXin et al. have tried to compare the performance of various genome-guided and

de novo RNA assemblers [45]. In their extensive study, they used three distinct da-

tasets to try and evaluate the performance of five assemblers: Cufflinks, Scripture,

trans-ABySS, Trinity and Oases. What their results suggest is that reference-based

assemblers are usually superior to the other category. This makes sense, since they can

make use of reference genomes, transcriptomes and annotations which can be a signi-

ficant help in the analysis. However, it turns out, according also to their results, that,

as the coverage of RNA-Seq data grows, de novo assemblers can perform comparably

well, and even surpass reference based ones in their performance. It is important to

note that their tests show that all of the assemblers perform better on some and slightly

worse on some other data. Overall, however, they’ve found out that Trinity performs

slightly better than other de novo assemblers, while Cufflinks remains superior to all

of them, especially when paired with reference annotations. What they suggest is that

it may be best to merge results from different assemblers (all of them potentially) or

even use hybrid reference-de novo approaches that should yield much better results

than any particular assembler itself.

In another study, Celaj et al. tested how well de novo assemblers, namely Trinity

and Oases, perform in a metatranscriptomic environment, where RNA from multiple

species is present [47]. They compared them to Metavelvet [48] and IDBA-MT [49], a

dedicated metatranscriptome assembler. What they found is that Trinity outperformed
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the other assemblers with regards to the number of mappable reads, although it has not

necessarily reconstructed most accurate sequences.

Clarke et al. [50] have compared the performance of five assemblers, namely Mira

[51], Velvet, Trinity, ABySS and Oases. Their results have indicated that Trinity and

Velvet have provided best overall performance on the datasets they have used, but

were also having inconsistent results across samples. Mira, being an overlap based

assembler, had good performance with regards to short reads and contigs, but failed to

produce longer contigs. This, according to them, indicates it is not really suitable for

analysis of complex eukaryotic transcriptomes.

The common denominator in these studies is that all assemblers have an Achilles

heel, meaning that on some datasets they don’t perform well. In general, some are bet-

ter on some data, and the others on other. This means that a need for a new, improved

and more robust assembler still exists, as mentioned in [50].
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3. Materials and methods

3.1. Overview

In this and the following chapters, I will present and explain isomorph, a sof-

tware for transcript abundance estimation from RNA-Seq data. isomorph estimates

abundances by mapping the reads to isoforms reconstructed by a de novo assembler.

isomorph has at its core a statistical model built very similarly to the robust model

presented by Li et al. [36, 37] whom have published software called RSEM. Since

RSEM has shown that it performs well, and is very popular, even being included in

the Trinity pipeline manual and the Trinity package, I have implemented a method si-

milar to RSEM, with slight modifications. isomorph also supports a very fast mode

of estimation where it just counts the number of reads mapped to a certain isoform

and outputs the percentages of mapped reads per isoform. This mode can be used to

give one an overall picture of relative abundances in a very fast way, without complex

analysis if there is no need for it. isomorph can also count the number of bases that

are equal between reads and transcripts they mapped to and use this information as

an indicator of relative abundances. isomorph supports both single and paired end

reads, with the model being slightly different between the two. In this work, I have

used Trinity for the task of transcript assembly.

3.2. Problem definition

Before moving on, a complete problem definition shall be given. There are two im-

portant aspects that need to be introduced – maximum likelihood estimation (MLE) in

general and transcript abundance estimation with the application of MLE in it. I will

use the same notation as the RSEM paper [36, 37] for abundance measures with slight

modifications in some parts.
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3.2.1. Maximum likelihood estimation

Let us assume that we have a probability density function p(x|Θ). This density is a

mixture of probability distributions, governed by a set of parameters Θ. Now, if we

have a data set of N independent, identically distributed observations drawn from p,

we would like to use those data to estimate the unknown distribution parameters Θ.

Formally, given a set X = {x1, x2, . . . , xN} of observed data points, and under the

assumption that this data was generate by p, we have the following:

p(X|Θ) =
N∏
n=1

p(xn|Θ) = L(Θ|X) (3.1)

This defines the probability of observing the data under the parameters Θ, of distri-

bution p. In other words, if we assume that the observed data is fixed, (3.1) represents

the likelihood function of the parameters of the distribution p given the data. The goal

is to estimate the parameters of the distribution with the help of observed that and this

is done by finding Θ̂ that maximizes L(Θ|X). Formally, we are looking for Θ̂, such

that:

Θ̂ = argmax
Θ

L(Θ|X) (3.2)

In practice, logarithm of the likelihood, logL(Θ|X) is usually optimized for the

parameters, instead of (3.1) since it is mostly much easier to tackle and solve [52].

Sometimes, it is very easy to solve for (3.2). For example, if p is just a single normal

distribution with parameters Θ = (µ, σ2), the derivative of (3.2) can be set to zero

and a straightforward calculation will lead to a closed solution for both µ and σ [52].

Unfortunately, in many cases it is not so easy because the closed form solution does

not exist or is very hard to compute. Here, iterative methods are usually applied that

do not guarantee global optimality of the estimate, but converge to a local optimum of

the likelihood.

3.2.2. Transcript abundance estimation

RNA sequencing provides N short reads, where N typically ranges from a million

up to hundreds of millions. I assume that reads are of fixed length, L. There are two

interesting measures of relative abundance that can be estimated from the data [36, 37],

νi – fraction of nucleotides and τi – fraction of transcripts made up by any particular

isoform.
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νi =
τili∑
i

τili
(3.3)

τi =
νi
li

(∑
i

νi
li

)−1

(3.4)

This definition is based on the assumption that the number of reads coming from

any particular isoform is proportional to νi [36]. The task at hand is to reconstruct M

mRNA isoforms present in the sample using a de novo approach, and then estimate

their relative abundances by using the reads and their relationship to transcripts. Since

the isoform of origin for each read is not necessarily known, this can be a hard problem

and I have tackled it by estimating maximum likelihood estimate of τ and ν using the

EM algorithm.

It is also possible to calculate τ and ν by substituting the length of a transcript

in 3.3 and 3.4 for its effective length, l̄i, especially when taking read fragment size

distribution into account inside the model [37].

3.3. Transcript abundance measures

During the years, there have been three commonly used abundance measures, RPKM,

FPKM and TPM. RPKM is defined as the number of reads per kilobase per million

mapped reads. Formally, as defined in [53], for a gene region g:

RPKMg =
rg × 109

lg ×R
(3.5)

where rg is the number of reads that map to g, lg is the length of g and R is the total

number of reads. FPKM is similar, but expressed in terms of fragments per kilobase

per million mapped fragments. TPM, or transcripts per million, on the other hand, is

defined as [53]:

TPMg =
rg × rl × 106

lg × T
(3.6)

Here, rl is the length of a read and T is the total number of transcripts in the sample.

In terms of what aforementioned τ and ν represent as measures, it is easiest to

multiply them by 106 in order to get transcripts per million (TPM) and nucleotides per

million (NPM) measures, respectively [36]. Wagner et al. have shown that TPM is

in general the best measure of isoform abundance since it is independent of techno-

logy and eliminates statistical biases present in RPKM measure [53]. They found that
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RPKM is inconsistent across samples and can inflate statistical significance values. Li

et al. have compared the estimation of τ and ν to RPKM estimation [36]. According to

them, RPKM is an approximation of 109×vi/li and in the situation where mean expre-

ssed length of transcripts is 1kb, 1TPM is equivalent to 1RPKM. They note that RPKM

is highly reliant on mean expressed transcript length, while TPM is much more com-

parable across samples with different mean lengths. For these reasons, isomorph

reports relative abundances in terms of TPM and NPM values.

3.4. A simple count model

When thinking about relative abundances of isoforms, the simplest way of trying to

asses them is to map the reads back to reconstructed isoforms and count the number of

reads that has mapped to each isoform. In theory, if the isoform of origin for each read

were known, this would be very close to the correct maximum likelihood estimator for

isoform abundances [30]. If we assume that the isoform of origin is known for each

read, then according to Nicolae et al. [30], the maximum likelihood estimator of τi,

where τi is the frequency or fraction of isoform i, would be:

τi =
ci
M∑
j=1

ci

(3.7)

where:

ci =
ni∑

k≤li
F (k)(li − k + 1)

. (3.8)

Here, ni denotes the number of reads coming from isoform i, k iterates over all

possible fragment lengths coming from i, and the denominator is equal to the effective

length of transcript i, which was mentioned in the description of Cufflinks.

The are two significant challenges with this approach. Firstly, the exact origin

of a read is not known. In general, multiple alignments for a significant number of

reads will be reported, which means they can originate from any of the isoform they

mapped to and the positions they mapped to in those isoforms. What to do exactly with

these kinds of reads is a question that had multiple answers during the years, with some

methods completely ignoring them [20] and others trying to "rescue" them in some way

[26], by allocating them to different genes or isoforms proportionally to the number of

uniquely mapping reads covering them. Currently, isomorph handles both uniquely
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mapping and multi-mapping reads. For a multi-mapping read, only the best alignment

according to the score reported is taken into account and the corresponding isoform

is considered to be the origin of that particular read. The second major challenge are

unmapped reads. Sequencing errors, bad read quality or assembler simply not being

able to reconstruct all the transcripts present in the sample (very lowly expressed ones

for example), can leave a significant portion of the reads unmapped. There are two

ways isomorph is able to cope with this. It can simply ignore such reads (assuming

they are irrelevant) or it can use the idea from [36]. Therein, the authors introduce a

notion of a so-called "noise" isoform that they use as a sentinel for unmapped reads.

If this second approach is selected, isomorph will assign all the unmapped reads to

the noise isoform, labeled with index i = 0, with l0 being defined as 1. Taking noise

isoform into account should produce better estimates for other isoforms.

Another interesting possibility is to map the reads to the transcripts and then check

how many bases are exact matches between a read and an isoform. Or it is possible

to count how many bases overall are assigned to a certain transcript. The percentage

of such bases can be thought of as an approximation to the fraction of nucleotides, ν,

of the transcriptome that a particular transcript occupies. However, I assume that one

should be careful to then run a mapping tool with a less stringent mode of operation,

allowing for more errors and lesser quality alignments. Also, this measure should

intuitively be more correct as the read coverage of the transcriptome grows and in

ideal case approaches infinity, similarly as the fraction of reads should approach ν

when N →∞ [36].

3.5. Expectation Maximization algorithm

Before I present the robust statistical model I used for more sensitive and accurate

analysis than simple read counting, here I will describe details of a famous algorithm,

used a lot in isoform abundance estimation, starting from Cufflinks all the way to

RSEM. It is known as Expectation-Maximization or simply EM algorithm [52, 54,

55, 56]. In short, it is often used to find maximum likelihood estimate (MLE) of

the parameters of a mixture of probability distributions given some observed data,

where there is incomplete or unobserved data, or when a model can be simplified by

introducing so-called latent variables that model hidden or unknown data.
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3.5.1. EM – a simple example

Let us firstly consider a simple, often used example [56, 57]. Imagine two physically

identical coins being tossed, with each coin having a probability of heads p1 and p2,

respectively, pi ∈ [0, 1] ,∀i, and we are trying to estimate what these probabilities are

(the coins are not necessarily fair and p1 is not necessarily equal to p2). Let us assume

we chose a random coin to toss, and did it for R rounds. In each round, we tossed

it X times and remembered the results. Now, there are two possibilities. It is either

known which coin was tossed in each round, or is not (for example, we forgot which

coin we tossed in what round). In the first scenario, it is relatively easy to estimate the

probabilities since we know for each coin how many times we got heads and we can

simply say that pi = Hi/Ni, where Hi is the number of times coin i produced heads,

while Ni is the number of times the coin was tossed overall and N1 +N2 = X ×R.

In the second scenario, the solution is not so trivial due to the fact that it is not

known which heads or tails came from which coin since we do not know the choices

for each round. Here, we can introduce Z, a hidden or unobserved random variable

telling us which coin was used in the j − th round. If we knew values of Z we would

be able to compute estimates of p1 and p2. We can proceed in the following manner:

Assume p1 and p2 are random. Now, having these values, we can guess the most

probable distribution of Z, namely what is the most probable assignment of coins to

the rounds and using this guess calculate p1 and p2 again. This iterative process could

be iterated until we reach a point where p1 and p2 do not change any more. This is the

basic idea of EM algorithm. The algorithm itself uses more advanced statistics than

described in this subsection, but the principle is the same.

3.5.2. EM – a description

Expectation-Maximization algorithm [54] is an iterative method of estimating maxi-

mum likelihood parameters of a statistical model when there is unobserved or hidden

data.

The basic idea behind the EM algorithm is to use a two step iterative process that

converges to an optimum of the likelihood function. Starting from a random set of

parameters (a point in the likelihood space) it reaches a local optimum by adjusting the

parameters in each iteration. The steps used in every iteration are called the E-step and

the M-step, respectively.

In general, let us assume we have a set of N observed data points denoted by

X = {x1, x2, . . . , xN}. These points are generated by some probability distribution.
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Here, we either know there also exists unobserved data, or introduce unobserved latent

variables, marked Z. This defines our complete data set Y = (X,Z), whileX is called

incomplete data. Now we assume a joint density function:

p(Y |Θ) = p(X,Z|Θ) = p(X|Θ)p(Z|X,Θ) = L(Θ|X,Z) (3.9)

and call it complete-data likelihood while the original likelihood functionL(Θ|X)

is called incomplete-data likelihood. It is important to note that L(Θ|X, Y ) is itself

a random variable [52] following some distribution. Also, note that the probability

p(X|Θ) can always be obtained by marginalization of the joint probability:

p(X|Θ) =
∑
z

p(X, z|Θ) (3.10)

As was mentioned above, we usually optimize the log of the likelihood. Now, it

should be noted how applying the log to (3.9) and (3.10) in general produces signifi-

cantly different expressions:

logL(Θ|X,Z) = log p(X,Z|Θ) (3.11)

logL(Θ|X) = log
∑
z

p(X, z|Θ) (3.12)

In the second case, the sum is an argument to log, which is usually very difficult

to solve. Therefore, we work with the complete-data log likelihood. Since the values

of latent variables are not known, it is not possible to work with complete likelihood

directly. The idea of the EM algorithm is to instead do calculations with a lower bound

of the data likelihood from (3.12). This is possible by using a result known as Jensen’s

inequality.

Theorem 3.5.1 (Jensen’s inequality) Let f be a convex function defined on na interval

D. If x1, x2, . . . , xN ∈ D, and α1, α2, . . . , αN ≥ 0,
N∑
i=1

αi = 1, then

f

(
N∑
i=1

αixi

)
≤

N∑
i=1

αif(xi) (3.13)

The proof is available in [58]. If a function is concave, then the inequality is rever-

sed [59]. Now, let’s use this result to lower-bound (3.12). To do it, we can multiply the
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likelihood by 1, but in such a way as to introduce a new distribution q(z) that will play

the role of αi in the end [60]. We should also remember that log is a concave function.

logL(Θ|X) = log
∑
z

p(X, z|Θ)

= log
∑
z

p(X, z|Θ)
q(z)

q(z)

≥
∑
z

q(z) log

(
p(X, z|Θ)

1

q(z)

)
=
∑
z

q(z) log(p(X, z|Θ)−
∑
z

q(z) log q(z)

(3.14)

The EM algorithm tries to maximize the above expressed lower bound. Knowing

that the second term, also called the entropy of q, does not depend on Θ, we can ignore

it in the optimization step. The only question now is, what will q(z) be? Usually, the

posterior probability p(z|x,Θ) is used here as it satisfies both criteria given in 3.5.1

while being possible to be calculated. The lower bound optimized by EM is usually

denoted by Q(Θ|Θt) and expressed as [60]:

Q(Θ|Θt) = EZ|X,Θt [logL(Θ|X,Z)] (3.15)

where Θt are current parameter estimates and the expect-value is calculated with

regards to Z. Knowing (3.14) and having what was said about q(z) in mind, (3.15) can

be written as:

EZ|X,Θt [logL(Θ|X,Z)] = EZ|X,Θt [log p(X,Z|Θ)]

=
∑
z

p(z|X,Θt) log p(X, z|Θ)
(3.16)

Of course, in the case of a continuous distribution, (3.16) can be written as an

integral [52]. The first step of the EM algorithm consists of calculating the above

written expect value and is called the E-step. When the expected value is calculated,

the M-step proceeds to maximize the result of the E-step with regards to Θ. Namely,

it tries to find Θt+1 so as to maximize (3.15). Formally, the M-step finds:

Θt+1 = argmax
Θ

Q(Θ|Θt) (3.17)

Usually, this is much easier to solve than (3.2). There is also a modified variant of

EM [52], that tries to find any combination of parameters Θt+1 such thatQ(Θ|Θt+1) >

Q(Θ|Θt).
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3.5.3. EM and mixture densities

Since in isomorph (and RSEM) the EM algorithm is applied to finding parameters

of a mixture model [36], let us look at how EM can be applied for finding maximum

likelihood estimates of a mixture of densities. I have mainly followed the EM mixture-

density derivation procedure explained and presented in [52].

We start by assuming the following mixture of M probability distributions:

p(x|Θ) =
M∑
i=1

πipi(x|θi) (3.18)

such that
M∑
i=1

πi = 1. Every distribution pi is governed by its own set of parameters

θi. As for πi, i = 1 . . .M , they can be thought of as the mixing coefficients of the

mixture. If now we apply the log to the presented likelihood, we get:

logL(Θ|X) = log
N∏
n=1

M∑
i=1

πipi(x|θi) =
N∑
n=1

log
M∑
i=1

πipi(x|θi) (3.19)

which, as introduced in (3.12) has a sum under the logarithm and is very hard to

solve and optimize. If, as explained, we now assume that X is incomplete data and

introduce a set of random variables Z = {zn}Nn=1 that tell us from which component

density each observation was generated, we get the following:

logL(Θ|X,Z) = log (p(X,Z|Θ)))

= log
N∏
n=1

p(xn, zn|Θ)

=
N∑
n=1

log p(xn, zn|Θ)

=
N∑
n=1

log (p(xn|zn)p(zn))

=
N∑
n=1

log (pzn(xn|θn)πn))

(3.20)

Having simplified the log-likelihood, it is now possible to proceed to calculating

Q(Θ|Θt). There is one other quantity needed for that, namely p(zn|xn,Θt). It can be

calculated by the help of Bayes’ rule:
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p(zn|xn,Θt) =
πtznpzn(xn|θtzn)

p(xn|Θt)
=
πtznpzn(xn|θtzn)
M∑
i=1

πtipi(xn|θti)
≡ hni (3.21)

This quantity is known as responsibility. Now we can write Q(Θ|Θt).

Q(Θ|Θt) =
∑
z

p(z|X,Θt) log p(X, z|Θ)

= . . .

=
M∑
i=1

N∑
n=1

log (πipi(xn|θi))hni

=
M∑
i=1

N∑
n=1

log(πi)h
n
i +

M∑
i=1

N∑
n=1

log(pi(xn|θi))hni

(3.22)

A detailed explanation of why the final form of Q(Θ|Θt) looks like it does along

with a more detailed derivation procedure is available in [52]. It is basically just

playing a bit with some a little scary-looking sums that reduce to the final form af-

ter observing certain properties of the likelihood function. This defines the E-step of

the algorithm. The M-step now maximizes Q with respect to πi and θi and it can do it

independently of each other since there is a sum in between and they do not depend on

one another. Finding the estimate for θi will depend on the exact probability distribu-

tions assumed. The most often used distributions are Gaussian(normal) distributions.

Detailed description for Gaussian distributions can be found in [52]. Since in the mo-

del implemented here, I will primarily be concerned with finding equivalent of πi or

prior probabilities of a distribution, let us illustrate the M-step for finding these values.

Let us find the derivative of Q with regards to πi and set it to 0. Since it has to be that
M∑
i=1

πi = 1, we need to use the Lagrange multiplier to obtain the correct expression.

Thus, we obtain:

d

dπi

(
M∑
i=1

N∑
n=1

log(πi)h
n
i + λ

(∑
i

πi − 1

))
= 0 (3.23)

After taking the derivative, the following is obtained:

1

πi

N∑
n=1

hni + λ = 0 (3.24)

Summing both sides over i and multiplying by πi, we get λ = −N and subsequen-

tly by substituting for λ in (3.24):
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πt+1
i =

N∑
n=1

hni

N
(3.25)

This, along with expressions for θi completes the M-step of the algorithm. The E-

step and M-step can now be applied interchangeably in order to converge to an estimate

of the mixture parameters, starting from an initial parameter guess.

3.6. A robust statistical model

For the purposes of this work, I have used a statistical model originally proposed by

Li et. al [36] and Li and Dewey [37] which they use for a software called RSEM.

I have implemented their original model with the added fragment length distribution

probability from the second paper. The model description is as follows.

We are given a set of N reads, R = {r1, r2, . . . , rN} of fixed length L. We assume

that a de novo assembler has reconstructed allM transcripts present in the sample. The

goal is to find relative abundances of these transcripts. The absolute abundances can

also be found by carefully examining the sample size or by using spike-in measure-

ments [26] but this work is not focused on that aspect. What we are trying to estimate,

is a set of parameters Θ = {θ1, θ2, . . . , θM} which correspond to the prior probabilities

of selecting a transcript a read comes from. The probability of observing the setR now

is:

p(R|Θ) =
N∏
n=1

M∑
i=1

θip(rn|Gn=i) (3.26)

whereGn refers to the isoform n−th read originated from. This is a mixture proba-

bility function, as was presented in (3.18) and we can use the EM algorithm to estimate

its unknown parameters. In general, this model is identifiable and the EM should co-

nverge to a local optimum of the likelihood function, although in some cases this may

not hold [36]. These cases are usually plateaus of likelihood function with regards

to data [36]. Now, trying to directly optimize (3.26) would be very hard, so now we

assume that R is actually incomplete data. The model proposed in [36] introduces

three latent random variables that "complete" the data. They are the transcript of ori-

gin for n−th read, Gn, the read start position in the transcript sn as well as the read

orientation on. This model is illustrated in the figure 3.1. The figure presents the Baye-

sian network showing how these variables are related. The complete data likelihood

can now be written in the following way:
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p(R,G, S,O|Θ) =
N∏
n=1

p(gn|Θ)p(sn|gn)p(on|gn)p(rn|gn, sn, on) (3.27)

Here, the inner sum from (3.26) is not present any more which makes this expre-

ssion solvable for optimal values of the parameters Θ. The probability p(sn=j|gn=i)

models the so-called read start position distribution. This distribution can be modelled

in variety of ways [36]. I have chosen for it to be uniform, which assumes that the read

can be sequenced starting at any point in the transcript with equal probability. There-

fore, p(sn=j|gn=i)=(li − L + 1)−1. If the transcripts are assumed to have poly(A)

tails, p(sn=j|gn=i)=l−1
i , where li denotes the length of the transcript i [36]. Next, the

latent variable that models the orientation can have only two values, 0 indicating that

the read sequence is in the same orientation as its associated isoform, and 1 otherwise.

Therefore, for strand-specific protocols, p(on=0|gn=i)=1 and in non-strand-specific

case, we simply model it as p(on=0|gn=i)=p(on=1|gn=i)=0.5.

Figure 3.1: Bayesian network of the used model

Lastly, the final probability p(rn=ρ|gn=i, sn=j, on=k), meaning the probability of

a read coming from a specific isoform i, position j and orientation k can be calculated

in different ways. Here, since we are assuming the usage of Illumina sequencing data,

this probability should model the behavior of Illumina sequencers and the associated

properties. One of these properties is that in general, sequencers make more base-

call errors towards the end of the read, so the probability of having a mismatch in

the beginning should be smaller than at the end of a read. Li et. al have tackled this

problem by defining a position-dependent function (matrix) [36] such that:
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p(rn=ρ|gn=i, sn=j, on=k) =


L∏
l=1

wl(ρl, γ
i
j+l−1), k = 0,

L∏
l=1

wl(ρl, γ̄
i
j+l−1), k = 1

(3.28)

Here, wl is the afore-mentioned function (matrix) that, for each position l, models

the probability of observing the character a in the read, while observing b at the po-

sition j + l − 1 in the transcript. ρl is the character at position l inside the read and

γij+l−1, γ̄
i
j+l−1 are characters at position j + l − 1 of transcript i, with γ̄ denoting the

reverse complement of a character at the corresponding position. In other words, if the

read is assumed to start at position j of a transcript, then, comparing the transcript and

the read position by position starting at j and 1, respectively, we obtain the probability

p(rn=ρ|gn=i, sn=j, on=k) by using wl. In this work, I have used a simplified model,

instead of a complex wl. Simply, if there is a mismatch in the first third of read length,

the corresponding probability is 0.2, in the second third it is 0.4 and in the last third it

is 0.6. Another approach I used is to simply have wl(ρl, γij+l−1)=0.5 for any position

where there is a mismatch and 1 otherwise. Formally, in the first approach:

wl(ρl, γ
i
j+l−1) =



1, ρl = γij+l−1,

0.3, ρl 6= γij+l−1 and l ≤ L/3,

0.6, ρl 6= γij+l−1 and L/3 < l ≤ 2L/3,

0.9, ρl 6= γij+l−1 and 2L/3 < l,

(3.29)

and in the second approximation, wl is defined as:

wl(ρl, γ
i
j+l−1) =

1, ρl = γij+l−1,

0.5, ρl 6= γij+l−1

(3.30)

and identically for γ̄ij+l−1. Both of these approaches are very rudimentary approxi-

mations of sequencing experiments, but are fast to calculate and do not involve any

additional complex calculations.

Now, let us derive the expressions for the E and M steps of the EM algorithm,

having the complete-data likelihood as a starting point. These derivations are also

available in [36] supplementary material. First, let’s introduce an indicator random

variable znijk [36] such that:

znijk =

1, (gn, sn, on)=(i, j, k),

0, otherwise
(3.31)
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Every read will have a set of these variables assigned and they replace the original

notation. For example, p(rn=ρ|gn=i, sn=j, on=k) now becomes p(rn=ρ|znijk=1). It

is clear that
∑
i,j,k

znijk=1 or in other words, the read can come from only one isoform,

start position and orientation. The problem here is, we do not know what these exactly

are so we are trying to estimate the expected value of the joint probability distribution

p(r, z|Θ) with regards to z. For the E-step, we need to find:

Q(Θ|Θt) = EZ|R,Θt [logL(Θ|R,Z)]

= EZ|R,Θt [log p(R,Z|Θ)]
(3.32)

Before continuing, it should be noted that we can write the complete-data likeli-

hood function as follows:

p(R,Z|Θ) =
N∏
n=1

M∏
i=1

li∏
j=1

1∏
k=0

(p(rn, znijk|Θ))znijk

=
N∏
n=1

M∏
i=1

li∏
j=1

1∏
k=0

(
θi
li
p(rn|znijk=1)

)znijk

(3.33)

This is possible because we assume only one zijk=1 for each read. Now, applying

log to (3.33) gives [36]:

log p(R,Z|Θ) =
∑
n,i,j,k

znijk log

(
θi
li
p(rn|znijk=1)

)
(3.34)

Equation (3.32) now becomes:

Q(Θ|Θt) = EZ|R,Θt [log p(R,Z|Θ)]

=
∑
n,i,j,k

EZ|R,Θt [znijk] log

(
θi
li
p(rn|znijk=1)

)
(3.35)

This is because the log is not dependent on znijk since p(rn|znijk = 1) can be cal-

culated as in (3.28). It is well known that for indicator, or Bernoulli, random variables,

and znijk are just that, EZ|R,Θt [znijk] can be expressed by the help of Bayes’ rule as

follows:

EZ|R,Θt [znijk] = p(znijk = 1|R,Θt)

=
(θti/li)p(rn|znijk=1)∑

q,r,w

(θtq/lq)p(rn|znqrw=1)
(3.36)
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The E-step is now completed. The only thing remaining is to substitute (3.36) into

(3.35). In the M-step, we need to find the first order derivative ofQ(Θ|Θt) with respect

to θi, ∀i and set them to 0 to solve for θt+1
i . Of course, it is important not to forget that∑

i

θi=1 is a condition on Θ. Therefore, we take Lagrange multiplier λ into account.

Starting with (3.35), we obtain:

d

dθi

(
Q(Θ|Θt) + λ(

M∑
m=1

θm − 1)

)
=

=
d

dθi

(∑
n,i,j,k

EZ|R,Θt [znijk] log

(
θi
li
p(rn|znijk=1)

)
+ λ(

M∑
m=1

θm − 1)

)

=

∑
n,j,k

EZ|R,Θt [znijk]

θi
+ λ = 0

(3.37)

To solve for λ, we can multiply the last expression by θi, sum it from 1 to M and

set it to 0. This is possible because all sum members are obviously 0, and therefore the

whole sum must also be equal to 0.

M∑
i=1

(∑
n,j,k

EZ|R,Θt [znijk] + λθi

)
=
∑
n,i,j,k

EZ|R,Θt [znijk+λ
M∑
i=1

θi = N+λ = 0 (3.38)

Here,
∑
n,i,j,k

EZ|R,Θt [znijk equalsN because for each read, the inner sum over (i, j, k)

equals the sum of probabilities which have to sum to 1. Now we have solved for λ and

can go back to (3.37) to find θt+1
i . Namely, we obtain:∑
n,j,k

EZ|R,Θt [znijk]

θi
−N = 0 (3.39)

and from here easily solve for θt+1
i . Finally, the M-step can be written as:

θt+1
i =

∑
n,j,k

EZ|R,Θt [znijk]

N
(3.40)

This result is quite intuitive. The reason is, the parameters for the next iteration

are calculated as an estimate of the expected number of reads that belong to isoform

i in the current iteration, divided by the total number of reads. If we knew the ori-

gin of each read, this would simply be reduced to the number of reads coming from

that isoform divided by the total number of reads. With this, the derivation of EM

algorithm for our problem has been completed. However, this result is very tedious to
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calculate, especially when number of reads and transcripts is large (which is usually

the case). The sum over all reads and over all isoforms can be very time consuming to

obtain in each iteration. For that reason, the idea is to reduce the "search space" [36]

by first mapping the reads to transcripts and allowing only mappings with at most x

mismatches to be considered valid. These mappings will then define which transcripts

are joined to what reads, and in what positions and orientations. Only these pairs of

transcripts and positions will be used to calculate the parameters in the M-step, instead

of every possible transcript. More specifically, let us define πxn as a set of isoforms and

associated positions read n maps to in such a way that there are at most x mismatches

[36]. Then, we adjust (3.36) to be the following:

EZ|R,Θt [znijk] =


(θti/li)p(rn|znijk=1)∑

q,r,w∈pixn
(θtq/lq)p(rn|znqrw=1)

, (i, j, k) ∈ πxn,

0, otherwise

(3.41)

Usually, this is much faster to solve than the original expected value because reads

can map to only a very limited number of transcripts in this way. We adjust the ex-

pression for θt+1 (3.40) accordingly. isomorph does the E and M step for a specific

number of iterations, which is 2000 by default and outputs the results. If it is assumed

that reads are uniformly sequenced from the transcriptome [36], θi correspond to νi
described in (3.3) and τi can be calculated by using (3.4).

Using read mappings actually provides an approximation to original expressions

derived here and in [36], albeit a good one. In the count model, I mentioned the noise

isoform which is used in [36]. isomorph does not use this idea when doing the EM

algorithm (but does with the count model) and for that reason, I have not included it

in the EM derivation. Also, in the Supplementary Material of [36], it was proposed to

skip the reads with a large number of mappings in the calculations since they do not

bring along a lot of new information and are computationally heavy at the same time.

isomorph also implements that idea, but not in the same way. It rather ignores such

reads completely, while RSEM tries to compensate for them later on by using additi-

onal calculations (see Supplementary Material of [36]). For read mapping, I have used

bowtie2 [61], with parameters set exactly as in RSEM.

This basic model can be further expanded, as proposed in [37] and shown in figure

3.2. In that paper, the authors have added fragment length distribution, read qualities,

and read lengths as latent variables. Since they have shown that modeling read qualities
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does not significantly improve the results for Illumina data and since I was working

with Illumina reads of fixed length, right now isomorph only supports fragment

length distribution added to this basic model and ignores read qualities as well as read

length distribution. Fragment length is modeled only when analyzing paired-end reads.

For single-end, it is also ignored.

Figure 3.2: Bayesian network of the model extended with fragment length variable

To estimate fragment length, I have assumed that it is a normal distribution, si-

milarly as in [3], whose parameters, µ and σ isomorph estimates from valid read

mappings using TLEN field of the reported SAM alignment file. Then, when calcu-

lating probabilities p(R,Z|Θ), fragment length is taken into account by additionally

multiplying with p(f = x|G = i) = I(x)/
li∑
y=1

I(y) where x is the implied fragment

length of the mapping and I is the fragment length probability distribution. The ex-

pression is normalized over all possible fragment lengths coming from isoform i [37].

Finally, τ is modified to be calculated by replacing the length in (3.4) with the effective

length of transcript i [37].
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4. Implementation

4.1. General overview

Implementing the model should be relatively straightforward after deriving the expre-

ssions for E and M steps. I have implemented it in the most optimal way I was able

to. A couple of things can be noticed from the description of the model. Firstly, the

probabilities p(rn|znijk) can be pre calculated once and used later on since they do not

depend on θti . Calculating them in every iteration would be very time consuming. Nor-

malisation factors, namely
li∑
y=1

I(y) should also be calculated once because they are

always the same for a certain isoform. Further, estimating fragment length distribution

parameters does not have to be done from all possible alignments, but rather only first

(or random) million (or even less) since that should represent a relatively good sample.

If the number of reads, and consequently number of their alignments is huge (>100

mil), this can be a significant time saver.

I have also tried to enable easy plugging in of possibly different and new esti-

mators that behave according to other or new models, by applying strategy design

pattern. What this means is that adding a new estimator should be easy by inheriting

Estimator abstract base class and implementing estimate_abundances met-

hod. Also, adding new mapping tools instead of bowtie2 should be painless because

the running of the alignment is encapsulated inside a parametrized method in the uti-

lity source file and only the method and its parameters should be adapted accordingly.

To reconstruct transcripts from the reads, any assembler can be used since isomorph

depends only on the transcripts produced and this step must be run before running

isomorph. I have used Trinity for that task in this work.

The source code is written in C++ and documented according to Doxygen conven-

tions for easy automatic generation of the documentation provided by doxygen tool.

The code was written according to Google C++ Style guide with possible minor devi-

ations when I thought it would result in a more readable code. The code also includes

30



Makefiles written according to seqan [62] tutorial and convention, and Python scripts

used for testing. isomorph methods, data and functions are all wrapped inside an

isomorph namespace to not clutter the environment of programs that could possi-

bly use it and to enable it to become a full-blown standalone library in the future. A

detailed README file, along with doxygen docs and source code for download is

available at https://github.com/darxsys/isomorph.

4.2. External dependencies

4.2.1. Bowtie2

For aligning the reads to reconstructed transcripts, I have used bowtie2 [61] in the same

fashion as it is used in RSEM [37]. The essential idea is to let bowtie produce all good

enough alignments and later use the EM statistical model to quantify them and not let

bowtie decide what is good and what is not [36, 37]. isomorph runs bowtie with two

sets of parameters, depending on if it is working with single-end or paired-end reads.

To enable greater flexibility, tools such as BWA [63] and others will be supported in

future releases.

4.2.2. Seqan

For easier handling of input and output data, especially parsing of SAM [64] alignment

files, as well as parsing command line arguments in a clean fashion, I have used seqan

[62]. Seqan is an open source C++ library providing many different APIs, methods and

data structures for handling of biological data. isomorph currently uses seqan modu-

les for reading FASTA, FASTQ and SAM files, as well as its argument parser library.

isomorph adds an extra layer of abstraction by encapsulating seqan’s data structures

and used functions into its own for easier downstream usage and later modification.

4.3. Code structure and description

The code itself is divided into modules for doing different tasks. A general overview

of the dependencies between files and outside libraries can be seen in figure 4.1. The

modules currently included into isomorph are as follows:

– main.cpp – The entry point. Includes functions for argument parsing and

various checks.
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src/main.cpp

iostream seqan/arg_parse.h

seqan/stream.h seqan/basic.h

seqan/file.h seqan/sequence.h count_estimator.h

utility.h

em_estimator.h

vectorunordered_map

estimator.h single_read.hpaired_read.h

cmath string seqan/seq_io.hseqan/bam_io.h read.h

Figure 4.1: General overview of file dependencies in isomorph

– utility.h/utility.cpp – Encapsulates often used functions and cla-

sses that can be used by other modules, including running of bowtie alignment,

reading input files, calculating normal distribution probabilities and reverse-

complementing characters and sequences.

– count_estimator.h/count_estimator.cpp – This module defines

a simple count estimator explained in section 3.4. It defines CountEstimator

class that inherits Estimator class and implements the public virtual method

estimate_abundances. It also implements other, utility methods needed

for data processing, but these are purposefully hidden from the class clients.

– em_estimator.h/em_estimator.cpp – isomorph’s core module.

It implements the advanced statistical model explained under Methods chap-

ter. Similarly to count_estimator, it inherits Estimator class and hi-

des everything from clients except estimate_abundances method. Deta-

iled documentation of other, auxiliary methods and data structures inside this

module is available at https://github.com/darxsys/isomorph. Fi-

gure 4.2 shows the dependencies of this module.

– read.h/paired_read.h/single_read.h – These three headers de-

clare and encapsulate information related specifically to the reads. This inclu-

des the set of read alignments, read sequence and quality strings and enables

easier manipulation with the reads and their associated mappings as well as

future extensibility. These modules could be significantly changed in future

releases.
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Figure 4.2: The dependencies for the core em_estimator module

33



5. Results

5.1. Testing

To test performance of isomorph, specifically core EM algorithm, I have used a

method similar to that in [28]. Since I am not aware of any real benchmark RNA-Seq

datasets, I have used two RNA-Seq read simulators – one packaged with RSEM and the

other called Polyester [65] to simulate reads coming from reconstructed or annotated

transcripts.

RSEM simulator is very customizable and enables users to manually set expression

levels of every particular isoform as well as providing many other simulation options.

It uses RSEM’s built-in model along with the results of RSEM run on the data to pro-

duce a new dataset of reads that correspond to custom expression values. To use this

simulator, I have downloaded three different read datasets from the European Nucle-

otide Archive http://www.ebi.ac.uk/ena, two using single-end and one using

paired-end sequencing protocol. All of these reads come from often-used yeast (Sacc-

haromyces cerevisiae) organism. The single-end sets can be found under run accession

IDs ERR458493 and SRR960622. I will refer to these sets as Y1 and Y2, respectively.

For paired-end data, I have downloaded reads with run accession ID SRR059167 and

will refer to it as Y3. I ran Trinity for each of these read sets in order to produce re-

ference transcripts. As mentioned, to use RSEM simulator, first RSEM needs to be

run on the data, so I did just that. After that, I ran the simulator to generate 10 mil-

lion reads for each set using default parameter values, but setting the noise isoform

fraction to 0 taking care that the simulator does not produce noise reads coming from

it since isomorph does not take those into account when running the EM algorithm

currently. Simulated read length for Y1 was 51bp, for Y2 it was 36bp and Y3 had a

mate-length of 51bp. In the case of Y1 set, Trinity reconstructed 2897 transcripts, for

Y2 that number was 8385 and for Y3 1960 and this were used as reference transcripts

for isomorph testing.

Polyester [65] is a read simulator targeted to enable the analysis of differential ex-
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pression at both gene and transcript level. It can simulate experiments with biological

replicates and fold change between experiments has to be specified by the user. I have

used it to generate sets of reads from human chromosome 22 annotated transcripts,

which are packaged together with polyester. This set is comprised of 918 transcripts.

Since I was not testing for differential expression, I used it to only generate one re-

plicate per run. Polyester uses a negative-binomial distribution to draw reads from

reference transcripts and can be customized with many different parameters. In my

use case, I just asked it to provide number of reads coming from each transcript to be

a function of the length of that particular transcript. This is possible by providing a

flag meanmodel=TRUE to it. Using it, I created two single-end and one paired-end

simulated dataset, all of them by simulating from the same reference transcript set. I

will refer to these sets as CT1, CT2 and CT3 respectively. CT1 and CT2 single-end

sets had 273979 and 273014 reads generated. For CT3, 275857 reads were obtained.

Length of the reads was set to 60bp for all three tests. In case of CT3 set, each mate

of a pair had a length of 60bp. Polyester does not report expected TPM or RPKM

values for each transcript after simulating the reads (at least I was not able to find a

way to do so), but it does provide, for each read, the exact transcript of origin. Using

this information along with the assumption that reads are sequenced in proportion to

νi (3.3)[36], the expected TPM for an isoform can be calculated as:

τi =
Ni

li

M∑
k=1

(
Nk

lk

)
∗ 106 (5.1)

where τi represents TPM value of isoform i, M is the number of transcripts and

lk is the length of transcript k. After simulating the reads, I used this formula to find

expected values of TPM for each transcript in the sample. Then, I ran isomorph for

all three datasets and analysed the results. To do the analysis of all of these results,

I measured how good isomorph’s relative abundance estimates are compared to the

expected ones. To do this, I used the following expression:

δi =
|TPMiso,i − TPMsim,i|

TPMsim,i

(5.2)

This expression is the percent change between an expected (provided by simulator)

and obtained TPM value. I found the mean, median, and standard deviation for δ values

in every test sample. For comparison, I also ran RSEM and IsoEM [30] and reported

their results. Table 5.1 shows summary of all results. The table also shows the fraction

of TPM values reported by isomorph that were no more than five percent different

than the expected ones and can therefore be regarded as very accurate. This column is
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marked by Peq. IsoEM kept throwing exceptions when I ran Y3 set using it, so I could

report any results there. I ran RSEM with all default parameters. To test IsoEM, I ran

it according to the simple example provided in the README bundled with it. without

changing any default parameters. Isomorph was also run in the same fashion, using

default parameters.

Table 5.1: Results of running isomorph, IsoEM and RSEM on the same simulated data.

Shown are, mean, median and standard deviation of values of δ for each sample, as well as the

percentage of δ values that were less than 5 percent. I was not able to run IsoEM on Y3 set due

to a runtime error it kept throwing.

Software Dataset Meanδ Medianδ Stdevδ Peq

isomorph

Yeast-Y1-Single 0.067 0.060 0.070 0.423

Yeast-Y2-Single 0.050 0.036 0.444 0.672

Yeast-Y3-Paired 0.278 0.225 0.269 0.096

CT1 0.170 0.070 0.243 0.466

CT2 0.189 0.070 0.261 0.460

CT3 0.147 0.062 0.202 0.471

IsoEM

Yeast-Y1-Single 0.113 0.060 1.895 0.424

Yeast-Y2-Single 0.124 0.050 4.751 0.497

Yeast-Y3-paired - - - -

CT1 0.190 0.068 0.269 0.449

CT2 0.197 0.070 0.260 0.449

CT3 0.989 0.936 0.421 0.0

RSEM

Yeast-Y1-Single 0.030 0.021 0.045 0.831

Yeast-Y2-Single 0.057 0.038 0.064 0.59

Yeast-Y3-paired 0.074 0.018 0.213 0.822

CT1 0.170 0.070 0.24 0.004

CT2 0.702 0.670 0.563 0.004

CT3 0.839 0.748 1.222 0.0

To test and compare isomorph runtime, I took Y2 single-end dataset along with

the paired-end Y3 data and created sets of 500 thousand, 1 million, 2 million, and 4

million reads for each of the two using RSEM simulator. Then, for each set, I ran

isomorph, RSEM and IsoEm, and measured overall execution time. For IsoEM, I

have included the times for converting to genomic coordinates, since that module is an

important part of the software itself. All results also include times for running bowtie.
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The results, reported in seconds per run, can be seen in figure 5.1. Testing was done

on a machine with 16 Intel(R) Xeon(R) E5-2640 CPUs clocked at 2GHz each and

having HyperThreading support. Also, it has 256GB SSD drive and 396GB of RAM.

isomorph currently supports only single threaded execution so one core was used

during the testing.
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Figure 5.1: isomorph, RSEM and IsoEm runtime depending on the number of reads.

The plot in figure 5.1 implies that the runtime is roughly linear in the number of

reads, although one should be cautious to also consider number of possible read map-

pings as a factor due to the fact that if many reads have a lot of multiple mappings,

this could slow down isomorph. Also, it takes around two times less time to pro-

cess single-end than paired-end reads. This makes sense, since for paired-end reads,

isomorph does insert size estimation and calculates fragment length probabilities in

every iteration of the EM algorithm. Also, processing alignments for paired reads is
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slightly more complicated and time consuming.

I did not test isomorph’s other module – namely the one that implements the

simple count model, since its results should only be used as an indicator of abundan-

ces and because that model is extremely simplified and should not be used for real-

life abundance measures right now. In the future, when technology possibly enables

knowing all read origins, it could be of much greater use. I would also mention that

isomorph requires no auxiliary indexing files or preprocessing steps in the current

version. RSEM, for example, uses rsem-prepare-reference as a preprocessing

step that produces index files for reconstructed transcripts. These index files are then

used in the main algorithm.

5.2. Discussion

The results from table 5.1 show that the performance of isomorph is on average bet-

ter on single than on paired-end reads. For single reads, up to 67% of transcripts were

correctly quantified. When using the RSEM simulator, paired-read results were very

bad, while with polyester, they were comparable to single-end results. This indicates

a possible "outlier" data set, something that isomorph cannot handle well right now.

It is observable that the results using polyester are much more comparable across runs.

The reason for this is probably the fact that all three polyester runs were done on the

same transcript set, while RSEM simulator was run on three different sets of isoforms,

coming from different Yeast samples and experiments. Also the best results according

to the median value of δ are for CT1 and CT2 datasets, where at least fifty percent of

transcripts are quantified with less than seven percent error. Consequently, it is obvious

that for some data, isomorph performs much better than for the other and it needs

to be further investigated if this is due to a too specific/too stringent probabilistic mo-

del or some other implementation details. Also, the table implies that its performance

is comparable to IsoEM and RSEM. A curious thing is that both IsoEM and RSEM

performed extremely poorly on CT3 set where paired-end reads were sampled using

polyester. It is possible that their models are too advanced for that simple dataset and

that isomorph’s simplicity is better suited for it, or a low number of reads contributes

to them not being able to correctly infer what is correct in the data. I have noticed that

bowtie did provide a very large number of mappings for this dataset, and it possibly

influenced them and skewed their results.

Figure 5.1 shows a good characteristic of isomorph having linear time com-

plexity with regards to the number of reads. However, noticeable is the fact that it is
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far slower than both RSEM and IsoEM. Its performance for paired-end data indicates

that it can and should be significantly sped up. IsoEM does look like the fastest, but

this is due to the fact that it starts multiple threads and I did not find an option to force

it to run on only one thread (while both RSEM and isomorph ran on one thread).

In the future, it will be important to significantly improve the paired-end model

to produce much better estimates, as well as single and paired-end time performance.

Possible options to add are gene expression analysis and statistical testing of gene

expression difference across samples, calculating confidence intervals or doing Gibbs

sampling [36, 37]. Adding read length distribution modelling should be considered if

reads from other sequencing platforms are to be used with isomorph. Support for

multiple mappers and different input formats (GTF annotation) will be added.
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6. Conclusion

In this work I have focused on RNA-Seq, next-generation sequencing applied to analysis

of RNA. RNA-Seq has been more and more used as a de facto go to method of RNA

investigation in the past years. The goal of the thesis was to implement RNA trans-

cript abundance estimation for a sample using RNA-Seq reads. Estimating abundances

is important for multiple applications, including the analysis of gene expression and

relation to different states of a cell or an organism. The transcript reconstruction and

abundance estimation problem usually can be approached in two ways, doing it with

read mappings to a reference genome or assembling possible isoforms de novo and

proceeding with further downstream analysis. Both approaches have their advantages

and problems and I have compared and illustrated the use-cases for both.

De novo assembly and analysis was the approach used as a fundamental idea in

this thesis. When reference genomes or transcriptomes are not available, or are poorly

understood, this is the only way of having as clear as possible look into the sample

being analysed. isomorph, a software presented here, is an implementation of a

robust probabilistic model that uses reads mapped to de novo assembled transcripts to

maximize a likelihood function with regards to relative abundances. The tests have

shown that, overall, isomorph performs relatively well, but does have a significant

challenge processing paired-end reads, which needs to be looked further into. It also

shows linear time complexity with regards to the number of reads.

The future of isomorph will include advancing the model, and probably signifi-

cantly deviating from the one described herein, with the goal of improving its results

and performance, especially for paired-end data. Additional options for better and

more flexible RNA analysis will be added.
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Splice isoform identification from transcript graphs

Abstract

Providing a measure of abundances of different RNA transcripts in a sample can

be very important in many different biological or medical studies. Next-generation

sequencing is becoming a technology of choice for providing fundamental data for

such analyses. In this work, I have presented an RNA abundance estimation model

that uses next-generation RNA-Seq reads to estimate optimal relative transcript abun-

dance values. isomorph, a software implementation of this method is presented

and explained. isomorph tries to maximize a likelihood function with regards to

isoform abundance levels to provide an optimal estimate of relative transcript abun-

dances in a sample. Testing has shown that for single-end reads, isomorph performs

well, while paired-end data performance should be more improved. It is available at

https://github.com/darxsys/isomorph.

Keywords: rna-seq,abundance estimation,em algorithm

Identifikacija RNA izoformi iz grafa transkripata

Sažetak

Mjerenje relativnih količina RNA transkripata u uzorku može biti vrlo važno za

različite primjene u biologiji i medicini. Sekvenciranje sljedeće generacije postaje

primarno korištena tehnologija za omogućavanje takvih analiza pružanjem osnovnih

podataka o uzorku. U ovome radu, prezentirao sam statistički model procjene koli-

čine RNA koji koristi očitanja sekvenciranja sljedeće generacije s ciljem pronalaže-

nja optimalnih vrijednosti relativnih količina. isomorph, programska implementacija

ovog modela je opisana u radu. isomorph pokušava pronaći maksimum funkcije iz-

glednosti po parametrima koji predstavljaju relativne nivoe prisutnosti transkripata u

uzorku. Testiranje je pokazalo da za očitanja bez parova, isomorph ima zadovoljava-

juću točnost, dok za očitanja u parovima pokazuje potrebu za dodatnim poboljšanjima

performansi. Dostupan je na https://github.com/darxsys/isomorph.

Ključne riječi: rna-sekvenciranje,procjena količine,em algoritam
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